Station keeping problem

Eric Goubault Benjamin Martin Sylvie Putot

28 June 2016

-			
Ren	1 D m	un 1\/	artin
Dell	am		artin

Hybrid autonomous systems

Consider the system:

$$\dot{x} = f(x, u)$$

where $x \in \mathbb{R}^n$ states, $u \in \mathbb{R}^m$ control (discrete number of possible controls). System is autonomous as u only depends on states.

V-stability

A function $V(x) : \mathbb{R}^n \to \mathbb{R}$ is V-stable if:

$$V \ge 0 \rightarrow \dot{V} < 0$$

Let $\mathbb{V} := \{x : V(x) \leq 0\}$. If the system is V-stable, then from any initial states, after a given time, the trajectory enters the set \mathbb{V} and never exits it.

Illustration (Luc Jaulin)

Introduction

Problem example: station keeping of a planar robot (1)

Cartesian coordinates

$$\begin{cases} \dot{x} &= \cos(\theta) \\ \dot{y} &= \sin(\theta) \\ \dot{\theta} &= u \end{cases}$$

Polar coordinates

$$\begin{cases} \dot{\phi} = \frac{\sin \phi}{d} + u \\ \dot{d} = -\cos \phi \\ \dot{\alpha} = -\frac{\sin \phi}{d} \end{cases}$$

with $\phi - \theta + \alpha = \pi$.

Problem example: station keeping of a planar robot (2)

$$\begin{cases} \dot{\phi} = \frac{\sin \phi}{d} + u \\ \dot{d} = -\cos \phi \end{cases}$$

with control law, e.g:

$$u = \begin{cases} 1 & \text{if } \cos \phi \leqslant \frac{\sqrt{2}}{2} \\ -\sin \phi & \text{otherwise} \end{cases}$$

Question

Is it certain that from any initial state, the robot eventually stays around a beacon centred at the origin ?

Problem example: station keeping of a planar robot (3)

Benjamin Martin

Transformation into a polynomial system

Idea

Try to prove the existence of an (algebraic) invariant for the system which allows to show what we want.

Only possible with algebraic systems, thus adding extra variables: $h = \sin \phi$, $g = \cos \phi$ and $e = \frac{1}{d}$. We obtain a polynomial system:

with $h^2 + g^2 = 1$ and de = 1.

Darboux polynomials

Let $\mathcal{L}_f(p)$ be the Lie derivative of polynomial $p \in \mathbb{R}[x]$, (with respect to the flow f).

Definition

A polynomial p is Darboux if $\mathcal{L}_f(p) = qp$ with $q \in \mathbb{R}[x]$.

In our case, is Darboux:

- e with cofactor ge,
- $g^2 + h^2$ with cofactor 0.
- If u constant, (u + 2eh) with cofactor 2ge
- If u = -h, dh with cofactor -g.
- If u = -h, he with cofactor g(2e 1)

Darboux polynomials

Let $\mathcal{L}_f(p)$ be the Lie derivative of polynomial $p \in \mathbb{R}[x]$, (with respect to the flow f).

Definition

A polynomial p is Darboux if $\mathcal{L}_f(p) = qp$ with $q \in \mathbb{R}[x]$.

In our case, is Darboux:

- e^2 with cofactor 2ge
- $g^2 + h^2$ with cofactor 0.
- If u constant, (u + 2eh) with cofactor 2ge
- If u = -h, dh with cofactor -g.
- If u = -h, he with cofactor g(2e 1)

Darboux polynomials can be used to derive invariant/variant as rational or logarithmic functions, e.g. [Goubault et al., ACC 2014].

Invariant

Consider u constant, then since u + 2eh and e^2 are Darboux with same cofactor, then

$$\mathcal{L}_f\left(\frac{u+2eh}{e^2}\right) = \frac{\mathcal{L}_f(u+2eh)e^2 - (u+2eh)\mathcal{L}_f(e^2)}{e^4} = 0.$$

This implies $\frac{u+2eh}{e^2}$ is constant (invariant). We have then for any initial condition e_0, h_0 :

$$\frac{u+2eh}{e^2} = \frac{u+2e_0h_0}{e_0^2} \equiv -e_0^2(u+2eh) + e^2(u+2e_0h_0) = 0,$$

and as $e, e_0 > 0$ that the sign of u + 2eh is maintained.

