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Integral algebra for simulating dynamical
systems with interval uncertainties

Luc Jaulin

Abstract

This paper presents an integral algebra and shows how it can be used to simulate a dynamical system
with interval uncertainties. These uncertainties, can be either on the initial state vector, on the time-dependent
inputs, or on the evolution function. Compared to other techniques used for the guaranteed integration of
differential inclusion, the presented approach does not require the use of a fixed-point Picard operator. Two
test-cases related to robotics are presented to illustrate the efficiency of the approach.

Index Terms

Differential inclusion, Integral algebra, Interval analysis, Interval integration, Reachability

I. INTRODUCTION

When dealing with non-linear dynamical systems such as mobile robots, we often need to guarantee that
some properties are satisfied [14], mainly for security reasons. Different softwares or libraries have been
designed for this purpose, see e.g., Acumen [41], PHAVer [18], Ariadne [5], Codac [36], DynIbex [40],
etc. A typical problem that is considered is the reachability analysis which asks for a proof that the system
will never enter inside a forbidden region or that it will reach a target set. The guarantee can be obtained
by using set computation [3, 21, 12, 11, 7, 2], invariant based approaches [19] or guaranteed integration
methods [29, 34, 8, 33]. The goal of guaranteed integration is to find a tube envelope [26] enclosing all
feasible trajectories of a dynamical system, assuming that the initial vector is known [23, 6]. It has been
used to prove conjectures such as the existence of the Lorenz attractor [43], or that a given system is
chaotic [20]. Interval integration methods have also been used for state estimation [25, 32, 1], localization
[37, 22, 15, 44, 13] or SLAM [31].

The main default of guaranteed integration methods is that they are very sensitive to uncertainties. In
the context of a badly known initial vector or when bounded errors exist in the evolution equation, the
tube enclosing the trajectory is so large that no conclusion can be drawn. For engineering applications, it is
fundamental to develop fast methods for interval simulation that are not too conservative, even if the class
of systems to be considered is limited.

In this paper, we introduce an integral algebra and combine it with interval-based methods [24][30], in
order to propagate uncertainties through differential inclusions [23]. More precisely, our goal is to compute
an enclosure of the solution of a differential inclusion assuming that the initial state is inside a box that
may be large and the input is inside an interval tube. Since the propagation of the uncertainties can only be
causal (i.e., forward in time), no constraint propagation techniques [9][42][10] could help for contraction.

Integral algebra is similar to differential algebra [35], used in control theory [17]. Now, whereas differential
algebra introduces the time derivative as an operator, integral algebra introduces the time integral. From a
control point of view, this integral operation seems useless and could be considered as limited compared to
the derivative operator which benefits from systematic rules that can be applied to any expression. Now, we
will see that the integral algebra will be convenient for interval prediction. Compared to other techniques
used for the guaranteed integration of differential inclusions, the presented approach is fast, does not require
the use of a fixed-point Picard operator and can deal with large uncertainties.
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The paper is structured as follows. Section II provides basic notions on integral algebra and shows how
it can be used for the prediction of a dynamical system with uncertainties as soon as they have an integral
representation. Section III shows that linear systems have an integral representation. Two section are then
devoted to applications. Section IV proposes to deal with the prediction of a car with a trailer. Section V
presents the simulation of an hovercraft. For these test-cases all predictions are done with large interval
uncertainties and I do not know any interval solver which would be able to get a non trivial enclosure for
these test-cases. Section VI concludes the paper and proposes some perspectives.

II. FORMALISM

A. Integral algebra

In this section we introduce integral algebra. The presentation that we propose is voluntary similar to
that of the differential algebra made in [35], or more recently in [17]. The main difference is that we use
integrators instead of derivatives.

