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Introduction

With interval arithmetic, solution sets to given problems can be de-
scribed by operators called contractors and separators. First, we recall
what they are.

Set descriptors: from contractors to separators

Let us say that our solution set is X. There exist interval operators to
describe it [1]. CX denotes the contractor that describes the set X. IR
denotes the intervals of R. One can apply the contractor on the box
[x] ∈ IRn and get CX([x]), as illustrated by Figure 1a. CX verifies two
properties:

CX([x]) ⊂ [x] (contractance) and CX([x]) ∩ X = [x] ∩ X (correctness).

One can guarantee that [x] \ CX([x]) ̸⊂ X. It is then possible to
construct a paving made of blue boxes that do not contain points from
X and yellow boxes that may contain points from X (see Figure 2a).
The latter form an exterior approximation denoted by X+.

Separators simultaneously provide inner and outer approximations
of the set X, as illustrated by Figure 1b. Thus, one can also identify
green boxes that are contained in X (see Figure 2b). They form an
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Figure 1: Contractor CX and separator SX applied on the box [x].

interior approximation denoted by X−. Green and yellow boxes form
X+. We then have an enclosure: X− ⊂ X ⊂ X+.

Set projection separators

In some applications, one may only be interested in the projection of
the solution set [2]. We have a separator for that operation: SepProj
in the Codac library [3].

Reinforced projection separators

Let us look at the projection along the z-axis of the set X defined by

2x2 + 2.2xy + xz + y2 + z2 ≤ 10. (1)

By defining f(x, y, z) = 2x2 + 2.2xy + xz + y2 + z2 − 10, it can be
written as

f(x, y, z) ≤ 0. (2)

The current implementation of the separator of the projection requires
fine-tuning. Without the proper parameters, it produces bad quality
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(a) Contractor → X+ (b) Separator → X−,X+

Figure 2: Pavings of the set X = {x, y ∈ R2 | 2x2 + xy + y2 ≤ 1} for
the two classes of descriptors.

boundaries for our particular problem (see Figure 3a). The approxi-
mation is not minimal due to pessimistic results coming from interval
dependency. Indeed, Equation 1 has multiple occurrences of the same
variable. We present a new approach for differentiable sets which fo-
cuses on the boundary (see Figure 3b).

We reinforce the separator on ∂ ProjX, the boundary of the projec-
tion. For our example, we use the knowledge of the locii of the vertical
tangents to X which are defined by





f(x, y, z) = 0,

∂f

∂z
(x, y, z) = 0.

(3)

In our case, that is

�
2x2 + 2.2xy + xz + y2 + z2 = 10,

x+ 2z = 0.
(4)
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(a) SepProj (b) Reinforced projection

Figure 3: Pavings of the projection along the z-axis of the set X =
{x, y, z ∈ R3 | 2x2 + 2.2xy + xz + y2 + z2 ≤ 10}.

SepProj was constructed from SX based on Equation 1. For the rein-
forced projection algorithm, we add C∂ ProjX based on the knowledge of
Equation 4.
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