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Introduction

Hybrid autonomous systems

Consider the system:
x = f(x,u)

where x € R" states, u € R™ control (discrete number of possible
controls). System is autonomous as u only depends on states.

V-stability
A function V(x) : R" — R is V-stable if:

V>0->V<0

Let V:= {x: V(x) < 0}. If the system is V-stable, then from any initial
states, after a given time, the trajectory enters the set V and never exits it.
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lllustration (Luc Jaulin)
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Introduction

Problem example: station keeping of a planar robot (1)

X

. . Polar coordinates
Cartesian coordinates

x = cos(f) ¢ = %Q"‘”
y = sin(9) d = —:i_gscf
0 = u o« = —74q

with ¢ — 0 + o = 7.
" Benjamin Martin "]  Station keeping problem 28 June 2016 4 /18



Introduction

Problem example: station keeping of a planar robot (2)

b = iy
{ d = —Cos ¢
with control law, e.g:
y— 1 if cos ¢ < ‘/75
—sin¢ otherwise

Is it certain that from any initial state, the robot eventually stays around a
beacon centred at the origin ?




Introduction

Problem example: station keeping of a planar robot (3)
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Algebraic criteria of stability ~ Introduction

Transformation into a polynomial system

Try to prove the existence of an (algebraic) invariant for the system which
allows to show what we want.

Only possible with algebraic systems, thus adding extra variables:
h=sin¢, g =cos¢ and e = %. We obtain a polynomial system:

h (he + u)g
g = —(he+u)h
q'S = he+u

d = —g

€ ge?

with h?> + g2 =1 and de = 1.
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Algebraic criteria of stability Introduction

Darboux polynomials

Let L¢(p) be the Lie derivative of polynomial p € R[x], (with respect to
the flow f).

Definition
A polynomial p is Darboux if L¢(p) = gp with g € R[x].

In our case, is Darboux:
o e with cofactor ge,
o g2 + h? with cofactor 0.
o If u constant, (u + 2eh) with cofactor 2ge
o If u = —h, dh with cofactor —g.
o If u = —h, he with cofactor g(2e — 1)
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Algebraic criteria of stability ~ Introduction

Darboux polynomials

Let L¢(p) be the Lie derivative of polynomial p € R[x], (with respect to
the flow f).

A polynomial p is Darboux if L¢(p) = gp with g € R[x].

In our case, is Darboux:
e e? with cofactor 2ge
o g2 + h? with cofactor 0.
o If u constant, (u+ 2eh) with cofactor 2ge
o If u = —h, dh with cofactor —g.
o If u = —h, he with cofactor g(2e — 1)

Darboux polynomials can be used to derive invariant/variant as rational or
logarithmic functions, e.g. [Goubault et al., ACC 2014].
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Algebraic criteria of stability = Constant Control

Invariant

Consider u constant, then since u + 2eh and e? are Darboux with same
cofactor, then

u+ 2eh Ls(u+2eh)e? — (u+ 2eh)Lr(e?)
Ls &2 = ot

This implies “+2eh

condition e, ho

is constant (invariant). We have then for any initial

u+ 2eh u+ 2e0h0
e? el

—e3(u + 2eh) + e?(u + 2ephg) = 0,

and as e, eg > 0 that the sign of u + 2eh is maintained.
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Algebraic criteria of stability = Constant Control

Invariant

Consider u constant, then since u + 2eh and e? are Darboux with same
cofactor, then

(u + 2eh> Ls(u+2eh)e? — (u+ 2eh)Lr(e?)
Ls 2 = 4

e e
This implies “+2eh
condition e, ho

is constant (invariant). We have then for any initial

u+ 2eh u+ 2e0h0
e? el

—e3(u + 2eh) + e?(u + 2ephg) = 0,

and as e, eg > 0 that the sign of u + 2eh is maintained.

— Can be obtained e.g. with [Goubault et al., ACC 2014] or [Ghorbal and
Platzer, TACAS 2014]
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Algebraic criteria of stability Constant Control

Invariant regions

Vest 1= {(¢,d) : U+2T < O}

Vest i = {(@,d)u+2 d :O} ~ aF

Vest 1= {(¢,d):u+ T>O} il
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Algebraic criteria of stability Proportional control

Invariant: proportional control

Recall: dh is Darboux with cofactor —g, and d= —g. We can deduce:

Lr (log(|dh]) — d) = ‘TLC/’:"') +g=0.

