Engineering assistant
internship report

By Zacharie El Abdalaoui (SPID, Robotics)

Implementation of a web interface for the Flowtester device for the CTU (Czech

<J

€%

ENSTA

Bretagne

eeeeeeeee

Technical University)

CESKE
VYSOKE
UCENI
TECHNICKE
V PRAZE

Zacharie El Abdalaoui

Summary

LY o153 1 - [AU TP TP PP PRORPRRUPORUPIN 3
RESUME ...ttt ettt sttt et e s bt e s b e s s et me e e b et et e e bt e b e e s bt e ebeeeaeesaee e bt eabeeneesreesaees 4
Host establishment presentation.........c..uviiiiiii e e e e e rrre e e e e e e e e e aaeeeeaeeseanns 5
oY T=Tor e g o] [T 0 F= 1 f [l UPUSR 6
| Flowtester Configuration SYSTEMiiuiii ittt e e e re e e e et ae e e s e e e e e sntaae e eeraeeennns 8
[I. Pattern and Measurement CONfIGUIAtoroicciiiiiciiiiie et e e e e e e rraee s 10
P AT e N SEatUS PG it eaan 12
The Ad/EIt PAttEIN PG ...ccvee e eeeee ettt ettt et e et e et e eetteeeteeeeaeeeeaseeeereeesseseereeenees 14
LAY =T T =T o 41T o | PP PPN 17
oY 1T [A o= =L TSP 18
oY 1T - [T I o 1= USSRt 19
oY 1T O T Y d o o I o = = TSRSt 20
CONCIUSION ..ttt ettt ettt e sttt e bt e s et e ae e s abee s nbe e sabee s neeesabeessaeeesaseesreeesreeesareas 23
YT 1= PO PR SO PPPRFUPPRP 24
First ANNeX: Project DeSCIiPTiON oo e s e s e e s s s e e s e e s e e e e 24
p. 2
&%
ENSTA

Bretagne Zacharie El Abdalaoui

Abstract

The Flowtester device is a project led by the CTU-FEE (Czech Technical University in
Prague- Faculty of Electrical Engineering). This is a network benchmarking tool, based
on the OpenWRT operating system, and thoroughly using the Ubus console. The device
needs a proper web interface in order to start the testing phase. The Interface is a web
interface programmed in the Lua programming language. Throughout this report, the
solutions | have given to create this interface will be explained, as well as the tasks |
was given. Flowtester configuration, patterns, and measurements profile listing,
reviewing, creation, edition. Then | will explain my thoughts on the experience | have
gained as well as how this will serve me in my future engineer career.

Zacharie El Abdalaoui

Résumé

L’appareil Flowtester, est un outil de mesure de flux de données réseaux développé
par une équipe de la CTU-FEE (Czech Technical University in Prague- Faculty of
Electrical Engineering). Cet appareil fonctionne sous le systeme d’exploitation basé sur
Linux OpenWRT. Mais OpenWRT ne fournit pas d’interface graphique a I'utilisateur. Or
afin de pouvoir passer a la phase de test client, cette équipe avait besoin de développer
une interface web ergonomique. Cette interface a été imaginée sous l'interface LuCi,
elle-méme basée sur le langage Lua. Durant ce rapport je vais exposer les solutions que
j’ai apporté pour I'implémentation des différentes fonctionnalités. (De la configuration
du Flowtester, a la création des pages listant les profils de mesures utilisées par
I'appareil). Par la suite je reviendrai sur les compétences et |'expérience que j'ai
acquise, et la mettre en relation avec ma future carriere d’ingénieur.

Zacharie El Abdalaoui

Host establishment presentation

The Czech Technical University in Prague was established in 1707 by the Austro-
Hungarian Emperor Joseph |, in order to provide engineering teaching. First as the
Institute of Engineering Education, the CTU was a secondary school before turning into
the Prague Polytechnic Institute, in 1806, and then started to be a tertiary university.
The CTU got its actual name in 1920 after the establishment of Czechoslovakia.

The CTU contains eight faculties, including the Faculty of Electrical Engineering which
was the hosting faculty for the internship, and three higher education institutes. In the
FEE | was in contact with the Department of Telecommunications Engineering, which
is working on several projects.

The Flowtester project is the project | took part during this internship. The Flowtester
is a network benchmarking device created by the CTU. The tool evaluates data from
TCP/IP protocols based networks, and can quickly check the status of a network, detect
bottlenecks, and on the long run analyze the network state, and stability. The
Flowtester can carry these tests on its own or controlled by a master unit linked with
several Flowtesters, and process the data gathered from those.

Figure 1 Example of the deployment of Flowtester devices.

The Flowtester system provides the user with time charts, Histograms, and any data
useful for the maintenance of the targeted network. (For further details see the project
description in the Annex section)

Zacharie El Abdalaoui

Project Problematic

The Flowtester project has been undergoing a redesign from its initial form, which used
to work on GNU/Linux, to its current state, which uses OpenWRT as operating system.
OpenWRT is a Linux based operating system (OS) for embedded systems, which allow
thorough customization for the user, and easier developing for the developer. This OS
also provides an Ubus package, which is used by the Flowtester API to call the different
functions implemented to realize the needed features.