Invariant

Consider u constant, then since u + 2eh and e^2 are Darboux with same cofactor, then

$$\mathcal{L}_f\left(\frac{u+2eh}{e^2}\right) = \frac{\mathcal{L}_f(u+2eh)e^2 - (u+2eh)\mathcal{L}_f(e^2)}{e^4} = 0.$$

This implies $\frac{u+2eh}{e^2}$ is constant (invariant). We have then for any initial condition e_0, h_0 :

$$\frac{u+2eh}{e^2} = \frac{u+2e_0h_0}{e_0^2} \equiv -e_0^2(u+2eh) + e^2(u+2e_0h_0) = 0,$$

and as $e, e_0 > 0$ that the sign of u + 2eh is maintained.

 \rightarrow Can be obtained e.g. with [Goubault et al., ACC 2014] or [Ghorbal and Platzer, TACAS 2014]

Invariant regions

$$\mathcal{V}_{cst} := \left\{ (\phi, d) : u + 2 \frac{\sin(\phi)}{d} < 0 \right\}$$

$$\mathcal{V}_{cst} := \left\{ (\phi, d) : u + 2 \frac{\sin(\phi)}{d} = 0 \right\}$$

$$\mathcal{V}_{cst} := \left\{ (\phi, d) : u + 2 \frac{\sin(\phi)}{d} > 0 \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Invariant: proportional control

Recall: dh is Darboux with cofactor -g, and d = -g. We can deduce:

$$\mathcal{L}_f \left(\log(|dh|) - d
ight) = rac{\mathcal{L}(|dh|)}{|dh|} + g = 0.$$

(since d > 0, |dh| can be replaced by -dh if h < 0, dh otherwise)

Invariant: proportional control

Recall: dh is Darboux with cofactor -g, and d = -g. We can deduce:

$$\mathcal{L}_f \left(\log(|dh|) - d
ight) = rac{\mathcal{L}(|dh|)}{|dh|} + g = 0.$$

(since d > 0, |dh| can be replaced by -dh if h < 0, dh otherwise) This implies $\log(|dh|) - d$ is constant (invariant). For any initial condition d_0, h_0 :

$$\log(|dh|) - d = \log(|d_0h_0|) - d_0 \equiv \log(|dh|) - d - \log(|d_0h_0|) + d_0 = 0.$$

Invariant regions

$$\mathcal{V}_{pro} := \{(\phi, d) : \log(|\sin(\phi)d|) - d < -2\}$$
$$\mathcal{V}_{pro} := \{(\phi, d) : \log(|\sin(\phi)d|) - d = -2\}$$
$$\mathcal{V}_{pro} := \{(\phi, d) : \log(|\sin(\phi)d|) - d > -2\}$$

Recall:

$$u = \begin{cases} 1 & \text{if } g \leqslant \frac{\sqrt{2}}{2} \\ -h & \text{otherwise} \end{cases}$$

٠

-			
Ren	Dmi	n N/I	artin
Dell	ann		artin

Recall:

$$u = \begin{cases} 1 & \text{if } g \leqslant \frac{\sqrt{2}}{2} \\ -h & \text{otherwise} \end{cases}$$

Consequence: all the proportional invariant regions are cut (not existing), but an invariant region in the constant case exists, maximal when $V_{cst} = -1/2$ (i.e., the region tangent at the vertical line at $\phi = -\pi/4$, at point $(-\pi/4, \sqrt{2}/2)$).

Recall:

$$u = \begin{cases} 1 & \text{if } g \leqslant \frac{\sqrt{2}}{2} \\ -h & \text{otherwise} \end{cases}$$

٠

Consequence: all the proportional invariant regions are cut (not existing), but an invariant region in the constant case exists, maximal when $V_{cst} = -1/2$ (i.e., the region tangent at the vertical line at $\phi = -\pi/4$, at point $(-\pi/4, \sqrt{2}/2)$).