Definition 1. A real integral ring is a ring (R,+, ·) equipped with the single integration
∫

(with respect
to a single variable denoted by t) such that

(i) R ⊂ R
(ii) ∀a ∈ R,

∫
a ∈ R (1)

where R is the set of real numbers. The meaning of
∫

is the primitive which cancels for t = 0, i.e.,∫
a =

∫ t

0
a(τ)dτ. (2)

Moreover,
∫

satisfies the classical integral rules. For instance∫
(a+ b) =

∫
a+

∫
b∫

a ·
∫
b =

∫
(a ·

∫
b+

∫
a · b) (3)

The second equation is a direct consequence of the Leibniz rule for derivatives. Indeed, since
∫

cancels
for t = 0, we have ∫

a ·
∫
b =

∫ (
d
dt

(∫
a ·

∫
b
))

=
∫ (
a ·

∫
b+

∫
a · b

) (4)

An element of R is called a signal. A signal which is in R ⊂ R is called a constant.

Example 2. Consider R0 the smallest real integral ring. We have

a = 2 ∈ R0 it is a constant
b = 2t ∈ R0 since b =

∫
a

(5)

Note that R0 contains polynomial in t and does not include periodic functions such as cos or sin. Even
if cos(t) =

∑∞
n=0(−1)n t2n

(2n)! , we cannot conclude that cos(t) belongs to R0. Indeed, in our definition of
R0, only a finite number of additions is allowed.

An integral ring extension is L/R is given by two integral rings R,L with R ⊂ L such that the restriction
of the operation of L to R coincides with the operations in R.

A signal u of L is said to be integral R-algebraic independent if all signals

u,

∫
u,

∫ 2

u,

∫ 3

u, . . . (6)

are independent. Note that here, the multiple integral is denoted with an exponent, for instance
∫ ∫

u =
∫ 2
u.
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Fig. 1. Integral algebra (R,+, ·,
∫
) contains signals that represent functions of t

As illustrated by Figure 1 the set R0 represents signals of R which are polynomial in t. The signal
u is seen as an independent indeterminate which corresponds to some free signals which can be chosen
arbitrarily. Similarly, v /∈ R0, but since v =

∫
v, the signal v is integral R-algebraic dependent.

Example 3. Assume that L1 = R0 < u > is the smallest real integral ring which contains u, where u is
integral R0-algebraic independent in L1. Assume that L2 is the smallest real integral ring which contains
u where u satisfies u =

∫
u. We have L2 ⊂ L1. Indeed, since in L2, we have u =

∫
u =

∫ 2
u, . . . , the

ring L2 can be generated by sums and multiplications of elements by R0 and u only. Whereas in L1, since
u,

∫
u,

∫ 2
u, . . . are independent, we need all integrals of u to build L1.

B. Enriched integral algebra

As presented previously, the integral algebra (R,+, ·,
∫
) only allows a finite number of sums and

multiplications. This limits the number of applications that could be treated. For instance, if u is a signal
of R, even if

sinu = u− u3

3!
+
u5

5!
− u7

7!
+ · · · , (7)

we do not have sinu ∈ R. Now, the use of trigonometric functions is unavoidable as soon as we deal
with robotics applications. Moreover using such trigonometric functions is not a problem for interval based
methods. This is why we want to include them in the formalism. Extending our integral algebra to infinite
sums is not easy and requires the introduction of a norm and some notions of topology which do not fit
well with an algebraic world. A simple way to extend (R,+, ·,

∫
) is to add a finite family F of real valued

functions f(x) that are defined for all x ∈ R. We call the corresponding structure an enriched integral
algebra. In what follows, we will always choose F = {exp, sin, cos} but other functions could be added
as soon as an interval counterpart exists. We will indicate that we use the enriched interval algebra using
a bar decoration. For instance, we will write (R,+, ·,

∫
,F) or simply R to denote the enriched version of

the integral algebra (R,+, ·,
∫
).
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Example 4. If (R,+, ·,
∫
,F) is an enriched integral algebra, we have

cos t ∈ R∫
sin t2 + 3 ∈ R (8)

Moreover if u ∈ R, we have
cosu ∈ R

exp
(∫ (

sin
∫ 3
u
))

∈ R (9)

C. Integral dynamical system

Given an enriched integral algebra R. We denote by R < u1, u2, · · · >, the enriched integral algebra
generated by R and by a finite set {u1, u2, . . . } of indeterminates that are integral R-algebraic independent.