B

61.4348861 el1000: ethO® NIC Link is Up 1000 Mbps Full Duplex, Flow Control:

61.5351681 IPu6: ADDRCONF (NETDEU_CHANGE): ethO: link becomes ready
63.3879241 br-lan: port 1(ethl) entered forwarding state

BusyBox v1.24.2 () built-in shell (ash)

Orange Juice Combine all juices in a
Pineapple Juice tall glass filled with
Grapefruit Juice ice, stir well.
Cranberry Juice

oot@Openlrt:/#
oot@Openkrt:/# _

BO& @@ @ S [crooromEe

Figure 2 OpenWRT OS (Please note that this is the only interface for the user)

However, this operating system does not directly contain a user-friendly interface (as
seen in fig 2), so in order to use all the flowtester devices features for the common
client. The user has to use a LuCi web interface to use the flowtester device. This
interface is implemented in Lua programming language (A cross platform language,
based on a simplified version of the C language. Lua is designed to fit in embedded
systems, and is a quick, adaptable programming code) for the most part, and
completed with HTML language. The LuCi interface contains some basic features but
the team needed someone to implement the Flowtester features, to start the testing
phase of the device in September 2016.

3
&
ENSTA
Zacharie El Abdalaoui

[} Cahier_des_charges Sta X (& Project description - Ge X { U ubus (OpenWrtmicrot X { [} OpenWrt x { 5 httpsi//helatoensta-bre X /) OpenWrt - Overview - | X = X

<& C | ® 192.168.56.101/cgi-bin/luci/admin/status/overviev B @ O :

232 Applications [Y) Débuter avec Firefox (2 Importés depuis Firef. [Les Chroniques Tact:

OpenWrt status

No password set!

There is no password set on this router. Please configure a root password to protect the web interface and enable SSH
Go to password configuration...

Status
System
Hostname OpenWit
Model Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz
Firmware Version OpenWit Designated Driver r49387 / LuCl Master (git-16.164.65694-cd50f27)
Kemel Version 447
Local Time Sun Oct 9 17:49:23 2016
Uptime Oh2m 3s
Load Average 0.05, 0.04, 0.02
Memory
Total Available 213836 kB /250400 kB (85%)
Free 77868 kB /250400 kB (31%)

Figure 3 Basic LuCi Framework

This was the task | was due to accomplish during the length of the Internship. First |
had to get used to the different OS and to learn the basics of the Lua language to
proceed further. Then the creation of an Upper-menu to separate the basic functions
from the Flowtester features was requested. In a second phase, the implementation
of the features regarding the measuring patterns used by the Flowtester, and the
measurement profiles were next. A third phase of the project was planned at the
beginning but due to some delays, could not be treated.

Visumlisation Cantral Palladn ganaralor

OpenWRT UBUS
FlowTester AP Othe
Measurement Control Postprocesing

FlowPing Iperf

Figure 4 In red the phase of the project concerned by the Internship

p.7

@

ENSTA
Bretagne Zacharie El Abdalaoui

| Flowtester Configuration system

In this first part of the project as written above, the focus was put on the
implementation of an Upper-menu to separate the LuCi features from the Flowtester
features, as well as a web page which could control the configuration file of the
Flowtester.

The main problem at the beginning was the learning time to handle the OpenWRT
virtual machine | was using, and the Lua programming language (In both areas | was
starting from scratch). With that being said the OpenWRT can be eluded by getting all
the files from the virtual machine in an Ubuntu terminal via the command sshfs which
allow the Ubuntu OS to import the files from the OpenWRT OS and gives a graphic
interface much more comfortable to program, than the sole terminal provided by
OpenWRT.

—
Usr/lua/luci

) f_lﬁ
controller view model
\ J

Admin_system
N——/

Figure 5 Simplified tree view of the system

In fig 5 1 only show the relevant folders for the project, as the full tree view would be
to heavy and confusing to show.

Then after getting used to the program, | could start modifying it in order to get the
upper menu required. First | tried to create a menu regrouping the tabs seen on the
default LuCi on one single tab, and another gathering the Flowtester features. But after
several direct unsuccessful attempt, | decided to opt for buttons which would print or
hide the selected menu as wished. For this | modified the header.htm file in
/view/theme/bootstrap. There | implemented the button directly on the html code and
modified the CSS and Javascript code in order to place and correctly print the menus
on click. That created the wanted upper-menus. In order to add an upper menu, a

Zacharie El Abdalaoui

folder had to be created in the controller repository, as well as the Lua files managing
the different path of the wished web pages on the OpenWRT system.

[} Cahier_des_charges St= X | [E] Project description - G= X | UsY ubus (OpenWrt micro b X | [[7 Facebook X | — «ClestcommesiAndor X / @& OpenWrt - Overview - | X — X
& > C | ® 192.16856.101 Bx Q@ O
2% Applications [} Débuter avec Firefox (2] Importés depuis Firef [} Les Chroniques Tact

OpenWrt
Status
System
Hostname OpenWit
Model Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz
Firmware Version OpenWit Designated Driver 49387 / LuCl Master (git-16.164.65694-cd50f27)
Kemel Version 447
Local Time Sun Oct 9 18:09:15 2016
Uptime Oh 3m 12s
Load Average 0.08, 0.13, 0.06
Memory
Total Available 214028 kB / 250400 kB (85%)
Free 77320 kB / 250400 kB (30%)
Buffered 136708 kB / 250400 kB (54%)

Figure 6 Final result of the upper-menus implementation

Then after | started the implementation of the configuration web page. Here the
adopted method was inspired by an existing file in the LuCi interface.