We observe when proportional control is applied:

- \dot{V}_{cst} < 0;
- on the frontier of the region $\phi = -\pi/4$ and $\phi = \pi/4$: flow enter when d > 1, flow exit when d < 1.

Recall:

$$u = \begin{cases} 1 & \text{if } g \leqslant \frac{\sqrt{2}}{2} \\ -h & \text{otherwise} \end{cases}$$

٠

Consequence: all the proportional invariant regions are cut (not existing), but an invariant region in the constant case exists, maximal when $V_{cst} = -1/2$ (i.e., the region tangent at the vertical line at $\phi = -\pi/4$, at point $(-\pi/4, \sqrt{2}/2)$).

We observe when proportional control is applied:

- $\dot{V}_{cst} < 0;$
- on the frontier of the region $\phi = -\pi/4$ and $\phi = \pi/4$: flow enter when d > 1, flow exit when d < 1.

 \Rightarrow Can the region defined by $V_{cst}\leqslant -1/2$ be reached from anywhere ?

Decomposition of the state space

Decomposition of the state space

Analysis

From region 5 to 6: flow enters at $d_0 \in [1, \sqrt{2}]$. By construction, enters 7 and then 5 at d_1 satisfying:

 $\log(-d_0h_0) - d_0 = \log(-d_1h_0) - d_1 \equiv -d_1e^{-d_1} = -d_0e^{-d_0},$

with $h_0 = \sin(-\pi/4)$.

Analysis

From region 5 to 6: flow enters at $d_0 \in [1, \sqrt{2}]$. By construction, enters 7 and then 5 at d_1 satisfying:

 $\log(-d_0h_0) - d_0 = \log(-d_1h_0) - d_1 \equiv -d_1e^{-d_1} = -d_0e^{-d_0},$

with $h_0 = \sin(-\pi/4)$.

Lambert-W function W(z) is defined as the solution to $z = xe^x$. Here, $d_1 = W(-d_0e^{-d_0})$. From [Stewart, 2009], it satisfies:

$$2-d_0\leqslant -W(-d_0e^{-d_0})\leqslant 1/d_0.$$

Therefore, $d_1 \in [2 - d_0, 1/d_0] \to d_1 \in [2 - \sqrt{2}, 1].$

Analysis

From region 5 to 6: flow enters at $d_0 \in [1, \sqrt{2}]$. By construction, enters 7 and then 5 at d_1 satisfying:

$$\log(-d_0h_0) - d_0 = \log(-d_1h_0) - d_1 \equiv -d_1e^{-d_1} = -d_0e^{-d_0},$$

with $h_0 = \sin(-\pi/4)$.

Lambert-W function W(z) is defined as the solution to $z = xe^x$. Here, $d_1 = W(-d_0e^{-d_0})$. From [Stewart, 2009], it satisfies:

$$2-d_0\leqslant -W(-d_0e^{-d_0})\leqslant 1/d_0.$$

Therefore, $d_1 \in [2 - d_0, 1/d_0] \to d_1 \in [2 - \sqrt{2}, 1].$

Recall $d_1 = \sqrt{(2)}/2$ belongs to the maximal invariant. Hence, two cases:

$$d_1 \in [2 - \sqrt{2}, \sqrt{2}/2]$$
 or $d_1 \in [\sqrt{2}/2, 1]$

First case: sliding mode

Sliding mode on surface $S = \{(\phi, d) : \phi = -\pi/4, d \in [\sqrt{2}/2, 1]\}$: flows in 5 are oriented towards 7 and vice versa.

First case: sliding mode

Sliding mode on surface $S = \{(\phi, d) : \phi = -\pi/4, d \in [\sqrt{2}/2, 1]\}$: flows in 5 are oriented towards 7 and vice versa.

