
Communicating systems

https://www.ensta-bretagne.fr/jaulin/comsys.html

Luc Jaulin

February 25, 2025

https://www.ensta-bretagne.fr/jaulin/comsys.html


Luc Jaulin Communicating systems

Page 2 of 49



Chapter 1

Logic programming

Logic programming [1] is a type of programming paradigm associated with arti�cial intelligence.

It is based on formal logic.

Any program written in a logic programming language is a set of sentences in logical form,

expressing facts and rules [2][3].

In this lesson, we will use GNU Prolog (also called gProlog) which is a compiler which

supports some extensions to Prolog including constraint programming over a �nite domain. The

compiler converts the source code into byte code that can be interpreted by a Warren abstract

machine (WAM). Similarly, we can use Prolog online : https://swish.swi-prolog.org/ which does not

need any install.

A Horn clause is de�ned as

h← b1 ∧ b2 ∧ · · · ∧ bn

where h is called the head of the rule and b1, . . . , bn is called the body. Clauses with empty bodies

(i.e., n = 0) are called facts. If n > 1 the clause is a rule.

In Prolog, we write

h :- b1, b2, ..., bn

3
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Exercise 1.� Sibling

We have 5 persons: a,b,c,d,e linked by family relations such as mother, father, sibling described

by the following clauses (given with the Prolog syntax).

mother(a,b).

father(c,b).

father(c,d).

father(e,c).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

sibling(X,Y) :- parent(Z,X), parent(Z,Y), X\=Y.

1) Using Prolog ask for the following queries:

?- sibling(X,d).

?- father(X,d).

?- mother(X,d).

2) Show that this problem is a constraint satisfaction problem. Give the atoms, the variables and

the constraints.

3) Using the rules of logic, show how the resolution can be done.

Exercise 2.� Hanoi towers

We have three pegs: left, center, right. We have to move N disks from the left peg to the right

peg using the center peg as an auxiliary holding peg. At no time can a larger disk be placed upon a

smaller disk.

In what follows, move(N,X,Y, Z) is true if we can move the N top disks from the peg X to the

peg Y using the peg Z

move(1,X,Y,_) :-

write('Move from '), write(X), write(' to '), write(Y), nl.

move(N,X,Y,Z) :-

N>1,

M is N-1,

move(M,X,Z,Y),

move(1,X,Y,Z),

move(M,Z,Y,X).

Using Prolog, which query should we enter to move N = 3 disks.
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Exercise 3.� N-queens puzzle

The challenge is to set N queens on an N ×N grid so that no queen can "take" any other queen.

Queens can move horizontally, vertically, or along a ±π
4
diagonal. The following matrix shows a

solution for N = 4 queens.

M =


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


A solution to this puzzle can be represented as a special permutation of the list [1,2,3,4]. For

example, M can be represented by the vector J = [3, 1, 4, 2]. This representation prevents two or

more queens in the same row or column.

To test whether a given permutation is a solution, one needs to calculate whether the permutation

has two or more queens on the same diagonal. Two queens at position (i1, j1) and (i2, j2) are on the

same diagonal

i1 + j1 = i2 + j2 or i1 − j1 = i2 − j2

For the kth queen at position (ik, jk), we associate the two quantities

sk = ik + jk
dk = ik − jk

To check that a con�guration of queens is diagonal consistent, it su�ces to check the vector s =

(s1, . . . , sn) and the vector d = (d1, . . . , dn) both satisfy the alldi� constraint.

We de�ne the constraint sum(I, J, S) as follows

sum(I, J, S)⇔ ∀k, ik + jk = sk

and the constraint di�(I, J,D) as follows

di�(I, J,D)⇔ ∀k, ik − jk = dk

For instance, for the matrix M given above, we have

I = [1, 2, 3, 4]

J = [3, 1, 4, 2]

To satisfy sum constraint, we should take :

S = [4, 3, 7, 6]

To satisfy di� constraint we should take :

D = [−2, 1,−1, 2]
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1) Using Prolog, de�ne the sum and di� constraint

2) Solve the queens puzzle for an 8x8 board.

3) Solve the queens puzzle for an 8x8 board, is the case where we ask one queen at top-left corner.

Exercise 4.� Who owns the zebra?

Houses logical puzzle: who owns the zebra and who drinks water?

1) Five colored houses in a row, each with an owner, a pet, fruit, and a drink.

2) Bob lives in the red house.

3) Eve has a dog.

4) They drink co�ee in the green house.

5) Alice drinks tea.

6) The green house is next to the white house.

7) The grape eater has a snake.

8) In the yellow house they eat apple.

9) In the middle house they drink milk.

10) David lives in the �rst house from the left.

11) The papaya eater lives near the house with the fox.

12) In the house next to the house with the horse they eat apple.

13) The mango eater drinks beer.

14) Carol eats banana.

15) David lives near the blue house.

16) In one of the house, they drink water.

17) Zebra is one of the pet.

To have a complete view of the puzzle, we will use a table Hs, where each line corresponds to a

house.

House Owner Pet Fruit Drink Color

1 David

2

3 Milk

4

5

Equivalently, each line can be represented by the predicate:

h(Name,Pet,Fruit,Drink,Color)

which is true if the corresponding entries form a line of the table

Using Prolog, �nd who owns the zebra and who drinks water?
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Chapter 2

Dynamic Epistemic Logic

Dynamic epistemic logic [4] is a logical framework dealing with knowledge and information change.

It focuses on situations involving multiple agents (or robots) and studies how their knowledge changes

when events occur. These events can change factual properties of the actual world (they are called

ontic events): for example the robot A is moving. They can also bring about changes of knowledge

without changing factual properties of the world (they are called epistemic events): for example the

robot B has recognized an object it has already seen.

