
p. 1

 Zacharie El Abdalaoui

 Engineering assistant internship report

By Zacharie El Abdalaoui (SPID, Robotics)

Implementation of a web interface for the Flowtester device for the CTU (Czech
Technical University)

p. 2

 Zacharie El Abdalaoui

Summary
Abstract ... 3
Résumé .. 4
Host establishment presentation .. 5
Project Problematic ... 6
I Flowtester Configuration system .. 8
II. Pattern and Measurement configurator ... 10

Pattern Status page ... 12
The Add/Edit pattern page .. 14

III Measurements .. 17
Profile list page .. 18
Profile Status page ... 19
Profile Creation page ... 20

Conclusion ... 23
Annex ... 24

First Annex: Project Description .. 24

p. 3

 Zacharie El Abdalaoui

Abstract

The Flowtester device is a project led by the CTU-FEE (Czech Technical University in
Prague- Faculty of Electrical Engineering). This is a network benchmarking tool, based
on the OpenWRT operating system, and thoroughly using the Ubus console. The device
needs a proper web interface in order to start the testing phase. The Interface is a web
interface programmed in the Lua programming language. Throughout this report, the
solutions I have given to create this interface will be explained, as well as the tasks I
was given. Flowtester configuration, patterns, and measurements profile listing,
reviewing, creation, edition. Then I will explain my thoughts on the experience I have
gained as well as how this will serve me in my future engineer career.

p. 4

 Zacharie El Abdalaoui

Résumé

L’appareil Flowtester, est un outil de mesure de flux de données réseaux développé
par une équipe de la CTU-FEE (Czech Technical University in Prague- Faculty of
Electrical Engineering). Cet appareil fonctionne sous le système d’exploitation basé sur
Linux OpenWRT. Mais OpenWRT ne fournit pas d’interface graphique à l’utilisateur. Or
afin de pouvoir passer à la phase de test client, cette équipe avait besoin de développer
une interface web ergonomique. Cette interface a été imaginée sous l’interface LuCi,
elle-même basée sur le langage Lua. Durant ce rapport je vais exposer les solutions que
j’ai apporté pour l’implémentation des différentes fonctionnalités. (De la configuration
du Flowtester, à la création des pages listant les profils de mesures utilisées par
l’appareil). Par la suite je reviendrai sur les compétences et l’expérience que j’ai
acquise, et la mettre en relation avec ma future carrière d’ingénieur.

p. 5

 Zacharie El Abdalaoui

Host establishment presentation

The Czech Technical University in Prague was established in 1707 by the Austro-
Hungarian Emperor Joseph I, in order to provide engineering teaching. First as the
Institute of Engineering Education, the CTU was a secondary school before turning into
the Prague Polytechnic Institute, in 1806, and then started to be a tertiary university.
The CTU got its actual name in 1920 after the establishment of Czechoslovakia.
The CTU contains eight faculties, including the Faculty of Electrical Engineering which
was the hosting faculty for the internship, and three higher education institutes. In the
FEE I was in contact with the Department of Telecommunications Engineering, which
is working on several projects.
The Flowtester project is the project I took part during this internship. The Flowtester
is a network benchmarking device created by the CTU. The tool evaluates data from
TCP/IP protocols based networks, and can quickly check the status of a network, detect
bottlenecks, and on the long run analyze the network state, and stability. The
Flowtester can carry these tests on its own or controlled by a master unit linked with
several Flowtesters, and process the data gathered from those.

Figure 1 Example of the deployment of Flowtester devices.
The Flowtester system provides the user with time charts, Histograms, and any data
useful for the maintenance of the targeted network. (For further details see the project
description in the Annex section)

p. 6

 Zacharie El Abdalaoui

Project Problematic

The Flowtester project has been undergoing a redesign from its initial form, which used
to work on GNU/Linux, to its current state, which uses OpenWRT as operating system.
OpenWRT is a Linux based operating system (OS) for embedded systems, which allow
thorough customization for the user, and easier developing for the developer. This OS
also provides an Ubus package, which is used by the Flowtester API to call the different
functions implemented to realize the needed features.

Figure 2 OpenWRT OS (Please note that this is the only interface for the user)

However, this operating system does not directly contain a user-friendly interface (as
seen in fig 2), so in order to use all the flowtester devices features for the common
client. The user has to use a LuCi web interface to use the flowtester device. This
interface is implemented in Lua programming language (A cross platform language,
based on a simplified version of the C language. Lua is designed to fit in embedded
systems, and is a quick, adaptable programming code) for the most part, and
completed with HTML language. The LuCi interface contains some basic features but
the team needed someone to implement the Flowtester features, to start the testing
phase of the device in September 2016.

p. 7

 Zacharie El Abdalaoui

Figure 3 Basic LuCi Framework
This was the task I was due to accomplish during the length of the Internship. First I
had to get used to the different OS and to learn the basics of the Lua language to
proceed further. Then the creation of an Upper-menu to separate the basic functions
from the Flowtester features was requested. In a second phase, the implementation
of the features regarding the measuring patterns used by the Flowtester, and the
measurement profiles were next. A third phase of the project was planned at the
beginning but due to some delays, could not be treated.