(since d > 0, |dh| can be replaced by —dh if h < 0, dh otherwise)



Algebraic criteria of stability Proportional control

Invariant: proportional control

Recall: dh is Darboux with cofactor —g, and d= —g. We can deduce:

Lr (log(|dh]) — d) = £|(LC/’7’|’|) +g=0.

(since d > 0, |dh| can be replaced by —dh if h < 0, dh otherwise)

This implies log(|dh|) — d is constant (invariant). For any initial condition
do, ho:

log(|dh|) — d = log(|doho|) — do = log(|dh|) — d — log(|doho|) + do = 0.



Algebraic criteria of stability Proportional control

Invariant regions

. V= :\\\ i\
Voo 1= {(6,d) : log(|sin(#)d]) — d < ~2} /[é;/_?%\\ %ﬁ\,\%\\
Voo = {(6,d) :log(|sin(@)d]) —d = ~2} @ é§\

4 / \
Voro := {(¢,d) : log(|sin(¢)d|) — d > =2} .
N1 o

——— —




Algebraic criteria of stability = Switched System

Switched system

Recall:

Lol g
—h otherwise



Algebraic criteria of stability = Switched System

Switched system

Recall:

Lol g
—h otherwise

Consequence: all the proportional invariant regions are cut (not existing),
but an invariant region in the constant case exists, maximal when
Vest = —1/2 (i.e., the region tangent at the vertical line at ¢ = —7/4, at

point (—7/4,4/2/2)).



Algebraic criteria of stability = Switched System

Switched system

Recall:

Lol g
—h otherwise

Consequence: all the proportional invariant regions are cut (not existing),
but an invariant region in the constant case exists, maximal when
Vest = —1/2 (i.e., the region tangent at the vertical line at ¢ = —7/4, at

point (—7/4,4/2/2)).

We observe when proportional control is applied:
o Vcst < O,

@ on the frontier of the region ¢ = —7/4 and ¢ = 7/4: flow enter when
d > 1, flow exit when d < 1.
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Algebraic criteria of stability = Switched System

Switched system

Recall:

Lol g
—h otherwise

Consequence: all the proportional invariant regions are cut (not existing),
but an invariant region in the constant case exists, maximal when
Vest = —1/2 (i.e., the region tangent at the vertical line at ¢ = —7/4, at

point (—7/4,4/2/2)).

We observe when proportional control is applied:
o Vcst < O,

@ on the frontier of the region ¢ = —7/4 and ¢ = 7/4: flow enter when
d > 1, flow exit when d < 1.

= Can the region defined by V. < —1/2 be reached from anywhere 7
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Algebraic criteria of stability = Switched System

Decomposition of the state space
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Algebraic criteria of stability = Switched System

Decomposition of the state space
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Regions 5,6,7 contains the invariant.




Algebraic criteria of stability = Switched System

Analysis

From region 5 to 6: flow enters at dp € [1,+/2]. By construction, enters 7
and then 5 at dj satisfying:

log(—doho) — dy = log(—dihg) — dy = —dre™ % = —dye™%,
with hg = sin(—m/4).



Algebraic criteria of stability = Switched System

Analysis

From region 5 to 6: flow enters at dp € [1,+/2]. By construction, enters 7
and then 5 at dj satisfying:

log(—doho) — dy = log(—dihg) — dy = —dre™ % = —dye™%,
with hg = sin(—m/4).
Lambert-W function W(z) is defined as the solution to z = xe*. Here,
di = W(—dpe~%). From [Stewart, 2009], it satisfies:
2 —dy < —W(—dge %) < 1/dp.
Therefore, dy € [2 — dy,1/do] — d1 € [2—+/2,1].
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Algebraic criteria of stability = Switched System

Analysis

From region 5 to 6: flow enters at dp € [1,+/2]. By construction, enters 7
and then 5 at dj satisfying:

log(—doho) — dy = log(—dihg) — dy = —dre™ % = —dye™%,
with hg = sin(—m/4).
Lambert-W function W(z) is defined as the solution to z = xe*. Here,
di = W(—dpe~%). From [Stewart, 2009], it satisfies:
2 —dy < —W(—dge %) < 1/dp.
Therefore, dy € [2 — dy,1/do] — d1 € [2—+/2,1].