Epistemic logic is a modal logic dealing with the notions of knowledge and belief. As a logic, it

is concerned with understanding the process of reasoning about knowledge and belief. A classical

example illustrating dynamic epistemic logic is the muddy children problem, given in the following

section.

2.1 Muddy children problem

We consider three robots a, b, c, that are either blue or red. Here, we replaced children and muddy

of the original muddy children problem by robots and colors to adapt the puzzle to robotics. Assume

that

� the robots can see each other.

� the robots do not know their own color.

� The robots cannot communicate

We consider the situation of the Figure 2.1.

7
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Figure 2.1: Three robots (2 red, 1 blue) who do not know their color.

The robots can see each other and cannot communicate

We assume that God says to all robots: �At least one of you is red. If you know you are red :

go up�. Here, God plays the role of someone any robot obeys. At time k = 1, nothing has changed

since no robot knows its own color (see Figure 2.2). But this only valid for the ontic state. Indeed,

the knowledge of the robots has changed: they have observed the behavior of the other robots. From

this, the robots might be able to deduce their own color.

Figure 2.2: No robot has moved, but they have observed the behavior of others

Indeed, at time k = 2, the two red robots moved up, as illustrated by Figure 2.3. Indeed, for

k = 1, the two red robots were able to �nd their color.
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Figure 2.3: The two red robots moved up

We have two di�erent types of states

� The color of the robots is the ontic state

� Their memory is the epistemic state

To understand and formalize the distributed reasoning made by the robots, we de�ne the individual

knowledge operator Ki for agent i.

Individual knowledge

The sentence Kiϕ means that the robot i, knows ϕ. It is an individual knowledge which is valid

for a speci�c robot. For instance, for our problem, at time k = 0

(i) KaKb · color(c) = blue

(ii) Kc (Kb · color(c) = blue ∨Kb · color(c) = red)

And at time k = 1, we have
(i) Kb · color(b) = red

(ii) ¬KcKb · color(b) = red

(iii) ¬Kc · color(c) = blue
We can understand that we have properties or rules such as

K1K2 · ϕ⇒ K1 · ϕ

General knowledge

We de�ne the general knowledge operator as

E · ϕ⇔
∧
i

Ki · ϕ

For instance, for our problem, at time k = 2, we have

(i) E·color(a) = red

(ii) E·color(c) = blue
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Common knowledge

We de�ne the common knowledge operator

C · ϕ⇔
∧
k

Ek · ϕ

The common knowledge has to be understood as a proposition which is true and which is written

on a blackboard everybody can see.

Resolution

To solve our problem, we use the following reasoning.

� at k = 0: we have Ka (Blue(a)⇒ Step(b))

� at k = 1, we have

¬Step(b)
⇒ Ka (¬Blue(a))

⇒ Ka (Red(a))

⇒ Step(a)

� Therefore, at k = 2, the two red robots went up.

Look-compute-move model

From this example, we see that some interactions between robots may occur, without any

communication. It corresponds to the look-compute-move model illustrated by Figure 2.4.

Figure 2.4: Look-compute-move model
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Control

Assume that we are able to communicate with the robots from the outside. This external

communication could allow us to control a group of robots. This can be done using false or true

messages. In our example, we may send a false message so that all robots go up at k = 2 (see Figure

2.5).

Figure 2.5: With messages (true or false), we can control the behavior of some robots

2.2 Ontic and epistemic states for mobile robots

A mobile robot has a ontic state (position, speed, heading, . . . ) and an epistemic state (memory).

An illustration is provided by Figure 2.6 for one robot.
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Figure 2.6: The uncertainty on the position is represented by a cloud,

The uncertainty of the knowledge is represented by the blurry appearance

A robot with memory can be represented by the following state equations:

ẋ(t) = f(x(t),u(t)) (ontic evolution)

y(t) = g(x(t)) (observation)

µk+1 = φ(µk,y(tk)) (epistemic evolution)

u(tk) = h(µk) (control)

The vector µk corresponds to the memory of the computer and its evolution is discrete in time. Note

that we have an hybrid system since the ontic evolution is continuous in time. For simplicity, we

consider an analog controller. This simpli�es the analysis since all evolutions are now continuous in

time. The state equations (see Figure 2.7) become

ẋ(t) = f(x(t),u(t)) (ontic evolution)

y(t) = g(x(t)) (observation)

µ̇(t) = φ(µ(t),y(t)) (epistemic evolution)

u(t) = h(µ(t)). (control)

Figure 2.7: Closed loop system with the controller (red) and the actual system (blue)
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Which translates into

ẋ(t) = f(x(t),h(µ(t))) (ontic evolution)

µ̇(t) = φ(µ(t),g(x(t))) (epistemic evolution)

If we de�ne the global state as z = (x,µ), we have

ż = ψ(z)

Recall that the state of the robot which is now : z = (x,µ), can be decomposed into

� x: the ontic state

� µ: the epistemic state

Some uncertainties are attached to these states.

Figure 2.8: A representation of the uncertainties (x-axis: ontic; y-axis: epistemic)

Two types of measurements can be done on the system:

� Perception : We measure x

� Communication : we measure µ

2.3 Attack

An attack can be performed by communicating false information to the robot. Consider for

instance a robot which uses a landmark m for its own localization, as illustrated by Figure 2.9.
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Figure 2.9: A robot uses the landmark m for its localization

Its measurement may depend on m, that is known by the robot. We thus have an evolution and

a measurement equations of the form

ẋ = f(x,u)

y = g(x,m)

The robot may use m to estimate its ontic state vector. Denote by x̂ the estimated state vector

(see Figure 2.10). The state vector of the robot contains both x and x̂ which is stored in the computer

of the robot.