Figure 4 In red the phase of the project concerned by the Internship

p. 8

 Zacharie El Abdalaoui

I Flowtester Configuration system

In this first part of the project as written above, the focus was put on the
implementation of an Upper-menu to separate the LuCi features from the Flowtester
features, as well as a web page which could control the configuration file of the
Flowtester.
The main problem at the beginning was the learning time to handle the OpenWRT
virtual machine I was using, and the Lua programming language (In both areas I was
starting from scratch). With that being said the OpenWRT can be eluded by getting all
the files from the virtual machine in an Ubuntu terminal via the command sshfs which
allow the Ubuntu OS to import the files from the OpenWRT OS and gives a graphic
interface much more comfortable to program, than the sole terminal provided by
OpenWRT.

Figure 5 Simplified tree view of the system
In fig 5 I only show the relevant folders for the project, as the full tree view would be
to heavy and confusing to show.
Then after getting used to the program, I could start modifying it in order to get the
upper menu required. First I tried to create a menu regrouping the tabs seen on the
default LuCi on one single tab, and another gathering the Flowtester features. But after
several direct unsuccessful attempt, I decided to opt for buttons which would print or
hide the selected menu as wished. For this I modified the header.htm file in
/view/theme/bootstrap. There I implemented the button directly on the html code and
modified the CSS and Javascript code in order to place and correctly print the menus
on click. That created the wanted upper-menus. In order to add an upper menu, a

p. 9

 Zacharie El Abdalaoui

folder had to be created in the controller repository, as well as the Lua files managing
the different path of the wished web pages on the OpenWRT system.

Figure 6 Final result of the upper-menus implementation

Then after I started the implementation of the configuration web page. Here the
adopted method was inspired by an existing file in the LuCi interface.
First create a lua file that would get the path of the configuration file on the OpenWRT
machine, then read the file and print it to the web page. For the customization, I
applied the reverse strategy, reading the text on the web page, then write it down in
the configuration file to change it.

p. 10

 Zacharie El Abdalaoui

Figure 7 Configuration page

As exemplified in fig 7 the user is now able to see the configuration parameters and to
modify them as he wishes.

II. Pattern and Measurement configurator

For this part of the project, I had to create a graphical pattern generator, which could
describe and manage the pattern used by the Flowtester device to monitor the system.
First the web interface had to display all the different pattern listed in the OpenWRT
machine, as well as buttons to edit them, remove them, and a button to redirect the
user towards the Add/Edit page where he would be able to add or edit the pattern he
wants. The solution had to use the Ubus console of the OpenWRT machine as simply
reading file could not apply here. Indeed, the Ubus console is able to find the different
patterns without knowing their location. And since the solution is supposed to apply
to any device, it could not simply seek the pattern files on the machine since it is likely
to change. The Ubus console is using JavaScript Object Notation to call function and
returning the results, and is supposed to be called from the OpenWRT machine, not
from the LuCi interface. But since Lua includes a Ubus library allowing the developer to
call Ubus function directly from the Lua file, the problem was solved.

p. 11

 Zacharie El Abdalaoui

The Flowtester API already included several Ubus function concerning the patterns:
 List: List all the patterns detected on the device

Output: ["pattern1": {
 "name": "pattern1", "filename": "/opt/flowtester/dataset/pattern1.dat", "modified": "DATE-TIME" }, "pattern2": { "name": "pattern2", "filename": "/opt/flowtester/dataset/pattern2.dat", "modified": "DATE-TIME" },]

 Read: Display all information about a specific pattern (name, path, and content)
Output: {
 "name": "pattern2", "filename": "/opt/flowtester/dataset/pattern2.dat", "content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]] }

 Create: Create a pattern, provided the user specifies, a name and the content
of the pattern. The function does not care if the name written by the user
already exists or not, so I also used it to edit the patterns when needed. This
function does not contain an output.

 Delete: Delete the pattern specified by the user.

With all these functions already implemented, my task was to create the basic
framework for the web interface (Which I based on other existing framework, the
listing web page is based on the page displaying the processes on the status tab for
instance). This consisted in the development of two pages:

 One displaying the list of all patterns in the Flowtester, allowing the user to
delete patterns, or redirecting him to the second page

 The second page is used to add or edit patterns, and display further details
about the concerned pattern (the table in the content area, and a graphical
representation of this one)

p. 12

 Zacharie El Abdalaoui

Pattern Status page

For this page I had to display the list if all patterns, offer the user a way to access the
editing section, and the possibility to delete any patterns he wants. To allow him to do
so I implemented two tabs at the top of the page:

 Status, the opened tab by default in order to display the list page
 Add/Edit, the hidden page by default, that redirects towards the Add/Edit page

(If the user click on this tab he will be able to create his own pattern)
Then I created two buttons:

 Delete, to delete the pattern
 Edit to redirect the user to the same page as the Add/Edit tab but here with the

possibility to get more details about the pattern he wants to edit, and the ability
to edit it

 The possibility of mixing Lua code directly inside htm pages, allowed me to apply the
pattern list pretty quickly inside the “view/admin_system/pattern.htm” file I have
created, via the function get_names() calling the Ubus listing function, and putting the
String in the name section in a temporary table, before the function render_name()
calls the Ubus reading function and print the name. The table from the first function
also allows to create a for loop in which the HTML code displaying the names and the
buttons is written and the second function is called to print the names in the right
place.

p. 13

 Zacharie El Abdalaoui

Figure 8 Result of the listing of the patterns

Regarding the link towards the Add/Edit page, the Add/Edit tab on the top of the page
can redirect the user from this page to the Add/Edit page, which in this case would
contain nothing (Since here the user can create his pattern from scratch).

Figure 9 The Add/Edit tab result

p. 14

 Zacharie El Abdalaoui

However, for the implementation of the delete button, the page had to be refreshed,
and for the edit button, the button has to redirect to the Add/Edit page corresponding
to the pattern the user wants to edit. For the delete feature, I use a JavaScript function
delete_data(id) which responds when the button is pressed, then the function gathers
the name of the pattern the user wants to delete, sends it towards the
“controller/admin/system.lua” file and refresh the current page. There another
function called delete_data(x) too (I gave both functions the same name because both
are part of the same function) that calls the Ubus function that deletes the pattern
from the Flowtester filesystem.
As for the Edit button, I used a get method in the HTML code in order to get the name
of the pattern the client wishes to edit, and display it on the web address of the Editing
page. Thus if you click on the Edit button corresponding to the “basic” pattern, the web
address of the editing page will be: “http://192.168.56.101/cgi-
bin/luci/admin/system/pattern/add_pattern?name=basic”. The rest of the function is
implemented on the page displaying the editing feature and will be developed in the
section describing it.

The Add/Edit pattern page

On this page the user needed to be able to see all the relevant details about the pattern
he wants to edit (The name, the pattern data, which is a table defining the dataflow,
as well as the frame size the pattern uses at a given time, and a graph representing this
pattern data).

In order to do so I created the file “/view/admin_system/add_pattern”, to create the
wanted framework. In this file lies the end of the edit button implemented in the
Pattern Status page. To get the name of the pattern we want to edit the program will
automatically read the web address via JavaScript instructions, as the “get” method
was used in the edit form programming the button, the name of the corresponding

p. 15

 Zacharie El Abdalaoui

pattern is displayed in the web address. Then this address is filtered to get only the
name of the pattern. (This is actually a two steps process, in order to determine if the
user has clicked the edit button on the pattern status page, or the Add/Edit tab.)
Afterwards, the name of the pattern to display (or just a blank if the user pressed
Add/Edit) is sent towards “controller/admin/system.lua” once again, to trigger the
function render_data(x). This function gets the name of the pattern and print it into a
text file. This text file is then read by the render_data() function from
“/view/admin_system/add_pattern” . This function calls the Ubus pattern reading
function and getting the corresponding pattern content.

Figure 10 Displaying of the pattern data for the test pattern

p. 16

 Zacharie El Abdalaoui

Then the table is refined in order to get the values inside, and finally displaying it in the
appropriate fields as well as the name gathered from the web address. This whole
operation requires the page to be reloaded once in order to get the correct name inside
the text file mentioned earlier, a JavaScript instruction which reload the page, but add
a String at the end of the web address allows this solution to be possible (Indeed at
first the page would reload each time it is called, resulting in an infinite loop) This
answer to this problem might not be the best or the most elegant, but is the only viable
one so far.
Regarding the editing part of the page, the user had to be able to remove and add rows
as he wished. However, it was not realistically possible to allow the user to add or
remove several rows at the same time, so I have settled for a solution allowing the
client to add or remove only one row at a time. Both functions and the function which
only modify data from a row a very similar to each other. Indeed, all three of them uses
the Ubus function which create/overwrite the pattern to operate. The only difference
resides on the amount of data each function sends. For the create_data() function, it
reads the values on the fields containing it, pack it into a table, gets the name of the
pattern to edit, and then sends it to the “controller/admin/system.lua” file where, the
Ubus function is called. Then the Editing page is refreshed, allowing the user to see the
changes. For the add_row() function, same principle, but the last set of values is added
to the table of values gathered by the function, and then is sent to the “system.lua”
file. And for the delete_row(), same idea again but here the values of the deleted row
are set to “null” and then sent to the system.lua file.

p. 17

 Zacharie El Abdalaoui

Figure 11 Graph representation of the pattern data
Finally, for the graph representation, I have used the SVG library from the HTML
language. The time values, as well as the dataflow, and the frame size, are gathered
from the HTML code, and put into tables regrouping each type of values, time values
are sorted to remain consistent when drawn, and, thanks to a loop, the dataflow, and
the frame size are drawn at a given time.

