This microsite is associated to the paper
L. Jaulin (2023). Optimal separator for an ellipse; Application to localization, arXiv, math.NA, 2305.10842.
from vibes import vibes import numpy as np from codac import * def draw_tiny_box(x,y,col='darkblue',eps=0.02): X=Interval(x-eps,x+eps) Y=Interval(y-eps,y+eps) draw_box(X,Y,col) def toBox(X): if type(X)==list: X=IntervalVector(X) return(X) def draw_box(X,Y,col='darkblue'): vibes.drawBox(X.lb(),X.ub(),Y.lb(),Y.ub(), 'col') class CtcEllipse0(Ctc): def __init__(C,q): Ctc.__init__(C,2) C.q=q def contract(C,X): def psi(q): #top vertex of the ellipse a2,b2,c2=4*q[3]*q[5]-q[4]**2,4*q[3]*q[2]-2*q[1]*q[4],4*q[3]*q[0]-q[1]**2 D2=b2**2-4*a2*c2 return (-b2+sqrt(D2))/(2*a2) def phi(q,x2): a1,b1,c1=q[3],q[1]+q[4]*x2,q[0]+q[2]*x2+q[5]*sqr(x2) D1=np.max([b1**2-4*a1*c1,0]) return (-b1+sqrt(D1))/(2*a1) if not(X.is_empty()): s=octasym([1,3,2,6,5,4]) qs=s(C.q) if np.isnan(psi(qs)): print("error the constraint should be associated to an ellipse") A=IntervalVector([[phi(C.q,psi(C.q)),psi(qs)],[phi(qs,psi(qs)),psi(C.q)]]) B=X&A X=X&IntervalVector([[phi(C.q,B[1].ub()),phi(C.q,B[1].lb())],[phi(qs,B[0].ub()),phi(qs,B[0].lb())]]) return X def octasym(I): return lambda L : [(1.0*np.sign(I[i]))*L[np.abs(I[i])-1] for i in range(0,len(I))] def sym(X,s): b=True if type(X)==list else False X=toBox(X) if b: return s([X[i] for i in range(0,len(X))]) else: return IntervalVector(s([X[i] for i in range(0,len(X))])) def ctcAction(C,s,_s,X): return sym(C.contract(sym(X,s)),_s) class CtcEllipse(Ctc): def __init__(C,q): Ctc.__init__(C,2) C.q=q def contract(C,X): def ψ(e): return [1,e[0]*2,e[1]*3,4,e[0]*e[1]*5,6] def Contract_ith(I,X): s=octasym(I); e=np.sign(I); C0=CtcEllipse0(octasym(ψ(e))(C.q)) return ctcAction(C0,s,s,X) if not (X.is_empty()): X=Contract_ith([1,2],X)|Contract_ith([-1,-2],X)|Contract_ith([1,-2],X)|Contract_ith([-1,2],X) return X def testellipse(x,q): return (q[0]+q[1]*x[0]+q[2]*x[1]+q[3]*x[0]*x[0]+q[4]*x[0]*x[1]+q[5]*x[1]*x[1]<0 ) class SepEllipse(Sep): def __init__(S,q): Sep.__init__(S,2) S.q=q def separate(S,Xin,Xout): C=CtcEllipse(S.q) X=Xin|Xout P=C.contract(X) if P.is_empty(): if testellipse(X.mid(),S.q): Xin=P else: Xout=P return Xin,Xout L=[Xout[i].rad()-P[i].rad() for i in range(0,len(X))] w=np.max(L) i = L.index(w) e1=P[i].lb()-Xout[i].lb() e2=Xout[i].ub()-P[i].ub() if e1+e2<=0.00000000001: return Xin,Xout Q = X.copy() R = X.copy() if e2>e1: Q[i]=Interval(P[i].ub(),X[i].ub()) R[i]=Interval(X[i].lb(),P[i].ub()) else: Q[i]=Interval(X[i].lb(),P[i].lb()) R[i]=Interval(P[i].lb(),X[i].ub()) if testellipse(Q.mid(),S.q): Xin=R else: Xout=R return Xin,Xout def ellipse_simple(): X=IntervalVector([[-2,2],[-2,2]]) q=[-5,1,1,3,1,2] SIVIA(X,SepEllipse(q),0.1,color_map={SetValue.IN: "#FFCC00[#FFAAFFEE]", SetValue.OUT: "#AADDFF[#AAFFFFEE]",SetValue.UNKNOWN: "yellow[white]"}) vibes.drawBox(X[0].lb(),X[0].ub(),X[1].lb(),X[1].ub(),'black[transparent]') vibes.beginDrawing() ellipse_simple() vibes.endDrawing()