Example 5. Consider the enriched integral algebra L = R0 < u > with F = {exp, sin, cos}. We have

cos t ∈ L
u+

∫
sinu+ 3 ∈ L

u+
∫ (

sin
∫ 3
u
)
+ 3 ∈ L

(10)

On the other hand,
u(t− 1) /∈ L∫ t

0 w(t− τ) · u(τ)dτ /∈ L (11)

where w(t) is any given signal in R0. This means that the delay or the convolution (in general) cannot
be considered as a closed operations in R0 < u >. The main reason for this is that an infinite number of
integral operators should be used to generate a delay or a convolution. This is indeed a consequence of the
Fréchet’s approximation theorem which states that a Volterra serie can be obtained for any time-invariant
linear system. Note that for many convolutions, the kernel w(t − τ) is separable and in such a case, the
convoluted signal may belong to L. For instance, if w(t− τ) = sin(t− τ), we have∫ t

0 w(t− τ) · u(τ)dτ =
∫ t
0 sin(t− τ) · u(τ)dτ

=
∫ t
0 (sin t cos τ − cos t sin τ) · u(τ)dτ

= sin t
(∫ t

0 cos τ · u(τ)dτ
)
− cos t

(∫
sin τ · u(τ)dτ

)
,

(12)

which clearly belongs to L.

Definition 6. An integral dynamical system is defined as a finite subset {x1, . . . , xn} of R0 < u1, . . . , um > .
The quantities x1, x2, . . . are called the state variables and u1, u2, . . . are called the inputs. In this definition,
the variables x1, x2, . . . do not need to be independent. This independency condition, which should be added
for control purpose, will not be useful here.

Remark 7. Since xi ∈ R0 < u1, . . . , um > for all i, there exists an expression which allows us to generate
all state variables from the u′js using operators in {+, ·,

∫
, sin, cos, exp}. This expression will be called an

integral representation. It can be given under the form of a mathematical expression, an algorithm or a flow
graph.

Consider a system of the form {
ẋ = f(x,u)
x(0) = x0

(13)
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Equivalently, (13) can be rewritten as

x(t) = x0 +
∫ t
τ=0 f(x(τ),u(τ))dτ. (14)

The system (13) is an integral dynamical system if for all i ∈ {1, . . . , n}, xi ∈ R0 < u1, . . . , um >. It means
that each xi can be finitely generated from the set R∪{u1, . . . , um} by the operators {+, ·,

∫
, sin, cos, exp}.

D. Interval extension of an integral dynamical system

A tube is a function which associates to any t ∈ R a subset of Rn. In the case where these subsets are
intervals or boxes, a tube can be represented in the computer by stepwise functions (see [4]) as illustrated
in Figure 2.

Fig. 2. In numerical computations, a tube [f ] (t) can be approximated by a lower and an upper stepwise functions f− (t) and
f+ (t). The tube [f ] (t) encloses an uncertain trajectory f (t)

It has been proved [30] for the integration, for the composition, and other operations (such as +,−, /, ·)
that the fundamental inclusion property is satisfied. More precisely, for the integration, this inclusion property
is

f (·) ∈ [f ] (·) ⇒ ∀t,
∫ t

0
f (τ) dτ ∈

∫ t

0
[f ] (τ) dτ. (15)

Consider an integral dynamical system {x1 . . . , xn} ∈ R0 < u1, . . . , um >. For each xi we can build an
expression that involves the initial state variables x1(0), . . . , xn(0) and the inputs u1, . . . , um. An interval
evaluation can be performed using the classical rules of interval arithmetic [30] and interval tube arithmetic
[4][37]. Therefore, using the fundamental theorem of interval analysis, we get an interval extension which
provides a guaranteed enclosure for the trajectories associated to each xi. We do not give more details here,
since the method to compute the tubes is well explained in the literature and is not needed to understand
the contributions of the paper. Moreover, the principle of the approach will be illustrated through several
test-cases in the following sections.
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III. LINEAR SYSTEMS

