Examen Inertiel, 2A Rob.

Luc Jaulin, ENSTA-Bretagne Monday 22 November 2021. Appareils électroniques et polycopié interdits. Notes manuscrites autorisés Durée: 1h30.

Exercise 1 (Interpolation in SO3). We have a rigid body with an orientation the rotation matrix $\mathbf{R}(t)$. Find an expression for $\mathbf{R}(t)$ such that $\mathbf{R}(0) = \mathbf{R}_0$, $\mathbf{R}(5) = \mathbf{R}_5$, where \mathbf{R}_0 , \mathbf{R}_5 are two rotation matrices. The expression for $\mathbf{R}(t)$ should depend on \mathbf{R}_0 , \mathbf{R}_5 , t.

Exercise 2 (*Dark side of the moon*). We consider a moon \mathcal{M} turning around a planet \mathcal{P} which is assumed to be static at the origin **0**. The moon has a mass m which is small compared to the mass of \mathcal{P} . The inertia matrix of \mathcal{M} is **I**. Not only \mathcal{M} rotates around the \mathcal{P} , but it also has its own self rotation. The position of the center \mathcal{M} is **p** in the world frame, **R** is the orientation matrix of \mathcal{M} , \mathbf{v}_r is the speed of \mathcal{M} and $\boldsymbol{\omega}_r$ is the rotation vector of \mathcal{M} . Both \mathbf{v}_r iand $\boldsymbol{\omega}_r$ are expresses in the moon frame. The gravity generated by \mathcal{P} at **p** is assumed to be

$$\mathbf{g} = -\lambda \frac{\mathbf{p}}{\|\mathbf{p}\|^3}$$

where $\lambda > 0$.

1) Give the state equation describing the motion of the moon.

2) Explain how such a system should be simulated.

3) From the state equation of \mathcal{M} , compute the derivative of the angular momentum $\mathcal{L} = \mathbf{R} \cdot \mathbf{I} \cdot \boldsymbol{\omega}_r$ of \mathcal{M} .

4) Does this explain the fact that our moon has a dark side ?

Monday 22 November 2021.

Exercise 1 (Interpolation in SO3). We have a rigid body with an orientation the rotation matrix $\mathbf{R}(t)$. Find an expression for $\mathbf{R}(t)$ such that $\mathbf{R}(0) = \mathbf{R}_0$, $\mathbf{R}(5) = \mathbf{R}_5$, where \mathbf{R}_0 , \mathbf{R}_5 are two rotation matrices. The expression for $\mathbf{R}(t)$ should depend on \mathbf{R}_0 , \mathbf{R}_5 , t.

Solution.

We take

 $\boldsymbol{\omega} = \frac{1}{5} \cdot \operatorname{Log}(\mathbf{R}_5 \mathbf{R}_0^{\mathrm{T}})$

Therefore

or equivalently

$$\mathbf{R}(t) = \mathrm{Exp}(t\boldsymbol{\omega}) \cdot \mathbf{R}_0$$

$$\mathbf{R}(t) = \operatorname{Exp}\left(\frac{t}{5} \cdot \operatorname{Log}(\mathbf{R}_{5}\mathbf{R}_{0}^{\mathrm{T}})\right) \cdot \mathbf{R}_{0}.$$

Exercise 2 (*Dark side of the moon*). We consider a moon \mathcal{M} turning around a planet \mathcal{P} which is assumed to be static at the origin **0**. The moon has a mass m which is small compared to the mass of \mathcal{P} . The inertia matrix of \mathcal{M} is **I**. Not only \mathcal{M} rotates around the \mathcal{P} , but it also has its own self rotation. The position of the center \mathcal{M} is **p** in the world frame, **R** is the orientation matrix of \mathcal{M} , \mathbf{v}_r is the speed of \mathcal{M} and $\boldsymbol{\omega}_r$ is the rotation vector of \mathcal{M} . Both \mathbf{v}_r iand $\boldsymbol{\omega}_r$ are expresses in the moon frame. The gravity generated by \mathcal{P} at **p** is assumed to be

$$\mathbf{g} = -\lambda \frac{\mathbf{p}}{\|\mathbf{p}\|^3}$$

where $\lambda > 0$.

1) Give the state equation describing the motion of the moon.

We have

$$\begin{cases} \dot{\mathbf{p}} &= \mathbf{R} \cdot \mathbf{v}_r \\ \dot{\mathbf{R}} &= \mathbf{R} \cdot (\boldsymbol{\omega}_r \wedge) \\ \dot{\mathbf{v}}_r &= \mathbf{R}^{\mathrm{T}} \cdot \left(-\lambda \frac{\mathbf{P}}{\|\mathbf{p}\|^3}\right) - \boldsymbol{\omega}_r \wedge \mathbf{v}_r \\ \dot{\boldsymbol{\omega}}_r &= \mathbf{I}^{-1} \cdot (-\boldsymbol{\omega}_r \wedge \mathbf{I} \cdot \boldsymbol{\omega}_r) \end{cases}$$

2) Explain how such a system should be simulated.

See the course.

3) From the state equation of \mathcal{M} , compute the derivative of the angular momentum $\mathcal{L} = \mathbf{R} \cdot \mathbf{I} \cdot \boldsymbol{\omega}_r$ of \mathcal{M} .

We have:

$$\begin{split} \dot{\mathcal{L}} &= \dot{\mathbf{R}} \mathbf{I} \boldsymbol{\omega}_r + \mathbf{R} \underbrace{\cdot \mathbf{i}}_{=\mathbf{0}} \boldsymbol{\omega}_r + \mathbf{R} \cdot \mathbf{I} \cdot \underbrace{\boldsymbol{\omega}_r}_{=-\mathbf{I}^{-1} \cdot (\boldsymbol{\omega}_r \wedge (\mathbf{I} \cdot \boldsymbol{\omega}_r))} \\ &= \dot{\mathbf{R}} \mathbf{I} \boldsymbol{\omega}_r - \mathbf{R} \left(\boldsymbol{\omega}_r \wedge (\mathbf{I} \cdot \boldsymbol{\omega}_r) \right) \\ &= \dot{\mathbf{R}} \mathbf{I} \boldsymbol{\omega}_r - \mathbf{R} \mathbf{R}^{\mathrm{T}} \dot{\mathbf{R}} \mathbf{I} \cdot \boldsymbol{\omega}_r \\ &= \dot{\mathbf{R}} \mathbf{I} \boldsymbol{\omega}_r - \dot{\mathbf{R}} \mathbf{I} \cdot \boldsymbol{\omega}_r = \mathbf{0}. \end{split}$$

4) Does this explains the fact that our moon has a dark side?

Of course not. From the previous question, the moon should rotate for ever. Probably a long time ago, the moon had a self rotating motion. Due to the tide effect, a part of the angular momentum of the moon is transferred to the Earth, but the global angular momuntum (Earth + moon) remains constant.