First create a lua file that would get the path of the configuration file on the OpenWRT
machine, then read the file and print it to the web page. For the customization, |
applied the reverse strategy, reading the text on the web page, then write it down in
the configuration file to change it.

p.9

ENSTA
Bretagne Zacharie El Abdalaoui

[Cahier_des charge X (5 Projectdescription X ' W ubus (OpenWrtm: X ' [Facebook X / & OpenWrt - Flowte: x \ Bl priseen main-Tra X | “J sshfs- Document: X — X
€« C | ® 192.168.56.101)) tem/f t Bx @ O :

i1 Applications [3 Débuter avec Firefox (2] Importés depuis Firef [Les Chroniques Tacti

OpenWrt Main~ - Flowtester~ -

Flowtester configuration
Customize your configuration of Flowtester
config general
option separator ','
option debug 'false’
config paths
option scenarios '/mnt/data/scenarios'
option data Ymnt/data’
option temp "tmp'

config task_monitor
option sleep '1'

s | e

cd50f27) / OpenWrt Designated Driver r49387

Figure 7 Configuration page

As exemplified in fig 7 the user is now able to see the configuration parameters and to
modify them as he wishes.

Il. Pattern and Measurement configurator

For this part of the project, | had to create a graphical pattern generator, which could
describe and manage the pattern used by the Flowtester device to monitor the system.
First the web interface had to display all the different pattern listed in the OpenWRT
machine, as well as buttons to edit them, remove them, and a button to redirect the
user towards the Add/Edit page where he would be able to add or edit the pattern he
wants. The solution had to use the Ubus console of the OpenWRT machine as simply
reading file could not apply here. Indeed, the Ubus console is able to find the different
patterns without knowing their location. And since the solution is supposed to apply
to any device, it could not simply seek the pattern files on the machine since it is likely
to change. The Ubus console is using JavaScript Object Notation to call function and
returning the results, and is supposed to be called from the OpenWRT machine, not
from the LuCi interface. But since Lua includes a Ubus library allowing the developer to
call Ubus function directly from the Lua file, the problem was solved.

p. 10

Bretagne Zacharie El Abdalaoui

The Flowtester APl already included several Ubus function concerning the patterns:

e List: List all the patterns detected on the device

Chuput ["patternl": {
"name": "patternl",
"filename": "/opt/flowtester/dataset/patternl.dat",
"modified": "DATE-TIME"

}y
"pattern2": {

"name": "pattern2",
"filename": "/opt/flowtester/dataset/pattern2.dat",
"modified": "DATE-TIME"

s

e Read: Display all information about a specific pattern (name, path, and content)

Output: {
"name": "pattern2",
"filename": "/opt/flowtester/dataset/pattern2.dat",
"content": [[O, 10, 64], [60, 1024, 64], [60, 10, 1501, [120, 1024,

1501, [120, 10, 5157]
}

e Create: Create a pattern, provided the user specifies, a name and the content
of the pattern. The function does not care if the name written by the user
already exists or not, so | also used it to edit the patterns when needed. This
function does not contain an output.

e Delete: Delete the pattern specified by the user.

With all these functions already implemented, my task was to create the basic
framework for the web interface (Which | based on other existing framework, the
listing web page is based on the page displaying the processes on the status tab for
instance). This consisted in the development of two pages:

e One displaying the list of all patterns in the Flowtester, allowing the user to
delete patterns, or redirecting him to the second page

e The second page is used to add or edit patterns, and display further details
about the concerned pattern (the table in the content area, and a graphical
representation of this one)

Zacharie El Abdalaoui

Pattern Status page

For this page | had to display the list if all patterns, offer the user a way to access the
editing section, and the possibility to delete any patterns he wants. To allow him to do
so | implemented two tabs at the top of the page:

e Status, the opened tab by default in order to display the list page
e Add/Edit, the hidden page by default, that redirects towards the Add/Edit page
(If the user click on this tab he will be able to create his own pattern)

Then | created two buttons:

e Delete, to delete the pattern

e Edit to redirect the user to the same page as the Add/Edit tab but here with the
possibility to get more details about the pattern he wants to edit, and the ability
to edit it

The possibility of mixing Lua code directly inside htm pages, allowed me to apply the
pattern list pretty quickly inside the “view/admin_system/pattern.htm” file | have
created, via the function get_names() calling the Ubus listing function, and putting the
String in the name section in a temporary table, before the function render_name()
calls the Ubus reading function and print the name. The table from the first function
also allows to create a for loop in which the HTML code displaying the names and the
buttons is written and the second function is called to print the names in the right
place.

Zacharie El Abdalaoui

Cahier X Projec X ' W Unive: X {(W Czech X Resea X Bl lespe X | w annex X URf ubus| X
] L]

& C | ® 192.168.56.101/cg
i3t Applications [Débuter avec Firefox () Importés depuis Firei [Les Chroniques Tact

oron

[Open' x { [https: X (W Lua(p X / @ Open' x -

Br| @ O

OpenWrt Main~ ~

Pattern
Status Add/Edit

Status
Pattern ID
BAM %) Delete
ENDE %] Delete
basic x] Delete
FFS %) Delete
pila-20M-W %] Delete

Powered by LuCl Master (git-16.217.35130-6a11171) / OpenWrt Designated Driver r49395

4 Edi
4 Edit
@ Edit
4 Edit
4 Edit

Figure 8 Result of the listing of the patterns

Regarding the link towards the Add/Edit page, the Add/Edit tab on the top of the page
can redirect the user from this page to the Add/Edit page, which in this case would
contain nothing (Since here the user can create his pattern from scratch).