A. Linear systems are integral dynamical systems

Proposition 8. The system
ẋ = Ax+ u (16)

is an integral dynamical system. An integral representation (see Figure 3) is

x(t) = eAt ·
(
x0 +

∫ t
0 e

−Aτu(τ)dτ
)

(17)

Proof: The property is a direct consequence of the formula

x(t) = eAt · x0 +
∫ t
0 e

A·(t−τ)u(τ)dτ. (18)

Fig. 3. Initial representation of a linear system and its integral representation

B. A two-dimensional example

Consider the system

ẋ =

(
λ −ω
ω λ

)
︸ ︷︷ ︸x+ u

A

(19)

We have

eAt = eλt ·
(

cosωt − sinωt
sinωt cosωt

)
(20)

From (17), we get the following integral representation for (19):
(
x1
x2

)
= eλt ·

(
cosωt − sinωt
sinωt cosωt

)(
v1
v2

)
(
v1
v2

)
=

(
x1(0)
x2(0)

)
+
∫
e−λτ ·

(
cosωτ sinωτ
− sinωτ cosωτ

)(
u1
u2

) (21)

As illustrated by Figure 3, the loop in the flow graph (blue) of the initial system does not exist anymore
in the integral representation. This means x1, x2 are signals of R0 < u1, u2 > .

C. Illustration

If we take

u(t) =

(
u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
=

(
[−0.02, 0.02]
[−0.02, 0.02]

)
(22)

for t ∈ [0, 10], λ = −0.1 and ω = 2, we get Figure 4 and 5 for two different initial boxes. In the
(x1, x2)-space the initial state box is in red. The interval trajectories is obtained using the following interval
computation
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Input: [x1](0), [x2](0), [u1](t), [u2](t)

Step 1
(

[v1](t)
[v2](t)

)
=

(
[x1](0)
[x2](0)

)
+
∫ t
0 e

−λτ ·
(

cosωτ sinωτ
− sinωτ cosωτ

)(
[u1](τ)
[u2](τ)

)
Step 2

(
[x1](t)
[x2](t)

)
= eλt ·

(
cosωt − sinωt
sinωt cosωt

)(
[v1](t)
[v2](t)

)
The sampling time is taken as dt = 0.01. The computation time on a classical laptop is less than 0.04sec.

In Figure 4, we observe that even with a small damping coefficient (here λ = 0.1), the approximation do
not diverge, which is difficult to obtain with classical fixed point interval methods. In Figure 5, we have the
initial red box which becomes the blue box for t = 8. This shows that the red box is a periodic positive
invariant set [27]. Equivalently, all trajectories starting in the red box will enter the blue box for t = 8 and
never leave the box painted gray for all t ≥ 0. This property is not easy to prove with classical interval
methods.

Fig. 4. Integral simulation of the linear system for [x](0) = [1.9, 2.1]× [0.9, 1.1]

Fig. 5. Integral simulation of the linear system for [x](0) = [−2, 2]× [−2, 2]
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IV. CAR TRAILER

A. Model

We consider the car trailer [38] of Figure 6. The pose of the front body corresponds to the vector
(x1, x2, x3). The heading of the second body is x4. The speed of the front body is denoted by x5.

Fig. 6. The car-trailer has 5 state variables. It can change its heading and its speed via the two inputs u1, u2

The evolution is described by the state equations:
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x5 cosx3
x5 sinx3

u1 + x5 sin(x3 − x4)
x5 sin(x3 − x4)

u2

 (23)

As shown in Figure 7, there exists two loops and thus we cannot conclude that x1, x2, x3, x4 belong to
R0 < u1, u2 > .