Figure 2.10: The robot estimates its state x and this estimate x̂ is stored in its memory
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This can be done using a Luenberger observer or a Kalman-bucy �lter.

The state equations of the robot are

ẋ = f(x,u)

y = g(x,m)
˙̂x = f̂(x̂,y,u)

u = r(x̂)

as illustrated by Figure 2.11

Figure 2.11: Closed loop system. The new input is now m

Equivalently, we have:

ẋ = f(x, r(x̂)) = f(x, x̂)
˙̂x = f̂(x̂,g(x,m), r(x̂)) = f̂(x, x̂,m)

If we set z = (x, x̂), we get a state equation of the form

ż = ψ(z,m)

Assume that we can observe the motion of the robot

ż = ψ(z,m)

a = η(x)

where z = (x, x̂).
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Figure 2.12: The observer (blue) measures a part of the ontic state of the green robot

We can build an observer for z. It can be described by the following state equations:

ż = ψ(z,m)

a = η(x)
˙̂z = ψ̂(a, ẑ)

where ẑ is an estimation of the state ontic state of the robot and also of its memory. We can now use

m as an input to control x. Recall that the vector m corresponds to the position of the landmark

(see Figure 2.13).

Figure 2.13: The blue robot has to estimate both x and x̂ from measurements a of x
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For this purpose, we want to build a controller:

m = ρ(ẑ, t)

to control both the ontic state and the epistemic state. The closed loop system, with the attacker

in the loop is given by Figure 2.14.

Figure 2.14: Sending false information from m, we can take the control of the robot motion, and

also of a part of its memory
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Exercise 5.� Cyber attack

Consider a Dubins car


ẋ1 = cos x3

ẋ2 = sin x3

ẋ3 = u

A landmark m broadcast its position to all world.

1) Propose a controller u = ρ(x,m) so that the car turns around a landmark m generating a

circle of radius r. To do this use a feedback linearisation method with the output

y = 1
2
(x1 −m1)︸ ︷︷ ︸

d1

2 + 1
2
(x2 −m2)︸ ︷︷ ︸

d2

2

2) Assume that we have hacked the computer of the landmark and that we are able to send fake

position for m. Find the fake position to be sent so that we can take the control of the vehicle, as

illustrated by the following �gure.
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Chapter 3

Cryptography

Cryptography [5] studies how to secure communications between robots in the presence of

adversarial behavior. Practical applications of cryptography include electronic commerce, payment

cards, computer passwords, military communications or any communicating robots.

3.1 One-way function

The main algorithms used in cryptography is probably the notion of one-way functions. A one-

way function is a function that is easy to compute on every input, but hard to invert given the image

of a random input. Such a function is also called a cryptographic hash function. We will now build

one-way functions used in cryptography. The conctruction is based on the modular arithmetic.

3.2 Modular arithmetic

This section presents modular arithmetic which relies on classical mathematical notions such

as the divisibility of integers, group theory, Bezout equations, . . . . The resulting algorithm make

extensive use of the Euclidian division.

3.2.1 Euclidian division

Given two integers a ∈ N and b ∈ N, with b ̸= 0, there exist unique integers q and r such that

a = bq + r

0 ≤ r < b,

The integer a is called the dividend, b is called the divisor, q is called the quotient and r is called

the remainder.

We de�ne the two binary operators % ans // often used in the modular arithmetic

� a%b which returns the remainder r from a, b

� a//b which returns the quotient q from a, b

21
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For instance, since 17 = 5 · 3 + 2, we have 17%5 = 2 and 17//5 = 3.

3.2.2 Divisibility

An integer n is divisible by a nonzero integer m if there exists an integer k such that n = km .

We write m | n

� For all a ∈ Z, a | a that is, divisibility is re�exive.

� If a | b and b | c, then a | c that is, divisibility is a transitive relation.

� If a | b and b | a then a = b or a = −b

� If a | b and a | c then a | (b+ c) .

� a | b⇔ ac | bc for nonzero c .

� For all a ∈ Z, we have a | 0.

3.2.3 Greatest common divisor

Given two integers a, b, a common divisor is an integer d such that d | a and d | b. The greatest
common divisor of a, b is denoted by gcd(a, b) = a ∧ b.

For instance

12 ∧ 18 = 2 · (6 ∧ 9) = 2 · 3 · (2 ∧ 3) = 6

Lemma (Euclide). If a, b are natural numbers then a ∧ b = (a%b) ∧ b.

Proof. Let r = a%b. We have a = qb + r for some integer q. Since (b ∧ r) | b and (b ∧ r) | r,
we have (b ∧ r) | qb + r, i.e., . (b ∧ r) | a. Therefore b ∧ r is a common divisor of a and b, so that

that b ∧ r|a ∧ b. On the other hand, since r = a − qb implies that (a ∧ b) | r. Therefore (a ∧ b) is a

common divisor of b and r, so a ∧ b|b ∧ r, which forces them to be equal.

This lemma is usually used to compute the a ∧ b

Example. For example 100 ∧ 40 = 40 ∧ 20 = 0 ∧ 20 = 20.

3.2.4 Congruence

Given an integer m ≥ 1, called a modulus, two integers a and b are said to be congruent modulo

m, if there is an integer k such that

a− b = km.

Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that

is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo

m is denoted

a ≡ b[m].
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We have the following properties

a ≡ a[m] (Re�exivity)

a ≡ b[m] ⇒ b ≡ a[m] (Symmetry)

a ≡ b[m], b ≡ c[m] ⇒ a ≡ c[m] (Transitivity)

a1 ≡ b1[m], a2 ≡ b2[m] ⇒ a1 + a2 ≡ b1 + b2[m]

a1 ≡ b1[m], a2 ≡ b2[m] ⇒ a1 − a2 ≡ b1 − b2[m]

a1 ≡ b1[m], a2 ≡ b2[m] ⇒ a1 · a2 ≡ b1 · b2[m]

3.2.5 Diophantine equations

Diophantine equation is an equation with integer coe�cients where the solutions are also required

to be integers. The simplest examples are the linear ones: given integers a, b, c, �nd all integers m,

n such that am+ bn = c.

Theorem. Given integers a, b, c, the equation am+ bn = c has a solution with m,n ∈ Z if and

only if (a ∧ b) | c.
Corollary. Given a, b ∈ Z there exist m,n ∈ Z such that am+ bn = a ∧ b.

Extended Euclide algorithm. The extended Euclidean algorithm solves the equation
ax+ by = z

z = a ∧ b

a, b, x, y, z ∈ Z
where a, b are known.

The extended Euclide algorithm can be written as a function E(a, b) which provides the solution

(x, y, z) of the problem.

Proposition 1. The function E can be de�ned by induction as

E

(
a

0

)
=

 1

0

a


and

E

(
a

b

)
=

 y

x− (a//b) ∗ y
z

 where

 x

y

z

 = E

(
b

a%b

)
Proof. Since in the case where b = 0, we have z = a ∧ b = a and x = 1,we get

E(a, 0) = (1, 0, a)

Moreover, we have, if z = a ∧ b , we have

ax+ by = z

⇔ (bq + r)x+ by = z where q = a//b, r = a%b

⇔ b(qx+ y) + rx = z

⇔
{

by′ + rx = z

y′ = qx+ y
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The equation by′ + rx = z is simpler to solve than ax+ by = z.

The corresponding Python code is:

def E(a,b): # extended Euclide algorithm

if b==0: return 1,0,a

else:

x,y,z=E(b,a%b)

return y,x-(a//b)*y,z

The greatest common divisor for a ∧ b is obtained by

def gcd(a,b):

_,_,z=E(a,b)

return z

3.2.6 Group
((

Z
pZ

)∗
, ·
)

Consider the group
((

Z
pZ

)∗
, ·
)
where p is prime. The star operator means that 0 has been

removed. The operator of the group is the multiplication. For instance, if we consider the group( Z
5Z

)∗
= {1, 2, 3, 4}. The multiplication table is

· 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

We have a ·b = (a∗b)%5, where ∗ is the classical multiplication in N. For instance, 3 ·4 = 12%5 =

(5 ∗ 2 + 2)%5 = 2.

The modular inverse a−1 of a is the element which satis�es a−1 · a = 1. For instance 3−1 = 2,

since 2 · 3 = 1.

Ferma's little theorem. For any prime number p and any integer a, one has

ap−1 = 1[n]

For instance 34 = 1 in
( Z
5Z

)∗
. This theorem can help to the inverse of a number, when p is huge.

For instance, the inverse of 3 is 33 = 2. Indeed 3 · 33 = 1. In cryptography, we always have to keep

in mind that inversion has to be di�cult if we want to build one-way functions.
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3.2.7 Monoid
( Z
nZ , ·

)
When n is not prime, the set

( Z
nZ , ·

)
is not a group with respect to the multiplication. It is a

monoid only. For instance Z
4Z = {0, 1, 2, 3}. The multiplication table is

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Some elements have an inverse (here 1,3), some not. Only elements that are prime to n have an

inverse.

3.2.8 Modular inverse

In
( Z
nZ

)
, the modular inverse of a is x if a · x = 1. The inverse exists if a ∧ n = 1. Equivalently,

we have a ∗ x ≡ 1[n]. To �nd the inverse, we have to solve the Bezout equation a ∗ x + n ∗ y = 1.

This can be done using the Euclide algorithm.

Take for instance
( Z
4Z , ·

)
and a = 3. To �nd an inverse x of a, we �rst check that a ∧ n = 1. We

have to solve a ∗ x+ n ∗ y = 1, i.e., 3 ∗ x+ 4 ∗ y = 1. We get x = −1 and y = 1. Now, x%4 = 3. We

get 3−1 = 3 in Z
4Z .

The Python function for the mudular inverse is given by

def modular_inverse(a,n):

x,_,_=E(a,n)

return x%n

3.2.9 Discrete exponential

An example of one-way function is the discrete exponential (or modular exponentiation). Modular

exponentiation can be done in polynomial time. Inverting this function requires computing the

discrete logarithm. This will be done is the group
(

Z
pZ

)∗
, where p is a prime number.

In the group in
( Z
5Z

)∗
, 34 = 1 because 3 ∗ 3 ∗ 3 ∗ 3 = 81 and 81 ≡ 1[5]. We have

30 = 1

31 = 3

32 = 4

33 = 2

34 = 1

35 = 3

36 = 4

37 = 2

Page 25 of 49



Luc Jaulin Communicating systems

Squaring method for the exponentiation

Assume that we have to compute 271 in
( Z
5Z

)∗
. Of course, we do not want to perform 71

multiplications. We have

371 = 3 · 370
= 3 · 335 · 335

= 3 · (335)2

= 3 · (3 · 334)2

= 3 ·
(
3 · (317)2

)2
= 3 ·

(
3 · (3 · 316)2

)2
= 3 ·

(
3 ·
(
3 · (38)2

)2)2

= 3 ·

(
3 ·
(
3 ·
(
(34)