Recall d; = 4/(2)/2 belongs to the maximal invariant. Hence, two cases:
die[2—vV2,72/2] or die[vV2/2,1]
~ Benjamin Martin Station keeping problem 28 June2016  15/18



Algebraic criteria of stability = Switched System

First case: sliding mode

Sliding mode on surface S = {(¢,d) : ¢ = —n/4,d € [v/2/2,1]}: flows in
5 are oriented towards 7 and vice versa.



Algebraic criteria of stability = Switched System

First case: sliding mode

Sliding mode on surface S = {(¢,d) : ¢ = —n/4,d € [v/2/2,1]}: flows in
5 are oriented towards 7 and vice versa.

f(6,d) = ( ?;1) f(6,d) = ( ﬁ;”)

From [Fillipov, 1988; Liberzon, 2003], the system behaves as the unique
convex combination fy = Af_ + (1 — \)f; normal to the normal of the S
(vector (1,0)). le. fix with \* satisfying (fi+, (1,0)) = 0.

Note:
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Algebraic criteria of stability = Switched System

First case: sliding mode

Sliding mode on surface S = {(¢,d) : ¢ = —n/4,d € [v/2/2,1]}: flows in
5 are oriented towards 7 and vice versa.

Note:

F(6,d) = ( ?;1) f(6,d) = ( 5;”)

From [Fillipov, 1988; Liberzon, 2003], the system behaves as the unique
convex combination fy = Af_ + (1 — \)f; normal to the normal of the S
(vector (1,0)). le. fix with \* satisfying (fi+, (1,0)) = 0.

= fix = (0, —g) with —g = —/2/2. d is strictly decreasing with constant
speed: d eventually reaches v/2/2
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Algebraic criteria of stability = Switched System

Second case

Exit surface is S = {(¢,d) : ¢ = —7/4,d € [2 — /2,4/2/2]}.



Algebraic criteria of stability = Switched System

Second case

Exit surface is S = {(¢,d) : ¢ = —7/4,d € [2 — /2,4/2/2]}.

Flow enters region 5, with trajectory verifying Vs constant. In addition,
Vst is monotonically decreasing on S: the "outermost” trajectory starts at

do =2 — /2.



Algebraic criteria of stability = Switched System

Second case

Exit surface is S = {(¢,d) : ¢ = —7/4,d € [2 — /2,4/2/2]}.

Flow enters region 5, with trajectory verifying Vs constant. In addition,
Vst is monotonically decreasing on S: the "outermost” trajectory starts at

do =2 — /2.

We deduce, from the def. of Vg, that the trajectory encounters
¢ = —m/4 at di € [v/2/2,1]: entering into the sliding mode.
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Algebraic criteria of stability = Switched System

Second case

Exit surface is S = {(¢,d) : ¢ = —7/4,d € [2 — /2,4/2/2]}.

Flow enters region 5, with trajectory verifying Vs constant. In addition,
Vst is monotonically decreasing on S: the "outermost” trajectory starts at

do =2 — /2.

We deduce, from the def. of Vg, that the trajectory encounters
¢ = —m/4 at di € [v/2/2,1]: entering into the sliding mode.

Proof of V-stability of Vg + 1/2
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Conclusion

Conclusion

A "simple” problem involves a non-trivial algebraic proof of stability.
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Conclusion

A "simple” problem involves a non-trivial algebraic proof of stability.
o algebraic invariants can be automatically generated...
@ ... but not the proof itself: only assisting the proof;

@ in particular, specific functions (e.g. Lambert W function) can be
involved;



Conclusion

Conclusion

A "simple” problem involves a non-trivial algebraic proof of stability.
o algebraic invariants can be automatically generated...
@ ... but not the proof itself: only assisting the proof;

@ in particular, specific functions (e.g. Lambert W function) can be
involved;

@ can the proof be more direct 7
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