Pattern Editor

Add s new pattern, or edt an existing one

Figure 9 The Add/Edit tab result

y=red fs=green

Pattern Name

In this text area you can choose the name of the pattem you want to edit

If you don't change anything you will modify the pattem displayed onscreen

If the name dosen't exist, a new one will be created. The name HAS TO start with a letter!

I
m
e

) Addrow

ENSTA

Bretagne

Zacharie El Abdalaoui

p.13

However, for the implementation of the delete button, the page had to be refreshed,
and for the edit button, the button has to redirect to the Add/Edit page corresponding
to the pattern the user wants to edit. For the delete feature, | use a JavaScript function
delete _data(id) which responds when the button is pressed, then the function gathers
the name of the pattern the user wants to delete, sends it towards the
“controller/admin/system.lua” file and refresh the current page. There another
function called delete_data(x) too (I gave both functions the same name because both
are part of the same function) that calls the Ubus function that deletes the pattern
from the Flowtester filesystem.

As for the Edit button, | used a get method in the HTML code in order to get the name
of the pattern the client wishes to edit, and display it on the web address of the Editing
page. Thus if you click on the Edit button corresponding to the “basic” pattern, the web
address of the editing page will be: “http://192.168.56.101/cgi-
bin/luci/admin/system/pattern/add_pattern?name=basic”. The rest of the function is
implemented on the page displaying the editing feature and will be developed in the
section describing it.

The Add/Edit pattern page

On this page the user needed to be able to see all the relevant details about the pattern
he wants to edit (The name, the pattern data, which is a table defining the dataflow,
as well as the frame size the pattern uses at a given time, and a graph representing this
pattern data).

In order to do so | created the file “/view/admin_system/add_pattern”, to create the
wanted framework. In this file lies the end of the edit button implemented in the
Pattern Status page. To get the name of the pattern we want to edit the program will
automatically read the web address via JavaScript instructions, as the “get” method
was used in the edit form programming the button, the name of the corresponding

Zacharie El Abdalaoui

pattern is displayed in the web address. Then this address is filtered to get only the
name of the pattern. (This is actually a two steps process, in order to determine if the
user has clicked the edit button on the pattern status page, or the Add/Edit tab.)
Afterwards, the name of the pattern to display (or just a blank if the user pressed
Add/Edit) is sent towards “controller/admin/system.lua” once again, to trigger the
function render_data(x). This function gets the name of the pattern and print it into a
text file. This text file is then read by the render _data() function from
“/view/admin_system/add_pattern” . This function calls the Ubus pattern reading
function and getting the corresponding pattern content.

Pattern Name

this text area you can Choose the name Of the pattern you want 10 &0

m

Powered b ~ 1 Mactar (a#-18 217 28120821 1F7 OoenWrt Desianated Driver r4032058
HEiee vy Ve nasie gt iV.L v LoVUa WPETIVETL Jeoghieee Ve [Ty

Figure 10 Displaying of the pattern data for the test pattern

p. 15

Bretagne Zacharie El Abdalaoui

Then the table is refined in order to get the values inside, and finally displaying it in the
appropriate fields as well as the name gathered from the web address. This whole
operation requires the page to be reloaded once in order to get the correct name inside
the text file mentioned earlier, a JavaScript instruction which reload the page, but add
a String at the end of the web address allows this solution to be possible (Indeed at
first the page would reload each time it is called, resulting in an infinite loop) This
answer to this problem might not be the best or the most elegant, but is the only viable
one so far.

Regarding the editing part of the page, the user had to be able to remove and add rows
as he wished. However, it was not realistically possible to allow the user to add or
remove several rows at the same time, so | have settled for a solution allowing the
client to add or remove only one row at a time. Both functions and the function which
only modify data from a row a very similar to each other. Indeed, all three of them uses
the Ubus function which create/overwrite the pattern to operate. The only difference
resides on the amount of data each function sends. For the create_data() function, it
reads the values on the fields containing it, pack it into a table, gets the name of the
pattern to edit, and then sends it to the “controller/admin/system.lua” file where, the
Ubus function is called. Then the Editing page is refreshed, allowing the user to see the
changes. For the add_row() function, same principle, but the last set of values is added
to the table of values gathered by the function, and then is sent to the “system.lua”
file. And for the delete_row(), same idea again but here the values of the deleted row
are set to “null” and then sent to the system.lua file.

Zacharie El Abdalaoui

[Cahier X (B Projec X (W Univer X { W Czech X ' Kl Resea X (Ell lespe X { wit annex X ' UB ubus(X ([} Open' x { [https: X (W Lua(p X / @ Open' x - X

¢« C | ® 192.168.56.101)) yst ttern/add_patt B @ O

i1 Applications [7) Débuter avec Firefox (7 Importés depuis Fire? [Les Chroniques Tact

OpenWrt Main~ ~

Pattern Editor

Add a new pattem, or edit an existing one

Status

ly=40000 fs=4000

=10000 fs=1000

B o e oo on om0 0o 8 o om0 N 1 om0 o o om0 s s - S o P O o

y=red fs=green

Pattern Name
In this text area you can choose the name of the pattern you want to edit
If you don't change anything you will modify the pattern displayed onscreen

If the name dosen't exist, a new one will be created. The name HAS TO start with a letter!