2
)2)2

)2

= 3 ·

3 ·

(
3 ·
((

(32)
2
)2)2

)2
2

= 3 ·

3 ·

(
3 ·
((

(32)
2
)2)2

)2
2

= 3 ·

(
3 ·
(
3 ·
(
(42)

2
)2)2

)2

= 3 ·
(
3 ·
(
3 · (12)2

)2)2

= 3 · (3 · 32)2

= 3 · (3 · 4)2

= 3 · 22
= 3 · 4 = 2

We have used here a squaring method where the idea is to square the expression as much as

possible. The squaring makes the exponentiation fast. More precisely, if we have to compute am,

where a ∈
(

Z
pZ

)∗
and m ∈ N is usually a huge number, we can get an algorithm in logm, or

equivalently which is linear with respect the the length of m. In out example, we has m = 71 which

means that the length of m is equal to 2.

Euclidian division for the exponentiation

Assume again that we have to compute 271 in
( Z
5Z

)∗
. We know that 34 = 1. Moreover 71 = 17·4+3.

Thus

271 = 317·4+3 =
(
34
)3

33 = (1)3 33 = 2.
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Discrete Logarithm

Let G be a �nite abelian group of cardinality n. Denote its group operation by multiplication.

Consider a primitive element α ∈ G and another element β ∈ G. The discrete logarithm problem is

to �nd the smallest positive integer k, such that:

αk = β

The integer k is termed the discrete logarithm (or modular logarithm) of β to the base α. We

write k = logα β.

Consider again the group
( Z
5Z

)∗
. Since

31 = 3

32 = 4

33 = 2

34 = 1

we have

log3(1) = 4

log3(2) = 3

log3(3) = 1

log3(4) = 2

There is no algorithm to compute e�ciently the discrete logarithm.

3.3 Asymmetric cryptography

Alice wants Bob sends her a short message m, securely. Here m is assumed to be an integer (not

too large). If the message to be sent is large (a �le, for instance), the message has to be decomposed

into symbols (letters for instance) and these symbols have to be transformed into integers. We assume

here that m is a small integer (for instance in {1, . . . , 26} if we use the letters of the Alphabet). Alice
creates a pair of two functions H,H−1 such that H ◦H−1 = Id , where H is a one-way function, called

a cryptographic hatching function. She sends H to Bob and everybody can capture H which should

now be considered as public. Bob generates c = H(m) which corresponds to the coded message.

Bob sends c to Alice and c becomes public. Alice receives c and computes m = H−1(c). Only Alice

can do this, since only her knows H−1. At this step, both Alice and Bob know m and nobody else.

The process is illustrated by Figure 3.1. If Bob wants to send another message m there is no need

to build another pair (H,H−1).
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Figure 3.1: Red: Public; Green: Known by Alice only;

Blue: known by Bob only; Magenta: known by Bob and Alice only

Long message. If Bob has a long message M to send, he has to decompose M into many

integers: m1,m2, . . . and send the ci = H(mi). A unique function H is needed.

Naive approach. We propose here a very naive approach which gives the principle of the RSA

coding explained just after. Alice chooses an number e for which only she knows the inverse d. The

numbers e,m are assumed to be in some multiplicative group where the exponent and the logarithm

exist. Then Bob computes c = me and sends c to Alice. Alice computes cd to get m. Indeed, we

have

cd = (me)d = med = m1 = m.

Equivalently, Alice could have done the following computation

m = exp (d · log c) .

Now, the notion of inverse, log and exp cannot be used in a modular context as it is done in R.
Moreover, we have to keep in mind that to get a one-way function, the inverse of e should be di�cult

to compute. It is the case in a modular arithmetic, i.e., in
( Z
nZ

)∗
where n is large. Moreover, in( Z

nZ

)∗
, the computation are cyclic which creates some ambiguities to be avoided. And if m is not a

prime number, a number e may have no inverse.

The naive approach inspires the RSA cryptosystem that is now explained.

3.3.1 RSA cryptosystem

RSA is a public-key cryptosystem is one of the oldest widely used for secure data transmission.

The name "RSA" comes from the names of R. Rivest, A. Shamir and L. Adleman, who described

�rst the algorithm in 1977. With RSA, the one-way function H is parametrized by the pair (p, q),

where p, q are two prime numbers (see Figure 3.2). The functions H and H−1 are obtained using the

following procedure:
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� n = p · q. The two numbers should be large enough to have m < p · q.

� φ1 = (p − 1) · (q − 1). Note that φ1 = φ(n) = φ(p · q) = φ(p · q) = (p − 1) · (q − 1) where φ

corresponds to the Euler's totient function, i.e., φ(n) corresponds to the number of elements

smaller that n that are relative prime to n.

� e is any integer > 1 such that e ∧ φ1 = 1.

� d is the modular inverse of e in
(

Z
φ1Z

)
. It satis�es de = 1[φ1].

� Return

(
H : m 7→ me%n

H−1 : c 7→ cd %n

)

Figure 3.2: (n, e) are public; (p, q, d) are private

The message m of bob is coded into c and then decoded by Alice

Many messages can be sent using the same keys

The fact that Alice has decoded the message, i.e., the fact that m = cd %n, comes from the

following theorem:

Theorem 2. If n = p · q where p, q are prime. If d, e ∈ N are such that de ≡ 1[(p− 1)(q − 1)], and

if m ∈ N then

(md)e ≡ m[n].

If m < n, we get (md)e ≡ m.