III Measurements

Last part of this step of the project was the creation of three pages in order to manage
the measurements profiles of the Flowtester:

 One to list those profiles and give access to the two other pages.
 One to create a profile thanks to the Ubus function for the creation of such

profile.
 One to see the status of a running profile

p. 18

 Zacharie El Abdalaoui

Profile list page

For this page I had to display any profile available on the Flowtester filesystem, creating
solutions to start, stop, delete, and access the status of a given profile. Plus, the page
had to contain a link towards the profile creation page.
Here, the solution to display the profile is nearly identical to the one used to display
the available patterns (both requirements are similar after all). First get the names
from the Ubus function listing the profiles, and then putting them into a table to print
them with a for loop.
Same thing with the buttons Start, Stop, Delete. One JavaScript function to assess
whether or not the button has been pressed or not, then reading the name of the
appropriate pattern from the HTML code, and sending it towards
“controller/admin/system.lua”, calling the proper Ubus function.
And for the Status function, the method is similar to the Edit button from the Pattern
Status page (Get form, then the other page handles the rest with the web address
transmitting the proper name)

Figure 12 Final result of the Measurement page

p. 19

 Zacharie El Abdalaoui

Profile Status page

For this page, I was requested to display any data about a running measurement
profile. And as the previous page I used the same method as the Pattern Editing page
to implement it:

 First getting the name of the profile the user wants to monitor from the web
address

 Then sending it to “controller/admin/system.lua” and writing it into a
temporary text file

 Read this text file from the Profile status page, and calling the Ubus tasks status
function

 Filter and print the appropriate data on the page

Figure 13 Final look of the Profile status page

p. 20

 Zacharie El Abdalaoui

Profile Creation page

For this final part of the project, the page had to allow the user to create a
measurement profile of his choice, with all the parameters he wants. As the two
previous implemented pages, the task was similar to the Pattern Creation/Edition
page, the main problem here was that the Ubus function allowing a user to create a
profile contained up to 32 parameters. Apart from that the method is the same as the
create_data() function:

 Gathering all required data from the HTML code
 Creating a table, and filling it with all gathered data
 Sending the data to “controller/admin/system.lua”
 Calling the Ubus function that creates the pattern

Unfortunately, the method used here did not produced the expected results. However,
since this method is nearly identical to the method used in the Pattern Creating/Editing
page, I can see only three reasons why it does not work yet:

 The Ubus function which creates the profiles might contain a bug preventing it
to work correctly.

 This Ubus function requires Tables of tables as parameters, and I have seen no
guarantee that this is accepted by the Ubus library in Lua.

 Since I had to use many loops in order to cover all the cases posed by the 32
parameters, a slight error might still be in the code (However this is very
unlikely. Indeed, the function is implemented in the
“controller/admin/system.lua” file, and if an error is detected in any file in the
controller, the LuCi does not even launch and points out the error)

Here are all the parameters of the Create function
{ "name": "test1", "description": "Test 1 description", "duration": "20", "repetition": "5", "delay": "1", "sleep": "1", "schedule": { "disable": "true", "year": "string", "month": "string", "day": "string", "hour": "string", "minute": "string" }, "load": { "disabled": "false",

p. 21

 Zacharie El Abdalaoui

 "loop": "5" }, "flowping": { "disabled": "false", "dataset": { "filename": "/opt/flowtester/data.dat", "content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]] }, "target_IP": "147.32.211.110", "target_PORT": "2424", "opts": "-X" }, "iperf": { "disabled": "true", "target_IP": "string", "target_PORT": "integer", "opts": "string" }, "analyze": { "disabled": "true", "mode": "measurement", "opts": "string", "csv": "bool", "graphs":{ "type": ["full","all","loss","lossra","loss_hist","spd","spdl","spd_loss","spdl_loss","spd_lossra","spdl_lossra","spd_delay","spdl_delay","delay","delay_hist","delay_loss","delay_lossra"], "output": "pdf/png" } } }

p. 22

 Zacharie El Abdalaoui

Figure 14 Measurement creation page

Apart from these three reasons, since the reasoning is the same as the Pattern Editing
page which works just fine, I cannot think of any other why the solution should not
work as well.

p. 23

 Zacharie El Abdalaoui

Conclusion

During this internship, I have been confronted to several problematics entirely new to
me. First of all, working in an international context. Indeed, this causes much more
misunderstandings that I thought and I sometimes misunderstood what did my training
supervisor (Mr Kozak), exactly expected from me (Especially in the second part of the
project). In the other way around I found out that, still during the second part of the
project, I was not provided with the proper virtual machine (Containing some features
I needed in order to advance). This means I still have to work on my communication
skills in order to limit those problems in the future. The second new problem I faced
during this internship was the confrontation with several programming languages I had
no prior knowledge. This forced me to learn and adapt quickly to all of these new
environments, and will definitely be of use in my professional career, since I will surely
face this issue once again in a future project.
Finally, the majority of the tasks required, and that I was realistically able to carry out
for this project have been achieved and will help the CTU to launch the test phase of
the Flowtester project before, letting it into the hands of the customers. With that
being said, I think some of the solutions proposed still have room for improvement, to
be more efficient, and more easily customized.