Note:

$$f_{-}(\phi, d) = \begin{pmatrix} \frac{h}{d} + 1 \\ -g \end{pmatrix} \quad f_{+}(\phi, d) = \begin{pmatrix} \frac{h}{d} - h \\ -g \end{pmatrix}$$

From [Fillipov, 1988; Liberzon, 2003], the system behaves as the unique convex combination $f_{\lambda} = \lambda f_{-} + (1 - \lambda)f_{+}$ normal to the normal of the *S* (vector (1,0)). I.e. $f_{\lambda*}$ with λ^* satisfying $\langle f_{\lambda*}, (1,0) \rangle = 0$.

First case: sliding mode

Sliding mode on surface $S = \{(\phi, d) : \phi = -\pi/4, d \in [\sqrt{2}/2, 1]\}$: flows in 5 are oriented towards 7 and vice versa.

Note:

$$f_{-}(\phi, d) = \begin{pmatrix} \frac{h}{d} + 1 \\ -g \end{pmatrix} \quad f_{+}(\phi, d) = \begin{pmatrix} \frac{h}{d} - h \\ -g \end{pmatrix}$$

From [Fillipov, 1988; Liberzon, 2003], the system behaves as the unique convex combination $f_{\lambda} = \lambda f_{-} + (1 - \lambda)f_{+}$ normal to the normal of the *S* (vector (1,0)). I.e. f_{λ^*} with λ^* satisfying $\langle f_{\lambda^*}, (1,0) \rangle = 0$.

 $\Rightarrow f_{\lambda*} = (0, -g)$ with $-g = -\sqrt{2}/2$. *d* is strictly decreasing with constant speed: *d* eventually reaches $\sqrt{2}/2$

Exit surface is $S = \{(\phi, d) : \phi = -\pi/4, d \in [2 - \sqrt{2}, \sqrt{2}/2]\}.$

-		
Lon	200	artin
Dell		ann
_		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Exit surface is
$$S = \{(\phi, d) : \phi = -\pi/4, d \in [2 - \sqrt{2}, \sqrt{2}/2]\}.$$

Flow enters region 5, with trajectory verifying V_{cst} constant. In addition, V_{cst} is monotonically decreasing on S: the "outermost" trajectory starts at $d_0 = 2 - \sqrt{2}$.

Exit surface is
$$S = \{(\phi, d) : \phi = -\pi/4, d \in [2 - \sqrt{2}, \sqrt{2}/2]\}.$$

Flow enters region 5, with trajectory verifying V_{cst} constant. In addition, V_{cst} is monotonically decreasing on S: the "outermost" trajectory starts at $d_0 = 2 - \sqrt{2}$.

We deduce, from the def. of V_{cst} , that the trajectory encounters $\phi = -\pi/4$ at $d_1 \in [\sqrt{2}/2, 1]$: entering into the sliding mode.

Exit surface is
$$S = \{(\phi, d) : \phi = -\pi/4, d \in [2 - \sqrt{2}, \sqrt{2}/2]\}.$$

Flow enters region 5, with trajectory verifying V_{cst} constant. In addition, V_{cst} is monotonically decreasing on S: the "outermost" trajectory starts at $d_0 = 2 - \sqrt{2}$.

We deduce, from the def. of V_{cst} , that the trajectory encounters $\phi = -\pi/4$ at $d_1 \in [\sqrt{2}/2, 1]$: entering into the sliding mode.

Proof of V-stability of $V_{cst} + 1/2$

A "simple" problem involves a non-trivial algebraic proof of stability.

- A "simple" problem involves a non-trivial algebraic proof of stability.
 - algebraic invariants can be automatically generated...

Conclusion

- A "simple" problem involves a non-trivial algebraic proof of stability.
 - algebraic invariants can be automatically generated...
 - ... but not the proof itself: only assisting the proof;

Conclusion

- A "simple" problem involves a non-trivial algebraic proof of stability.
 - algebraic invariants can be automatically generated...
 - ... but not the proof itself: only assisting the proof;
 - in particular, specific functions (e.g. Lambert W function) can be involved;

Conclusion

- A "simple" problem involves a non-trivial algebraic proof of stability.
 - algebraic invariants can be automatically generated...
 - ... but not the proof itself: only assisting the proof;
 - in particular, specific functions (e.g. Lambert W function) can be involved;
 - can the proof be more direct ?