Remark 3. The integer d is called the trapdoor. It corresponds to the secret information needed to

invert the one-way function H.
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Example 4. For p = 3, q = 11,we have n = 33, φ1 = (3−1) · (11−1) = 20, e = 3, and d = 7 (indeed

7 ∗ 3 ≡ 1[20]). For instance, if m = 16, we have

c = H(m) = me%n = 163%33 = 4

and

H−1(c) = cd %n = 47%33 = 16

The following example is similar, with larger number

Example 5. For p = 23, q = 61,we have n = 23∗61 = 1403, φ1 = (23−1) · (61−1) = 1320, We have

to take e such that e ∧ φ1 = 1. Take for instance e = 7. We have to �nd an inverse d in
(

Z
φ1Z

)
, i.e.,

an integer e such that ed ≡ 1[φ1]. Since e ∧ φ1 = 1 the inverse of e exists in
(

Z
φ1Z

)
. From Bezout

theorem, there exists d, f ∈ N such that de + fφ1 = 1. The pair (d, f) can be obtained using the

Euclide algorithm. Thus de ≡ 1[φ1]. We can take d = 943.

For instance, if m = 345, we have

c = H(m) = me%n = 3457%1403 = 1058

and

H−1(c) = cd %n = 1058943%1403 = 345

The Python program corresponding to RSA is now given.

def generate_keys(p,q):

n=p*q

φ1=(p-1)*(q-1)

e=random.randrange(1,φ1)

while gcd(e,φ1)!=1: e=random.randrange(1,φ1)

d=modular_inverse(e,phi1)

return n,e,d

def encrypt(e,n,M):

C=[pow(ord(m),e,n) for m in M]

return C

def decrypt(d,n,C):

M=[chr(pow(c,d,n)) for c in C]

return M

p,q = ... # Two large prime numbers

n,e,d=generate_keys(p,q)

print("Public Key: e = ",e)

print("Private Key: d = ",d)
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M=['H','e','l','l','o']

print("Original Message: ",M)

C=encrypt(e,n,M)

print("Encrypted Message: C = ",C)

M=decrypt(d,n,C)

print("Decrypted Message:",M)
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Chapter 4

Leader election

4.1 Principle

We consider a group of robots. Each robot is able communicate with one, two or more robots of

the group. Each robot has its own memory that is not shared with the others. To be able to work

all togather, the robots have to choose a leader, i.e., a single robot to take the decision for all. In

distributed robotics, leader election [6] is a fundamental task that has to be done in a distributed

manner.

At the initialization, all robots do not know which robot is the leader. They do not know how

many robots exist in the group. After a leader election algorithm has been run, each robot throughout

the network recognizes a particular, unique robot as the leader. To elect a leader, the robots have

to break the symmetry among them. This can be done for instance by choosing randomly a name

or equivalently an identity number (or address). The communication graph is made with nodes, one

for each robot (see Figure 4.1). An arc a → b of this graph means that Robot a can communicate

with Robot b.

We assume that

� The communication graph is symmetric, i.e., if a→ b then b→ a.

� The graph is �nite and may contain cycles.

� The graph is connected.

� The robots are asynchronous, i.e., they have di�erent clocks and they compute at arbitrary

speeds.

.

A valid leader election algorithm must meet the following conditions:

� Termination: the election �nishes in a �nite time with a high probability.
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Figure 4.1: 12 robots have to take a common decision.

An arc between two robots means that they can communicate directly

� Uniqueness: there is exactly one robot that considers itself as leader.

� Agreement: all other robots know who the leader is.

4.2 Election

The �rst step of the election is that each robot chooses a random number in {1, . . . , imax} called
the address. If imax is large enough, we can assume that all robots have a di�erent address (see Figure

4.2). For simplicity, we take here addresses that are small integers. In the real world, the addresses

are not and not given under the form of an integer as for instance:

1. IPv4: 32-bit addresses like 192.168.0.1.

2. IPv6: 128-bit addresses like 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

To select the leader, a possibility is to take the node with the largest address. At this step, no

communication has been done yet, nobody knows who is the leader. The set of all addresses is

denoted by I = {i1, i2, . . . }.
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Figure 4.2: The robots choose randomly an address.The red robot chooses the number 13

The leader election can be done using the following procedure (see Figure 4.3).

� Each robot Ri, i ∈ I has in its own memory a variable, local leader ℓi, corresponding to the

largest address they know. At the initialization, ℓi = i.

� Each robot Ri, i ∈ I takes the updates its local leader, considering all its neighbors.

Equivalently,

ℓi = max
k∈{i}∪{j | i→j}

ℓj.

� After a �xed time T , long enough, all robots are assumed to have the same ℓi, i.e., we have

ℓi = max I. The leader election is done.

In the �gure below, we have I = {3, 7, 11, 13, 19, 25, 35, 45, 49, 51, 81, 96} . The leader has the address
i = 96.
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Figure 4.3: Left: Initialization: ℓi = i;Right: the leader election is done: ℓi = max I = 96

4.3 Span tree

A span tree of the graph G is a tree which contains all nodes of G. In this section, we show how

a span tree can now be built. We take the leader as the root of the tree. Each node memorizes its

father. To each node i, is also attached an integer di which corresponds to distance to the root. To

build the span tree, we follow the following procedure.

� Step 0. For each i ∈ I, di =∞.

� Step 1. dmax I = 0, i.e., the distance from the leader to itself is 0.

� Step 2. For each i ∈ I, such that di = ∞, if ∃k ∈ {j | i → j}, with dk < ∞, set di = dk + 1

and father(i) = k

After a �xed time T , long enough, we assume that ∀i ∈ I, di < ∞. We now have a span tree with

the relation i ↪→ j if j = father(i). The span tree is represented by the red arc of Figure 4.4. Each

node memorizes the distance to the root and its father with respect to ↪→. Since d96 = 0, the robot

96 has no father. The leaves of the tree are 13, 81, 45, 3. Node 25 has the father 96 and 3 sons:

19, 45, 51. Once the span tree is built, all communications can be limited to the arcs of the span tree.