I would like to thank Mr. Bestak for the opportunity he has given me to work as an
intern at the CTU in Prague, and Mr. Kozak, and Mr. Kocur, for having me working on
this project, and for their help throughout my entire stay in Czech Republic.

p. 24

 Zacharie El Abdalaoui

Annex

First Annex: Project Description

Web user-interface for FlowTester

Main goal
In cooperation with the team at the CTU in Prague, design and develop a new web interface
(UI) of FlowTester a network benchmarking tool. Currently, the FlowTester runs on GNU/Linux, but it undergoes a redesign and was ported to OpenWRT.
Project tasks on the UI are divided among a few connected projects where you will learn how to work with OpenWRT’s UBUS interface for configuring tests and reading status information
of FlowTester. Based on that information read from UBUS interface, you will create a web interface for visualization where you will show defined measurements and their status. This
web interface will allow several actions, e.g., a definition of the traffic pattern, measurement, and postponed measurement. Each feature is detailed in the following text.
FlowTester
FlowTester is a set of software modules which are designed to measure parameters of
communication networks based on TCP/IP protocols. These measurements rely on traffic definitions based on predefined traffic patterns. Obtained results of such measurements are given in time-sequence parameters such as a response time of the communication network,
round-trip time, and error rate. Results are then visualized in time-sequence diagrams using PDF format. Additionally, FlowTester stores all measured results in the CSV format in
the internal memory. Analysis can be conducted by FlowTester itself or on a master unit which can interconnect a number of FlowTesters, and, subsequently, analyze data and control measurements from them in a 24/7 mode of operation.
FlowTester allows network testing in

 Short-term manner
o brief verification of a network
o bottleneck detection

 Long-term manner
o detailed analyses scaled to hours, days, and weeks
o communication stability tests

Testing is carried out using:

 Predefined traffic pattern measurements (traffic patterns of time-varying loads
and packet length): constant, steps, saw traffic pattern or other comprehensive
traffic patterns

p. 25

 Zacharie El Abdalaoui

 Measurement of network throughput over time (using TCP flows)
 Multiple flows between various FlowTesters in the network
 Simulation of traffic patterns based on capture traffic, e.g., industrial protocols,

http, VoIP, IPTV, etc.
 DoS and DDoS attacks

Based on those tests FlowTester provides:

 Time charts (combination of multiple charts in one graph)
 Histograms (distribution of a measured parameter’s frequency)
 Statistics and box-plots (mean, variance, median, min-max value)
 Threshold detection

Typical deployment of FlowTesters for a measurement is depicted in the Fig 1.

Fig. 1: An example of FlowTester deployment in a more comprehensive scenario in a point-to-multipoint
case (P2MP or MESH). Performance analysis is carried out between two FlowTesters or between
FlowTesters and a VM in a datacenter.
One FlowTester can coordinate multiple FlowTesters as long as they can communicate using
TCP/IP. This coordination is carried out by distribution of profile and data files among devices. When those files are distributed, tests are iniciated through remote command over SSH.
When tests are finished, postprocessing is carried out in the device, and this way each FlowTester can provide visualisation of measured network performance. Such examples are
captured in Fig. 2 and 3.

p. 26

 Zacharie El Abdalaoui

Fig. 2: Graphical visualisation of maximum throughput detection for a measured network connection.
This measurement is based on the incremental increase of offered load of traffic and the monitoring of
real network throughput. Letters A - D denote important areas of the graphical visualisation. Point A
indicates the saturation threshold. Point B shows the moment when the first packets begin to loss. Point
C shows the maximal network throughput just before another threshold and causing an increase of
packet loss. A highly overloaded connection is underpinned by area D.

Fig. 3: This graph captures the long-term measurement (24h) of packet loss with a data connection
continually loaded by an offered load of 350 kbps. Over time, packet loss is monitored. Points A - C
show typical events. Point A shows the obvious degradation of transmission parameters of the data
connection leading to a decrease of throughput and an increase of packet loss. Point B indicates
connection disconnect in length in tens of minutes. Point C shows the short-term degradation of data
connection parameters in tens of seconds.