Figure 11 Graph representation of the pattern data

Finally, for the graph representation, | have used the SVG library from the HTML
language. The time values, as well as the dataflow, and the frame size, are gathered
from the HTML code, and put into tables regrouping each type of values, time values
are sorted to remain consistent when drawn, and, thanks to a loop, the dataflow, and
the frame size are drawn at a given time.

Il Measurements

Last part of this step of the project was the creation of three pages in order to manage
the measurements profiles of the Flowtester:

e One to list those profiles and give access to the two other pages.

e One to create a profile thanks to the Ubus function for the creation of such
profile.

e One to see the status of a running profile

p.17

ENSTA
Bretagne Zacharie El Abdalaoui

Profile list page

For this page | had to display any profile available on the Flowtester filesystem, creating
solutions to start, stop, delete, and access the status of a given profile. Plus, the page
had to contain a link towards the profile creation page.

Here, the solution to display the profile is nearly identical to the one used to display
the available patterns (both requirements are similar after all). First get the names
from the Ubus function listing the profiles, and then putting them into a table to print
them with a for loop.

Same thing with the buttons Start, Stop, Delete. One JavaScript function to assess
whether or not the button has been pressed or not, then reading the name of the
appropriate pattern from the HTML code, and sending it towards
“controller/admin/system.lua”, calling the proper Ubus function.

And for the Status function, the method is similar to the Edit button from the Pattern
Status page (Get form, then the other page handles the rest with the web address
transmitting the proper name)

[Cahie: x (B Projec X (W Univer X { W Czech X { Klli Resez X (Fll lespe X wit annex X (Ui ubus(X ([3 Open X ([5 https: X (W Lua(p X / @) Open' x - X

¢« C | ® 192.168.56.101 t t x| ® O :
2% Applications [} Débuter avec Firefox (2] Importés depuis Firef [} Les Chroniques Tact

OpenWrt Main~ -

Measurements

Add/Edit

Status

Profiles

pila-20M-W ¥ Start @ Stop %] Delete & Status

11f71) / OpenWrt Designated Driver r49395

Figure 12 Final result of the Measurement page

p.18

Bretagne Zacharie El Abdalaoui

Profile Status page

For this page, | was requested to display any data about a running measurement
profile. And as the previous page | used the same method as the Pattern Editing page

to implement it:

e First getting the name of the profile the user wants to monitor from the web

address

e Then sending it to “controller/admin/system.lua” and writing it into a

temporary text file

e Read this text file from the Profile status page, and calling the Ubus tasks status

function

e Filter and print the appropriate data on the page

[Cahier_des charges St= X ([Project description - Ge X { U8 ubus (OpenWrt micro

& C | ® 192.168.56.101

i1 Applications [7) Débuter avec Firefox (7 Importés depuis Fire? [Les Chroniques Tact

OpenWrt Main- -

Measures status

Watch the output of the chosen profile

Create Profile
load
15min = 0.05 5min = 0.01 1min = 0.00

timestamp = 1476059445

storage

total = 2035392 type = overlay occupied = 12676 free = 2022716

memory

total = 250432 occupied = 39640 free = 210792

by LuCl Master (git-16.217.35130-6a11171) / OpenWrt Designated Driver r49395

Figure 13 Final look of the Profile status page

ENSTA

Bretagne

Zacharie El Abdalaoui

.19

Profile Creation page

For this final part of the project, the page had to allow the user to create a
measurement profile of his choice, with all the parameters he wants. As the two
previous implemented pages, the task was similar to the Pattern Creation/Edition
page, the main problem here was that the Ubus function allowing a user to create a
profile contained up to 32 parameters. Apart from that the method is the same as the
create_data() function:

e Gathering all required data from the HTML code

e Creating a table, and filling it with all gathered data
e Sending the data to “controller/admin/system.lua”
e Calling the Ubus function that creates the pattern

Unfortunately, the method used here did not produced the expected results. However,
since this method is nearly identical to the method used in the Pattern Creating/Editing
page, | can see only three reasons why it does not work yet:

e The Ubus function which creates the profiles might contain a bug preventing it
to work correctly.

e This Ubus function requires Tables of tables as parameters, and | have seen no
guarantee that this is accepted by the Ubus library in Lua.

e Since | had to use many loops in order to cover all the cases posed by the 32
parameters, a slight error might still be in the code (However this is very
unlikely. Indeed, the function is implemented in the
“controller/admin/system.lua” file, and if an error is detected in any file in the
controller, the LuCi does not even launch and points out the error)

Here are all the parameters of the Create function

{

"name": "testl",
"description": "Test 1 description",
"duration": "20",
"repetition": "5",
"delay": "1",
"sleep": "1",
"schedule": {
"disable": "true",
"year": "string",
"month": "string",
"day": "string",
"hour": "string",
"minute": "string"
},
"load": {
"disabled": "false",
-
&%