Since there exists a unique communication path to go from node i to node j, the collision between

messages can be avoided. Of course, shortcuts such as 7 → 81 would be more e�cient than taking

7 ↪→ 35 ↪→ 11 ↪→ 49 ↪→ 96 ↪→ 25 ↪→ 19 ↪→ 81 but this may create ambiguities.
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Figure 4.4: Left: Initialization: di =∞ except for the leader, d96 = 0;

Right: span tree is constructed.

The red arc corresponds to the relation ↪→ and points toward the father

Number of span trees. We have proposed a distributed manner to get one span tree. For a

given communication graph G, the number N of span trees is usually huge. If G is already a tree,

we have N = 1. If N is small, a single cut in G can make it disconnected. It is important to get an

idea of the value N to have an idea of the robustness of the connection graph. Using the Kirchho�

theorem, we can easily compute N . For this, we need to compute the Laplacian matrix of G. The

Laplacian matrix is given in Figure 4.5:
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Figure 4.5: Laplacian matrix of the communication graph

The matrix is square n× n, where n = 12 is the number of nodes. The diagonal (blue) corresponds

to the number of neighbors of each node. The entries −1 indicates a neighborhood relation. The

sum for each line and each column is zero. To get the number of span trees we compute one cofactor

of L. Note that all the cofactors of L are identical: this is a property of a Laplacian matrix. To

compute one cofactor, we remove one line and one column to get a square matrix L∗ with n− 1 lines

and n − 1 columns. The determinant of L∗ corresponds to the number N of span trees in G. For

our example, we get N = 96, which is small compared to the number Nc = 1212−2 = 61917364224

(we used here the Cayley's formula: nn−2) that would have obtained for a complete graph G (i.e.,

G has an arc between any pair of nodes). The ratio N
Nc

= 2 · 10−9, which a measure of the graph

connectivity, is small. It means that connection graph may loose its connectivity if one or few cuts

are performed in the connection graph.
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4.4 Counting

Using the span tree, we are now able to count the number of robots. This procedure guarantees

that the leader election has succeeded and that the span tree has been built. We de�ne

father(i) = {j | i ↪→ j}
sons(i) = {j | j ↪→ i}

For a given i, father(i) is either a singleton or empty. In our example, father(11) = {49} and
father(96) = ∅. For a given i, sons(i) may contain several nodes. For instance sons(25) = {19, 45, 52}.
A set with no son is called a leaf. For instance, son(81) = ∅. Thus 81 is a leaf of the span tree.

The principle of the counting is that each node counts the descendants, as illustrated by Figure

4.6. We get the following procedure.

� Step 0. For any leaf i of the span tree, set ηi = 1. Otherwise ηi = 0.

� Step 1. For each i ∈ I, if ∀j ∈ son(i), ηj > 0,set ηi = 1 +
∑

j∈son(i) ηj. This means that

if a node i has all its sons (elements of son(i)) that had already made the counting then, by

summing ηj, j ∈ son(i), it knows how many descendants it has. It has also to count itself.

� Step 2. Repeat Step 1 until ηmax I ̸= 0 . The integer ηmax I corresponds to the number of

nodes.

Figure 4.6: Left: Initialization: for all leafs, ηi = 1;

Right: Each node has counted its descendants in the span tree plus itself

4.5 Communicating

Once a leader election has been done and a span tree has been built, a communication between

robots in of the group can be done easily.
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Broadcasting

If the leader wants to send a message to all. The strategy is that each robot has to communicate

the message received from the father to all sons.

Blackboard

A common knowledge can be set up. It corresponds to some kind of blackboard that anybody can

see in the group. The leader owns the blackboard and broadcasts its content as soon as a modi�cation

is done.

4.6 Point to point

We want a communication system where that Robot a sends a message to Robot b. Each node

has to know the address of all its descendants. We de�ne the function

desc(i) = sons(i) ∪
⋃

j∈sons(i)

desc(i)

For instance desc(25) = {81, 19, 45, 51, 3}. The construction of this function in the graph can be done

using a propagation from the leaves to the root, as for the counting. To communicate a message m

from node a to node b. We apply the following rules:

� Rule 1. If node i received m and if i = b, do nothing.

� Rule 2. If node i received m and if b ∈ desc(i), then i sends m to all j ∈ sons(i).

� Rule 3. If node i received m and if b /∈ desc(i), then i sends m to father(i).
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Swarms

Swarm robotics is the study of how to design independent systems of robots without centralized

control. The emerging swarming behavior of robotic swarms is created through the interactions

between individual robots and the environment. This idea emerged on the �eld of arti�cial swarm

intelligence, as well as the studies of insects, ants and other �elds in nature, where swarm behavior

occurs.

Relatively simple individual rules can produce a large set of complex swarm behaviors. A key

component is the communication between the members of the group that build a system of constant

feedback. The swarm behavior involves constant change of individuals in cooperation with others,

as well as the behavior of the whole group.
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Exercise 6.� Group of robots

See the correction video at https://youtu.be/1Of1htovXp4

Consider a group of m = 20 carts the motion of which is described by the state equation
ẋ1 = x4 cosx3

ẋ2 = x4 sinx3

ẋ3 = u1

ẋ4 = u2

where (x1, x2) corresponds to the position of the cart, x3 to its heading and x4 to its speed.