Fig. 7. Initial car-trailer flow graph
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B. Integral representation

Proposition 9. The car-trailer is an integral dynamical system. An integral representation of the car-trailer
is 

x1 = x1(0) +
∫
(x5 cosx3)

x2 = x2(0) +
∫
(x5 sinx3)

x3 = x4 + v1
x4 = x4(0) +

∫
(x5 sin v1)

v1 = v1(0) +
∫
u1

x5 = x5(0) +
∫
u2

(24)

with
v1(0) = x3(0)− x4(0). (25)

This is illustrated by Figure 8. The four blue integrators correspond to the original state variable x1, x2, x4, x5.
Now, the magenta integrator is an intermediate variable v1 that have to be initialized following (25). Note
that we do not have no more loops.

Fig. 8. Integral representation of the car-trailer

Proof: Since 


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x5 cosx3
x5 sinx3

u1 + x5 sin(x3 − x4)
x5 sin(x3 − x4)

u2

 (26)

The two first equations of (24) are trivial. Set v1 = x3 − x4. We get v̇1
ẋ4
ẋ5

 =

 ẋ4 − u1 + x5 sin v1
x5 sin v1
u2

 (27)

i.e.,  v̇1
ẋ4
ẋ5

 =

 u1
x5 sin v1
u2

 (28)
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As a consequence
x3 = x4 + v1
x4 = x4(0) +

∫
(x5 sin v1)

v1 = x3(0)− x4(0) +
∫
u1

x5 = x5(0) +
∫
u2

(29)

To show that it corresponds indeed to an integral representation, we build the chain(
x1
x2

)
∈ R0 < x3, x5 >

x3 ∈ R0 < v1, x4 >

x4 ∈ R0 < v1, x5 >

v1 ∈ R0 < u1 >

x5 ∈ R0 < u2 >

(30)

By transitivity, we conclude
(x1, x2, x3, x4, x5) ∈ R0 < u1, u2 > . (31)

C. Illustration

Take

u(t) = u∗(t) =

(
e−t

e−t

)
and x(0) = x∗(0) =


0
0
1
1.5
1

 . (32)

A Runge-Kutta integration of the state equations (23) yields the red trajectory of Figure 9 in the (x1, x2)-
space for t ∈ [0, 3]. The initial robot (t = 0) is painted green. The final pose (t = 3) is painted yellow.
Assume now, we want to enclose all trajectories for

u(t) =

(
u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
= u∗(t) +

(
[−0.01, 0.01]
[−0.01, 0.01]

)
(33)

and

x(0) ∈ [x](0) = x∗(0) +


[−0.001, 0.001]
[−0.001, 0.001]
[−0.2, 0.2]
[−0.01, 0.01]

[−0.001, 000.1]

 . (34)

The interval trajectory in the (x1, x2)-space is obtained using the following interval computation

Input : [x1](0), [x2](0), [x3](0), [x4](0), [x5](0), [u1](t), [u2](t)
Step 1 [v1](0) = [x3](0)− [x4](0).

Step 2 [v1](t) = [v1](0) +
∫ t
0 [u1](τ)dτ

Step 3 [x5](t) = [x5](0) +
∫ t
0 [u2](τ)dτ

Step 4 [x4](t) = [x4](0) +
∫ t
0 [x5](τ) · cos([v1](τ)) · dτ

Step 5 [x3](t) = [x4](t) + [v1](t)

Step 6
(

[x1](t)
[x2](t)

)
=

(
[x1](0)
[x2](0)

)
+

( ∫ t
0 [x5](τ) · cos([x3](τ)) · dτ∫ t
0 [x5](τ) · sin([x3](τ)) · dτ

)
(35)
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We are able to enclose the corresponding interval trajectory with sampling time dt = 0.01. For a more
accurate approximation, we bisected the initial box [x](0) with 80 subboxes. The superposition of all interval
simulations in the (x1, x2) space is given by Figure 9. The computation time on a classical laptop is less
than 1sec.