p. 27

 Zacharie El Abdalaoui

State of the art
The FlowTester redesign into OpenWRT platform allows multiple features like concurent measurements provided by one device, etc. FlowTester itself relies on FlowPing and Iperf applications which are designed for performance testing of data networks
OpenWRT UBUS
UBUS provides communication between various daemons and applications in OpenWrt, and UBUS
is deeply described at Wiki page: https://wiki.openwrt.org/doc/techref/ubus FlowTester API
All necessary software, e.g., Iperf and FlowPing, is installed in the provided system, and FlowTester API is accesible through ubus interface: root@OpenWrt:/# ubus -v list 'flowtester' @7926f7ca "tasks":{"action":"String","task_id":"String","value":"String"} "pattern":{"action":"String","name":"String","content":"String"} "results":{"action":"String","value":"String"} "servers":{"server":"String","action":"String"}
Each module is described in more details in the following chapters. The FlowTester API is used
by command on command line of FlowTester called flowtester-cli. This command can be used as a refrence for development of web interface.
Module Pattern
The point of this module is to manage traffic patterns that carry information about link load
during time. Each traffic pattern can represent specific communication protocol, or just any performance test.
Patterns can be managed using 4 actions.
Actions: list, read, create, delete list
This method provides list of patterns stored on the filesystem of FlowTester device. The list of patterns can be accesed using JSON or through flowtester-cli:
Input JSON: {"action":"list","name":"pattern1/all"}
Output JSON: ["pattern1": { "name": "pattern1", "filename": "/opt/flowtester/dataset/pattern1.dat",

p. 28

 Zacharie El Abdalaoui

 "modified": "DATE-TIME" }, "pattern2": { "name": "pattern2", "filename": "/opt/flowtester/dataset/pattern2.dat", "modified": "DATE-TIME" },] read
Action read provides all necessary information about one specific traffic pattern.
Input JSON:
{"action":"list","name":"pattern1"}
Output JSON: { "name": "pattern2", "filename": "/opt/flowtester/dataset/pattern2.dat", "content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]] }
create
Write action stores defined pattern onto filesystem of FlowTester. This does not check existance of other patterns of the same name. The overwriting tests must be carried out
programaticaly.
Input JSON:
{"action":"list","name":"pattern1","content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]]} delete
This action delete profile out of filesystem, so list wont show such a traffic pattern when listing is performed for the next time.
Input JSON:
{"action":"delete","name":"pattern1"}
Module Tasks

p. 29

 Zacharie El Abdalaoui

Module tasks is responsible for all actions related to tasks. Task can be understand as an
combination of a traffic pattern and extra information which create an instruction for a network measurement or performance test.
Actions: list, create, delete, start, stop, status list
List is used in order to show all prepared measurements. The response of this actions gives information about all defined measurements and their state, as whether measurement is
running or not.
Input JSON: {"action":"list"}
Output JSON: { "test1": { "name": "test1", "description": "Test 1 description", "filename": "\/mnt\/data\/profiles\/test1.profile", "running": false }, "test2": { "name": "test1", "description": "Test 1 description", "filename": "\/mnt\/data\/profiles\/test2.profile", "running": false }, "test3": { "name": "test1", "description": "Test 1 description", "filename": "\/mnt\/data\/profiles\/test3.profile", "running": false } } delete
FlowTester API allows deleting measurement profiles.
Input JSON: {"action":"delete","task_id":"test3"}
Output JSON: { "status": "OK", "message": "Task test3 (\/mnt\/data\/profiles\/test3.profile) was deleted" }
Status gives feedback about the process. In case of failure message attribute provides
information about the failure.

p. 30

 Zacharie El Abdalaoui

create
Create action requires a complex JSON description of operation thus this description is going to be described in more details. Each profile defines proprerties of a measurement. An example
of profile is as follows: { "name": "test1", "description": "Test 1 description", "duration": "20", "repetition": "5", "delay": "1", "sleep": "1", "schedule": { "disable": "true", "year": "string", "month": "string", "day": "string", "hour": "string", "minute": "string" }, "load": { "disabled": "false", "loop": "5" }, "flowping": { "disabled": "false", "dataset": { "filename": "/opt/flowtester/data.dat", "content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]] }, "target_IP": "147.32.211.110", "target_PORT": "2424", "opts": "-X" }, "iperf": { "disabled": "true", "target_IP": "string", "target_PORT": "integer", "opts": "string" }, "analyze": { "disabled": "true", "mode": "measurement", "opts": "string", "csv": "bool", "graphs":{ "type": ["full","all","loss","lossra","loss_hist","spd","spdl","spd_loss","spdl_loss","spd_lossra","spdl_lossra","spd_delay","spdl_delay","delay","delay_hist","delay_loss","delay_lossra"], "output": "pdf/png" } } }

p. 31

 Zacharie El Abdalaoui

One can see the first part contains description of measurement specifing name, repetition, and
trigger for measurement starting:
 "name": "test1", "description": "Test 1 description", "duration": "20", "repetition": "5", "delay": "1", "schedule": { "disable": "true", "year": "string", "month": "string", "day": "string", "hour": "string", "minute": "string" },
In detail:

 name - Name of the test.
 description - Detail description of the test.
 duration - Duration of the measurement being performed in seconds.
 repetition - Number of repetition desired test
 delay - Delay in seconds before running the test
 schedule - Date end time definition for running the test. (Not working now)