Zacharie El Abdalaoui

[120,

"loop": "5"
by
"flowping": {
"disabled": "false",
"dataset": {
"filename": "/opt/flowtester/data.dat",
"content": [[O, 10, 64], [60, 1024,
1024, 1501, [120, 10, 515]]

s

"target IP": "147.32.211.110",
"target PORT": "2424",
"opts": "-X"
by
"iperf": {
"disabled": "true",
"target IP": "string",

"target PORT": "integer",
"opts": "string"
}y
"analyze": {
"disabled": "true",
"mode": "measurement",
"opts": "string",
"CSV": "boolll,
"graphs":{
"type" :

641,

[60,

10,

1507,

["full","all","loss","lossra","loss hist", "spd", "spdl", "spd loss","spdl los
s","spd lossra","spdl lossra","spd delay","spdl delay","delay", "delay hist"
,"delay loss","delay lossra"],

"output": "pdf/png"
}

ENSTA
Bretagne Zacharie El Abdalaoui

p. 21

Profile Creator

Profile Description

Name Duration Repettion Delay Seed

Fiostecier Fllename Confent Target P Target_Port Optione
On'Om

ohedule Year Month Day Hour Mnute
On'Oer

Anatyze Node Optione Ccw QGraph type Graph output
On'Oe

Pert Target ¥ Target_Port Optione
On'O®

Load LooDe
On'Oe

Figure 14 Measurement creation page

Apart from these three reasons, since the reasoning is the same as the Pattern Editing
page which works just fine, | cannot think of any other why the solution should not
work as well.

p. 22

ENSTA
Bretagne Zacharie El Abdalaoui

Conclusion

During this internship, | have been confronted to several problematics entirely new to
me. First of all, working in an international context. Indeed, this causes much more
misunderstandings that | thought and | sometimes misunderstood what did my training
supervisor (Mr Kozak), exactly expected from me (Especially in the second part of the
project). In the other way around | found out that, still during the second part of the
project, | was not provided with the proper virtual machine (Containing some features
| needed in order to advance). This means | still have to work on my communication
skills in order to limit those problems in the future. The second new problem | faced
during this internship was the confrontation with several programming languages | had
no prior knowledge. This forced me to learn and adapt quickly to all of these new
environments, and will definitely be of use in my professional career, since | will surely
face this issue once again in a future project.

Finally, the majority of the tasks required, and that | was realistically able to carry out
for this project have been achieved and will help the CTU to launch the test phase of
the Flowtester project before, letting it into the hands of the customers. With that
being said, | think some of the solutions proposed still have room for improvement, to
be more efficient, and more easily customized.

| would like to thank Mr. Bestak for the opportunity he has given me to work as an
intern at the CTU in Prague, and Mr. Kozak, and Mr. Kocur, for having me working on
this project, and for their help throughout my entire stay in Czech Republic.

Zacharie El Abdalaoui

Annex

First Annex: Project Description

Web user-interface for FlowTester

Main goal

In cooperation with the team at the CTU in Prague, design and develop a new web interface
(UI) of FlowTester a network benchmarking tool. Currently, the FlowTester runs on GNU/Linux,
but it undergoes a redesign and was ported to OpenWRT.

Project tasks on the Ul are divided among a few connected projects where you will learn how
to work with OpenWRT’s UBUS interface for configuring tests and reading status information
of FlowTester. Based on that information read from UBUS interface, you will create a web
interface for visualization where you will show defined measurements and their status. This
web interface will allow several actions, e.g., a definition of the traffic pattern, measurement,
and postponed measurement. Each feature is detailed in the following text.

FlowTester

FlowTester is a set of software modules which are designed to measure parameters of
communication networks based on TCP/IP protocols. These measurements rely on traffic
definitions based on predefined traffic patterns. Obtained results of such measurements are
given in time-sequence parameters such as a response time of the communication network,
round-trip time, and error rate. Results are then visualized in time-sequence diagrams
using PDF format. Additionally, FlowTester stores all measured results in the CSV format in
the internal memory. Analysis can be conducted by FlowTester itself or on a master unit which
can interconnect a number of FlowTesters, and, subsequently, analyze data and control
measurements from them in a 24/7 mode of operation.

FlowTester allows network testing in
e Short-term manner
o brief verification of a network
o bottleneck detection
e Long-term manner
o detailed analyses scaled to hours, days, and weeks
o communication stability tests

Testing is carried out using:
« Predefined traffic pattern measurements (traffic patterns of time-varying loads
and packet length): constant, steps, saw traffic pattern or other comprehensive
traffic patterns

Zacharie El Abdalaoui

o Measurement of network throughput over time (using TCP flows)

e Multiple flows between various FlowTesters in the network

« Simulation of traffic patterns based on capture traffic, e.g., industrial protocols,
http, VolIP, IPTV, etc.

e DoS and DDoS attacks

Based on those tests FlowTester provides:
« Time charts (combination of multiple charts in one graph)
o Histograms (distribution of a measured parameter’s frequency)
o Statistics and box-plots (mean, variance, median, min-max value)
o Threshold detection

Typical deployment of FlowTesters for a measurement is depicted in the Fig 1.

Fig. 1: An example of FlowTester deployment in a more comprehensive scenario in a point-to-multipoint
case (P2MP or MESH). Performance analysis is carried out between two FlowTesters or between
FlowTesters and a VM in a datacenter.