def ellipse_simple_classic(): X=IntervalVector([[-2,2],[-2,2]]) q=[-5,1,1,3,1,2] _g="q5*sqr(x2)+q4*x1*x2+q3*sqr(x1)+q2*x2+q1*x1+q0" _g=_g.replace("q0",str(q[0])).replace("q1",str(q[1])).replace("q2",str(q[2])).replace("q3",str(q[3])).replace("q4",str(q[4])).replace("q5",str(q[5])) g=Function('x1','x2',_g) S=SepFwdBwd(g,Interval([-oo,0])) SIVIA(X,S,0.01,color_map={SetValue.IN: "#FFCC00[#FFAAFFEE]", SetValue.OUT: "#AADDFF[#AAFFFFEE]",SetValue.UNKNOWN: "yellow[white]"}) vibes.drawBox(X[0].lb(),X[0].ub(),X[1].lb(),X[1].ub(),'black[transparent]')
def simplify_expression_ellipse_foci(): a1,a2,b1,b2,x1,x2,l = symbols("a1 a2 b1 b2 x1 x2 l") da1=x1-a1 da2=x2-a2 db1=x1-b1 db2=x2-b2 F=4*(da1**2+da2**2)*(db1**2+db2**2)-(l**2-da1**2-da2**2-db1**2-db2**2)**2 F=expand(F) F=simplify(F) F2 = factor(F,x1,x2) print("\n F2=",F2)
class SepEllipseFoci(Sep): def __init__(S,a1,a2,b1,b2,l): Sep.__init__(S,2) S.a1,S.a2,S.b1,S.b2=a1,a2,b1,b2 S.l=l&Interval(sqrt((a1-b1)**2+(a2-b2)**2),oo) def separate(S,Xin,Xout): def q(a1,a2,b1,b2,l): q0=-a1**4-2*a1**2*a2**2+2*a1**2*b1**2+2*a1**2*b2**2+2*a1**2*l**2-a2**4+2*a2**2*b1**2+2*a2**2*b2**2+2*a2**2*l**2-b1**4-2*b1**2*b2**2+2*b1**2*l**2-b2**4+2*b2**2*l**2-l**4 q1=-(-4*a1**3+4*a1**2*b1-4*a1*a2**2+4*a1*b1**2+4*a1*b2**2+4*a1*l**2+4*a2**2*b1-4*b1**3-4*b1*b2**2+4*b1*l**2) q2=-(-4*a1**2*a2+4*a1**2*b2-4*a2**3+4*a2**2*b2+4*a2*b1**2+4*a2*b2**2+4*a2*l**2-4*b1**2*b2-4*b2**3+4*b2*l**2) q3=-(4*a1**2-8*a1*b1+4*b1**2-4*l**2) q4=-(8*a1*a2-8*a1*b2-8*a2*b1+8*b1*b2) q5=-(4*a2**2-8*a2*b2+4*b2**2-4*l**2) return [q0,q1,q2,q3,q4,q5] X=Xin|Xout S1=SepEllipse(q(S.a1,S.a2,S.b1,S.b2,S.l.ub())) S2=SepEllipse(q(S.a1,S.a2,S.b1,S.b2,S.l.lb())) S=S1&~S2 Xin1,Xout1=S1.separate(X,X) Xout2,Xin2=S2.separate(X,X) Xin=Xin1|Xin2 Xout=Xout1&Xout2 #Xin,Xout=S.separate(X,X) # ne fonctionne pas return Xin,Xout def sonar(): a1,a2=-2,1 b1,b2=-2,-1 c1,c2=3,2 Se1=SepEllipseFoci(a1,a2,b1,b2,Interval(4,6)) Se2=SepEllipseFoci(a1,a2,c1,c2,Interval(7,9)) Se=Se1&Se2 X=IntervalVector([[-7,7],[-7,7]]) SIVIA(X,Se,0.05,color_map={SetValue.IN: "#FFCC00[#FFAAFFEE]", SetValue.OUT: "#AADDFF[#AAFFFFEE]",SetValue.UNKNOWN: "white[white]"}) draw_tiny_box(a1,a2,'red[red]',0.02) draw_tiny_box(c1,c2,'black[black]',0.02) draw_tiny_box(b1,b2,'black[black]',0.02) draw_box(Interval(-6,6),Interval(-6,6),'black[transparent]') vibes.beginDrawing() sonar() vibes.endDrawing()