Fig. 9. Integral simulation of the car-trailer. The frame box is [−5, 5]× [−3, 6]

V. HOVERCRAFT

A. Model

Consider the hovercraft, as shown on Figure 10. The state variables are the positions (x1, x2), the heading
ψ, the speed variables (v1, v2) and the rotation rate ω.

The state equations are given by [16]



ẋ1 = v1 cosψ − v2 sinψ
ẋ2 = v1 sinψ + v2 cosψ
v̇1 = u1 + ωv2
v̇2 = −ωv1
ψ̇ = ω
ω̇ = u2

(36)

As shown in Figure 11, the hovercraft has some loops (blue). Now, a decomposition into three blocks
shows up a block in the middle with loops.
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Fig. 10. The hovercraft has two propellers and can glide in all directions without any friction

Fig. 11. Initial representation of the hovercraft

B. Integral representation

Proposition 10. The hovercraft is an integral dynamical system. An integral representation is

(
x1(t)
x2(t)

)
=

(
x1(0)
x2(0)

)
+

( ∫
(cosψ · v1 − sinψ · v2)∫
(sinψ · v1 + cosψ · v2)

)
(
v1(t)
v2(t)

)
=

(
cosψ sinψ
− sinψ cosψ

)((
a1(0)
a2(0)

)
+

( ∫
(u1 cosψ)∫
(u1 sinψ)

))
ψ(t) = ψ(0) +

∫
ω

ω(t) = ω(0) +
∫
u2

(37)

where (
a1(0)
a2(0)

)
=

(
cosψ(0) − sinψ(0)
sinψ(0) cosψ(0)

)(
v1(0)
v2(0)

)
. (38)

This is illustrated by Figure 12. The initial values are not represented. The integrators (blue) associated
to x1, x2, ψ, ω should be initialized to x1(0), x2(0), ψ(0), ω(0), respectively. A special care should be taken
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for the integrator in magenta that are associated to the intermediate variables a1, a2 and not to the state
variables v1, v2. The initialization should be performed as given by (38).

Fig. 12. Integral representation of the hovercraft

Proof: The state equations for our system are

(i) ẋ1 = v1 cosψ − v2 sinψ
(ii) ẋ2 = v1 sinψ + v2 cosψ
(iii) v̇1 = u1 + ωv2
(iv) v̇2 = −ωv1
(v) ψ̇ = ω
(vi) ω̇ = u2

(39)

The two first equations (i),(ii) rewrite into the integral form{ (
x1
x2

)
=

(
x1(0)
x2(0)

)
+
∫ (

cosψ − sinψ
sinψ cosψ

)(
v1
v2

)
(40)

We can easily check that Equations (iii),(iv),(v) (the red block in the figure) correspond to the following
integral representation(

v1
v2

)
=

(
cosψ sinψ
− sinψ cosψ

)((
a1(0)
a2(0)

)
+

( ∫
(u1 cosψ)∫
(u1 sinψ)

))
ψ = ψ(0) +

∫
ω

(41)

The integral form of Equation (vi) is
ω = ω(0) +

∫
u2. (42)

To show that it corresponds indeed to an integral representation, we build the chain

(
x1
x2

)
=

(
x1(0)
x2(0)

)
+

( ∫
(cosψ · v1 − sinψ · v2)∫
(sinψ · v1 + cosψ · v2)

)
(
v1
v2

)
=

(
cosψ sinψ
− sinψ cosψ

)((
a1(0)
a2(0)

)
+

( ∫
(u1 cosψ)∫
(u1 sinψ)

))
ψ = ψ(0) +

∫
ω

ω = ω(0) +
∫
u2

(43)
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(
x1
x2

)
∈ R0 < ψ, v1, v2 >(

v1
v2

)
∈ R0 < ψ, u1 >

ψ ∈ R0 < ω >

ω ∈ R0 < u2 >

(44)

By transitivity, we conclude
(x1, x2, v1, v2, ψ, ω) ∈ R0 < u1, u2 > . (45)