One FlowTester can coordinate multiple FlowTesters as long as they can communicate using
TCP/IP. This coordination is carried out by distribution of profile and data files among devices.
When those files are distributed, tests are iniciated through remote command over SSH.

When tests are finished, postprocessing is carried out in the device, and this way each
FlowTester can provide visualisation of measured network performance. Such examples are
captured in Fig. 2 and 3.

p. 25

Zacharie El Abdalaoui

Throughput and loss - 2015.10.29706.34.01

4
N ‘ : ; ‘ ‘ 0
- TX
D .« RX -
2500 | ‘ ; Loss ratio
— : 30
2000 _
= . 25 L
§ &
2% (B b=}
5 [
3 1500 | 2 4
£
2 e
e g
£ A 153
a
1000 | <
10
\ 0
5 5 1 3 . 5 ™ .
500 | - . . :) \
- \ 5
L
. . \ f\ +
§
1] P I B I N : 1 ‘ { ‘ | ‘ | ‘ | ‘ ‘ | 0
00:03:00 00:03:10 00:03:20 00:03:40 00:03:50 00:04:00

Fig. 2: Graphical visualisation of maximum throughput detection for a measured network connection.
This measurement is based on the incremental increase of offered load of traffic and the monitoring of
real network throughput. Letters A - D denote important areas of the graphical visualisation. Point A
indicates the saturation threshold. Point B shows the moment when the first packets begin to loss. Point
C shows the maximal network throughput just before another threshold and causing an increase of
packet loss. A highly overloaded connection is underpinned by area D.

Throughput and loss - 2015.11.06T07.19.20 100
T T

o - S -_..__...—:--— dm e b mmiate & ::_..".._. Ay ey s o n Sams o “raines S 43 '3 B oe 8 §s s 48 5 0.0 S e

R e Rt b i Bl R e S - TX £
- RX e
— Loss ratio

80
250 ’ B 3 ” |
T] 60 —
7z ®
& H £
£ - g
= - I
% 200 ”
2
g g
g ‘ A ¥
=
F a0 &
150 1
100
{120
50 \
0 ,.
10:00:00 13:00:00 16:00:00 19:00:00 22:00:00 01:00:00 04:00:00 07:00:00

Tima lel

Fig. 3: This graph captures the long-term measurement (24h) of packet loss with a data connection
continually loaded by an offered load of 350 kbps. Over time, packet loss is monitored. Points A - C
show typical events. Point A shows the obvious degradation of transmission parameters of the data
connection leading to a decrease of throughput and an increase of packet loss. Point B indicates
connection disconnect in length in tens of minutes. Point C shows the short-term degradation of data
connection parameters in tens of seconds.

p. 26

@

ENSTA
Bretagne Zacharie El Abdalaoui

State of the art

The FlowTester redesign into OpenWRT platform allows multiple features like concurent
measurements provided by one device, etc. FlowTester itself relies on FlowPing and Iperf
applications which are designed for performance testing of data networks

OpenWRT UBUS

UBUS provides communication between various daemons and applications in OpenWrt, and UBUS
is deeply described at Wiki page: https://wiki.openwrt.org/doc/techref/ubus

FlowTester API

All necessary software, e.g., Iperf and FlowPing, is installed in the provided system, and
FlowTester API is accesible through ubus interface:

root@OpenWrt:/# ubus -v list

'flowtester' @7926f7ca

"tasks":{"action":"String","task id":"String","value":"String"}
"pattern":{"action":"String", "name":"String", "content":"String"}
"results":{"action":"String","value":"String"}
"servers":{"server":"String","action":"String"}

Each module is described in more details in the following chapters. The FlowTester APl is used
by command on command line of FlowTester called flowtester-cli. This command can be used
as a refrence for development of web interface.

Module Pattern

The point of this module is to manage traffic patterns that carry information about link load
during time. Each traffic pattern can represent specific communication protocol, or just any
performance test.

Patterns can be managed using 4 actions.

Actions: list, read, create, delete
list

This method provides list of patterns stored on the filesystem of FlowTester device. The list of
patterns can be accesed using JSON or through flowtester-cli:

Input JSON:
{"action":"1list", "name":"patternl/all"}
Output JSON:
["patternl": {
"name": "patternl",
"filename": "/opt/flowtester/dataset/patternl.dat",

Zacharie El Abdalaoui

"modified": "DATE-TIME"

bo
"pattern2": {

"name": "pattern2",
"filename": "/opt/flowtester/dataset/pattern2.dat",
"modified": "DATE-TIME"

}y
]

read

Action read provides all necessary information about one specific traffic pattern.

Input JSON:

{"action":"1list", "name":"patternl"}

Output JSON:
{
"name": "pattern2",
"filename": "/opt/flowtester/dataset/pattern2.dat",
"content": [[O, 10, 64], [60, 1024, 641, [60, 10, 1501, [120, 1024,

1501, [120, 10, 5157]
}

create

Write action stores defined pattern onto filesystem of FlowTester. This does not check
existance of other patterns of the same name. The overwriting tests must be carried out
programaticaly.

Input JSON:

{"action":"1list", "name":"patternl", "content": [[O, 10, 64], [60, 1024,
041, [60, 10, 1501, [120, 1024, 150], [120, 10, 51571 1}

delete
This action delete profile out of filesystem, so list wont show such a traffic pattern when listing
is performed for the next time.