Following, optional part, contains flowping measurement description: "flowping": { "disabled": "false", "dataset": { "filename": "/opt/flowtester/data.dat", "content": [[0, 10, 64], [60, 1024, 64], [60, 10, 150], [120, 1024, 150], [120, 10, 515]] }, "target_IP": "147.32.211.110", "target_PORT": "2424", "opts": "-X" },
Dataset describes traffic pattern used for measurement, and dataset can be included in two
ways: filepath or by list of tuples describing time, throughput, and packet size. Following are parameters for flowping application such as destionation address, port, and other parameters.
Similarly, Iperf can be configured. However, Iperf allows only to specify destionation address, port, and extra attributes. This configuration comes from the Iperf measurement method.
 "iperf": { "disabled": "true", "target_IP": "string", "target_PORT": "integer", "opts": "string" },

p. 32

 Zacharie El Abdalaoui

Eventually, measurement profile specifies what statistics should be carried out:
 "analyze": { "disabled": "true", "mode": "measurement", "opts": "string", "csv": "bool", "graphs":{ "type": ["full","all","loss","lossra","loss_hist","spd","spdl","spd_loss","spdl_loss","spd_lossra","spdl_lossra","spd_delay","spdl_delay","delay","delay_hist","delay_loss","delay_lossra"], "output": "pdf/png" } }
This JSON measurement description is send through FlowTester API then this measurement profile can be seen in the list of profiles. start
Unless the delayed started in defined with create action JSON measurement profile is in stop state. In order to start such a profile action start is triggered by following JSON.
Input JSON: {"action":"start","task_id":"test2"} stop
Any running measurement profile can be stop by the stop action:
Input JSON: {"action":"stop","task_id":"test2"}
Output JSON: { "test2": { "status": "OK", "message": "test2 with PID: 17216 was killed" } } status
Status provides information about running measurement profiles. In order to initiate profile verification action status and identification of task must be triggered.
Input JSON: {"action":"status","task_id":"test2"}
If the status action is performed on not running profile.
Output JSON: {

p. 33

 Zacharie El Abdalaoui

 "status": "Info", "message": "No active tasks" }
On the other hand, the running profile can provide status information about running processes related to the profile.
Output JSON: { "test2": { "pid": 17216, "start_time": 1466670966, "progress": 0, "current_task": 2, "max_tasks": 5, "task_time": 20, "project_time": 88, "data_file": "\/mnt\/data\/test2-1466670966\/test2-002\/test2-002-2016.06.23T08.36.28.gz", "data_file_size": 0 }, "system": { "timestamp": 1466670990, "memory": { "free": 214876, "occupied": 35524, "total": 250400 }, "storage": { "type": "overlay", "free": 1026312, "occupied": 6968, "total": 1033280 }, "load": { "1min": "0.08", "5min": "0.03", "15min": "0.04" } } }
Status provides information about FlowTester itself as well as information about measurement supporting processes. Module Results

Access to each measurement is provided through FlowTester API which provides

 Measurement listing in order to show results of finished measurements
 Results delete
 JSON measurement descriptor
 File download from the results directory

Actions: list, summary, detail, delete

p. 34

 Zacharie El Abdalaoui

summary
Basic statistics of stored measurements.

 measurements - number of stored measurements
 tasks - number of stored tasks
 size - size of all measurements in bytes

Input JSON: {"action":"summary"}
Output JSON: { "measurements": 2, "tasks": 7, "size": 3 } list
Input JSON: {"action":"list"}
Output JSON: { "test1-1466663949": { "timestamp": "Thu Jun 23 06:39:09 UTC 2016", "size": 67, "report": false, "instances": { "1": "test1-001", "2": "test1-002" } }, "test2-1466670966": { "timestamp": "Thu Jun 23 08:36:06 UTC 2016", "size": 222, "report": false, "instances": { "1": "test2-001", "2": "test2-002", "3": "test2-003" } } } detail
{"action":"detail","measurement":"test1-1466663949","instance":"1"}
{ "files": [{ "filename": "test1-001-2016.06.23T06.39.09.gz", "size": 219, "modified": "Thu Jun 23 06:39:31 UTC 2016",

p. 35

 Zacharie El Abdalaoui

 "mimetype": "application\/x-gzip" }, { "filename": "test1-001-2016.06.23T06.39.09_load.csv", "size": 1, "modified": "Thu Jun 23 06:39:29 UTC 2016", "mimetype": "text\/csv" }, { "filename": "test1.dat", "size": 1, "modified": "Thu Jun 23 06:39:09 UTC 2016", "mimetype": "text\/csv" }, { "filename": "test1.profile", "size": 2, "modified": "Thu Jun 23 06:39:09 UTC 2016", "mimetype": "application\/json" }], "results": [{ "mimetype": "text/csv", "graphtype": "parsed", "size": 42693, "modified": "2016-08-11T14:25:03.922020", "filename": "test3.2016.06.08T09.13.17_parsed.csv" }, { "mimetype": "image/png", "graphtype": "all", "size": 183564, "modified": "2016-08-11T14:25:06.217375", "filename": "test3.2016.06.08T09.13.17_all_avg.png" }] }
delete