C. Illustration
Take

u(t) = u∗(t) =

(
e−t

e−t

)
and x(0) = x∗(0) =


0
0
2
0
1
0

 . (46)

A Runge-Kutta integration with the state equations (36) yields the red trajectory of Figure 4 in the (x1, x2)-
space for t ∈ [0, 3]. The initial hovercraft (t = 0) is painted green (with the two gray propellers). The final
pose (t = 3) is painted yellow. Assume now, we want to enclose all trajectories for

u(t) =

(
u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
= u∗(t) +

(
[−0.01, 0.01]
[−0.01, 0.01]

)
(47)

x(0) ∈ [x](0) = x∗(0) +


[−0.001, 0.001]
[−0.001, 0.001]
[−0.001, 0.001]
[−0.001, 0.001]

[−0.2, 0.2]
[−0.001, 0.001]

 (48)

The interval trajectory in the (x1, x2)-space is obtained using the following interval computation

Input : [x1](0), [x2](0), [v1](0), [v2](0), [ψ](0), [ω](0), [u1](t), [u2](t)

Step 1
(

[a1](0)
[a2](0)

)
=

(
cos([ψ](0)) − sin([ψ](0))
sin([ψ](0)) cos([ψ](0))

)(
[v1](0)
[v2](0)

)
Step 2

(
[a1](t)
[a2](t)

)
=

(
[a1](0)
[a2](0)

)
+

( ∫ t
0 [u1](τ) · cos([ψ](τ)) · dτ∫ t
0 [u1](τ) · sin([ψ](τ)) · dτ

)
Step 3 [ω](t) = [ω](0) +

∫ t
0 [u2](τ)dτ

Step 4 [ψ](t) = [ψ](0) +
∫ t
0 [ω](τ)dτ

Step 5
(

[v1](t)
[v2](t)

)
=

(
cos([ψ](t)) sin([ψ](t))
− sin([ψ](t)) cos([ψ](t))

)
·
(

[a1](t)
[a2](t)

)
Step 6

(
[x1](t)
[x2](t)

)
=

(
[x1](0)
[x2](0)

)
+

(
cos([ψ](t)) − sin([ψ](t))
sin([ψ](t)) cos([ψ](t))

)(
[v1](t)
[v2](t)

)
(49)

We are able to enclose the corresponding interval trajectory sampling time with dt = 0.02. For a more
accurate approximation, we bisected the initial box [x](0) with 20 subboxes, the size of which is smaller
than 0.01. The superposition of all interval simulations in the (x1, x2) space is given by Figure 13. The
computation time on a classical laptop is less than 1sec.
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Fig. 13. Integral simulation of the hovercraft. The frame box is [−2, 8]× [−2, 9]

VI. CONCLUSION

This paper has proposed an original approach to simulate a continuous-time dynamical system with interval
uncertainties. The approach takes advantage of an integral algebra to reformulate the state equations of the
system so that no loop occurs in the flow graph of the system. This allows an interval integration scheme
which does not require any resolution, generally based on fixed point techniques. Our method (i) does
not require an initial tube, (ii) can take into account large uncertainties, (iii) only require a basic interval
arithmetic extended to tubes.

The main limitation of our approach is that a symbolic calculus has to be done to translate the state
equations into an integral representation. Moreover, our method applies to a limited class of systems which
includes linear time-invariant systems. This class could be extended by using operators such as delays or
convolutions, whereas here, only +, ·,

∫
was proposed. For the convolution, it is important to use a fast

and accurate algorithm such as the interval fast convolution given in [28]. This algorithm uses the circular
interval arithmetic [39] and provides an algorithm in n · log n based on the Fast Fourier Transform.

The methodology developed in this paper has been illustrated by two test-cases taken from robotics: the
car-trailer and the hovercraft. To my knowledge, no other existing techniques is able to compute a non-trivial
guaranteed enclosure of the trajectories considered in the test-cases.

The implementation is done using the Codac library [36] and the source codes are available at

https://www.ensta-bretagne.fr/jaulin/integral.html
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