1) Provide a controller for each of these robots so that the ith robot follows the trajectory(
cos(at+ 2iπ

m
)

sin(at+ 2iπ
m
)

)
where a = 0.1. As a consequence, after the initialization step, all robots are uniformly distributed

on the unit circle, turning around the origin.

2) By using a linear transformation of the unit circle, change the controllers for the robots so

that all robots stay on a moving ellipse with the �rst axis of length 20 + 15 · sin(at) and the second

axis of length 20. Moreover, we make the ellipse rotating by choosing an angle for the �rst axis of

θ = at. Illustrate the behavior of the controlled group.

Exercise 7.� Convoy

See the correction video at https://youtu.be/OdRBFO_51s0

Let us consider one robot RA described by the following state equations:
ẋa = va cos θa
ẏa = va sin θa
θ̇a = ua1

v̇a = ua2

where va is the speed of RA the robot, θa its orientation and (xa, ya) the coordinates of its center.

1) As for Exercise ??, propose a controller for RA to follow the trajectory:{
x̂a(t) = Lx sin(ωt)

ŷa(t) = Ly cos(ωt)

with ω = 0.1, Lx = 20 and Ly = 5. Illustrate the behavior of the control with a sampling time

dt = 0.03 sec.

2) We want that m = 6 other robots with the same state equations follow this robot taking

exactly the same path. The distance between two robots should be d = 5m. To achieve this goal, we
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propose to save every ds = 0.1m the value of the state of RA and to communicate this information

to the m followers, to synchronize the time with the traveled distance. For this, we propose to add a

new state variable s to RA which corresponds to the curvilinear value that could have been measured

by a virtual odometer. Each time the distance ds has been measured by the virtual odometer, s is

initialized to zero and the value for the state of RA is broadcast. Simulate the behavior of the group.
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Exercises

Exercise 8.� Flocking

See the correction video at https://youtu.be/g4X24h9yZAI

We consider m = 20 robots described by the following state equations:


ẋi = cos θi
ẏi = sin θi
θ̇i = ui

The state vector is x(i) = (xi, yi, θi). These robots can see all other robots, but are not able to

communicate with them. We want that there robots behave as a �ock as illustrated by Figure 5.1.

Basic models of �ocking behavior are controlled by three rules of Reynolds: the separation (short

range repulsion), the alignment and the cohesion (long range attraction). Using a potential based

method, �nd a controller for each robot to obtain a �ock.
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Figure 5.1: Illustration of the �ocking behavior from a random initialization

Exercise 9.� Consensus

See the correction video at https://youtu.be/m5WZKFrFmeM

Let us consider m robots R1, . . . , Rm, as represented by Figure 5.2. These robots are all described

by the following state equations:
ẋ1 = x4 cosx3

ẋ2 = x4 sinx3

ẋ3 = u1

ẋ4 = u2

where p = (x1, x2) is the position of the robot, θ = x3 is the heading, and v = x4 is the speed. The

input vector is u = (u1, u2). The state for Ri will thus be denoted by xi = (pi, θi, vi).

We assume that

� Each robot is able to see all other robots, i.e., the robot Ri knows the bearing vector p̃ij (in

the Ri frame), and the heading di�erence θ̃ij = θj − θi with respect to any other Rj, j ̸= i.

� Each robot Ri is able to measure its own speed vi

� The robots do not measure neither their position nor their heading, i.e., they have no GPS and

no compass
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� The robots are identical and should thus enclose the same controller

� The robots are distinguishable, i.e., they know what is the number of the robots they see.

Figure 5.2: The four robots have to �nd a consensus in order to rotate around the same point. The

robot Ri measures the bearing vector p̃ij (in its own frame), and the angle θ̃ij

We want to �nd a controller to be implemented in each robot so that the swarm rotates forming

a perfect circle. To reach our goal, we propose to a controller based on the two following rules :

� Long range attraction. Each robot Ri is attracted by an arti�cial hook at the back of Ri+1

(where Rm+1 corresponds to R1), as illustrated by Figure 5.3. The corresponding arti�cial

force is proportional to r, the distance between the two robots.

� Close-range repulsion. Each robot is repulsed by all other robots with an arti�cial force in 1
r2
.

After a transition period, a consensus can be reached. Show on a simulation with 6 robots reaching

a consensus where the robots form a perfect circle.

Figure 5.3: R1 follows R2, R2 follows R3,R3 follows R1. The arti�cial hooks are represented by the

points at the back of each vehicle

Exercise 10.� Platooning
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See the correction video at https://youtu.be/nv2utdAzesk

We consider m = 10 robots turning on a circular road of circumference L = 100m and with radius

r = L
2π
. Each robot Ri satis�es the following state equations{
ȧi = vi
v̇i = ui

The state vector is x(i) = (ai, vi) where ai corresponds to the position of the robot and vi to its

speed. Each robot Ri is equipped with a radar which returns the distance di to the previous robot

Ri−1 and its derivative ḋi, as illustrated by Figure 5.4.

Figure 5.4: Platooning on the circle

1) Write the expression of the observation function g (ai− , ai, vi− , vi) which returns the vector

y(i) =
(
di, ḋi

)
. In this formula, i− = i − 1 if i > 0 and i− = m if i = 0. Indeed, since the road is

circular, the robot R1 follows the robot Rm.

2) Propose a proportional and derivative control so that the robots will get a uniform distribution

and go at a speed equal to v0 = 10ms−1. Check with a simulation.

3) In case of stability, prove theoretically that when the steady behavior is reached, all robots

have a speed equal to v0 and they are uniformly distributed.

4) Prove the stability of the system for 4 robots.

5) Provide a simulation with 10 robots.
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