Input JSON: {"action":"delete","measurement":"test1-1466663949"}
Output JSON: { "test1-1466663949": { "status": "OK", "message": "Result test1-1466663949 was sucessfully deleted" } } Module Servers

p. 36

 Zacharie El Abdalaoui

Projects
API příkazy

ubus call flowtester task '{"action":"start","value":"test1"}'

 start, stop, delete, create, list, status
ubus call flowtester results '{"action":"list","value":"test1"}'

 list, detail, delete
ubus call flowtester servers '{"server":"flowping","action":"start"}'

 action: start, stop, enable, disable, status
 server: flowping, iperf

Správce systému
 Systémový soubor /etc/config/flowtester

o V souboru jsou uloženy základní parametry nutné pro běh systému FlowTester
a aplikací FlowPing a Iperf v režimu server

o V rámci integrace s GUI se očekává možnost editace konfiguračního souboru
 Flowping/Iperf server

o Pro obě aplikace v serverovém režimu by měla být možnost jejích ovládání přes webové rozhraní, tak jako je tomu u běžných služeb OS OpenWRT viz položka
Startup.

o Oba servery jsou ovládány přes ubus rozhraní
 Systémové prostředí

o Vytažení konfigurace LAN, WAN, Switche, WiFi, systému (hostname, passwords, datum a čas etc.) do vlastního rozhraní
 Šablona vzhledu systému

o Nalezení a aplikace vhodné šablony prostředí, které bude spjaté se systémem
FlowTester a bude používané napříč celým systémem.

Správce paternů
 Aplikace umožňuje definovat patterny pomocí JavaScriptového rozhraní, takovýto

pattern je automaticky zobrazen
 Na zařízení je možné uložit obecně N patternů, ty je následně možné spravovat

o Mazat
o Editovat

 Vkládání patternů z externího souboru
Správce měřících úloh

 Založení nové měřící úlohy, kde je možné nastavit
o Pattern

 Je požadována volba patternu provozu
 Po zvolení je tento patern začleněn do JSON definujícím měření

p. 37

 Zacharie El Abdalaoui

o Cílová adresa
o Port
o Čas spuštění

 Ruční spuštění
 Načasované spuštění

 Správce úloh
o Vypadá jako seznam, kde se indikuje, zda se jedná o naplánovanou úlohu nebo úlohu k ručnímu spuštění
o V případě, že je úloha spuštěna, je zobrazen její aktuální stav

 Měření x/N
 Progresbar
 Odhadovaný čas dokončení měření
 Tlačítko pro zastavení měření

o V případě, že se jedná o úlohu k ručnímu spuštění je zde tlačítko pro spuštění a následně zastavení měření
o Možnost editovat nastavení měřící úlohy

 Typicky vypnout načasování úlohy nebo naopak nastavení časování úloze.
Správce výsledků

 Zobrazení hotových měření
o Každý řádek výpisu bude obsahovat informace

 Kdy měření probíhalo
 Jména profilu, kterym výsledek vznikl

 Detailní pohled na maření
o Zobrazeno po rozkliknutí odpovídajícího řádku v seznamu měření
o Zobrazí se náhled na výsledky měření

 Pomocí tabulek budou zobrazeny základní pohledy na data
 S využitím obratu pro získání souborů v base64 budou zobrazeny

závěry z vyhodnocení
 Seznam souborů ke stažení

Dashboard
 Zobrazení průběhu probíhajících měření:

o Aktuální data na In/Out rozhraních
o Aktuální data stavu systému
o Aktuální data/statistiky probíhajících testů
o Monitoring diskového úložiště

 Činnost k dashboardu je nutné optimalizovat s ohledem na požadavek minimální zátěže systému.

Abstracts
Keywords: OpenWRT, Linux, Lua, LuCi, HTML, Shell, JSON 1. FlowTester system configuration
Familiarize yourself with LuCI a web user interface of OpenWRT. Customize graphical style of
the web interface using some modern framework in order to be long-term sustainable and

p. 38

 Zacharie El Abdalaoui

responsive. Using basic widgets, implement basic functionality to control FlowPing, Iperf,
FlowTester configuration files, and system properties like LAN, WAN, WiFi, etc. Instructions:

 Project for 1 or 2 persons
 Duration: 1 month
 Required skills: HTML, Lua, JSON, Shell, CSS, JS
 Expected outputs: SW module, documentation 2. Measurement configurator

Familiarize yourself with LuCI a web user interface of OpenWRT. Use and extend LuCI in order to create a graphical pattern generator such that it enables easily manage and describe patterns used by the FlowTester. Additionally, these patterns can be used for definition of
measurements which implementation is a part of this project as well. Instructions:

 Project for 1 or 2 person
 Duration: 1 month
 Required skills: HTML, Lua, JSON, JS
 Expected outputs: SW module, documentation