Input JSON:

{"action":"delete", "name":"patternl"}

Module Tasks

gne Zacharie El Abdalaoui

Module tasks is responsible for all actions related to tasks. Task can be understand as an
combination of a traffic pattern and extra information which create an instruction for a network
measurement or performance test.

Actions: list, create, delete, start, stop, status

list

List is used in order to show all prepared measurements. The response of this actions gives
information about all defined measurements and their state, as whether measurement is
running or not.

Input JSON:
{"action":"1list"}
Output JSON:
{
"testl™: {
"name": "testl",
"description": "Test 1 description",
"filename": "\/mnt\/data\/profiles\/testl.profile",
"running": false
b
"test2": {
"name": "testl",
"description": "Test 1 description",
"filename": "\/mnt\/data\/profiles\/test2.profile",
"running": false
by
"test3": {
"name": "testl",
"description": "Test 1 description",
"filename": "\/mnt\/data\/profiles\/test3.profile",
"running": false
}
}
delete

FlowTester API allows deleting measurement profiles.

Input JSON:

{"action":"delete", "task id":"test3"}

Output JSON:
{

"status": "OK",

"message": "Task test3 (\/mnt\/data\/profiles\/test3.profile) was
deleted"”

}

Status gives feedback about the process. In case of failure message attribute provides
information about the failure.

Zacharie El Abdalaoui

create

Create action requires a complex JSON description of operation thus this description is going
to be described in more details. Each profile defines proprerties of a measurement. An example

of profile is as follows:
{

"name": "testl",
"description": "Test 1 description",
"duration": "20",
"repetition": "5",
"delay": "1",
"sleep": "1",
"schedule": {
"disable": "true",
"year": "string",
"month": "string",
"day": "string",
"hour": "string",

"minute": "string"

b

"load": {
"disabled": "false
"loop": "5"

b

"flowping": {
"disabled": "false
"dataset": {

"
4

"
4

"/opt/flowtester/data.dat",

"filename":
"content": [[O, 10, 64 1,
[120, 1024, 1501, [120, 10, 515]]
by
"target IP": "147.32.211.110",
"target PORT": "2424",
"OptS": "_X"
b
"iperf": {
"disabled": "true",
"target IP": "string",

"target PORT": "integer",

"opts": "string"
b
"analyze": {
"disabled": "true"
"mode" :
"opts": "string",
"csv": "bool",
"graphs": {
"type" :

4

"measurement",

641,

(60,

10,

1501,

["full","all","loss","lossra","loss hist","spd", "spdl", "spd loss","spdl los
s","spd lossra","spdl lossra","spd delay","spdl delay","delay","delay hist"

,"delay loss","delay lossra"],

"output": "pdf/png"

}

ENSTA

Bretagne

Zacharie El Abdalaoui

p. 30

One can see the first part contains description of measurement specifing name, repetition, and
trigger for measurement starting:

"name": "testl",

"description": "Test 1 description",

"duration": "20",

"repetition": "5",

"delay": Hl",

"schedule": {
"disable": "true",
"year": "string",
"month": "string",
"day": "String",
"hour": "string",
"minute": "string"

}y

In detail:
e name - Name of the test.
o description - Detail description of the test.
e duration - Duration of the measurement being performed in seconds.
o repetition - Number of repetition desired test
o delay - Delay in seconds before running the test
o schedule - Date end time definition for running the test. (Not working now)

Following, optional part, contains flowping measurement description:
"flowping": {

"disabled": "false",
"dataset": {
"filename": "/opt/flowtester/data.dat",
"content": [[O, 10, 64], [60, 1024, 64], [60, 10, 1507,

[120, 1024, 150], [120, 10, 515]]
s

"target IP": "147.32.211.110",
"target PORT": "2424",
"optS": "_X"

}y

Dataset describes traffic pattern used for measurement, and dataset can be included in two
ways: filepath or by list of tuples describing time, throughput, and packet size. Following are
parameters for flowping application such as destionation address, port, and other parameters.

Similarly, Iperf can be configured. However, Iperf allows only to specify destionation address,
port, and extra attributes. This configuration comes from the Iperf measurement method.

"iperf": {
"disabled": "true",
"target IP": "string",
"target PORT": "integer",
"opts": "string"

b

Zacharie El Abdalaoui

Eventually, measurement profile specifies what statistics should be carried out:

"analyze": {
"disabled": "true",
"mode": "measurement",
"opts": "string",
"CSV": llbool",
"graphs": {

"type":
["full","all","loss","lossra","loss hist", "spd", "spdl", "spd loss","spdl los
s","spd lossra","spdl lossra","spd delay","spdl delay","delay","delay hist"
,"delay loss","delay lossra"],

"output": "pdf/png"

}
}
This JSON measurement description is send through FlowTester API then this measurement
profile can be seen in the list of profiles.

start

Unless the delayed started in defined with create action JSON measurement profile is in stop
state. In order to start such a profile action start is triggered by following JSON.

Input JSON:

{"action":"start", "task id":"test2"}

stop

Any running measurement profile can be stop by the stop action:

Input JSON:

{"action":"stop", "task id":"test2"}

Output JSON:
{
"test2": {
"status": "OK",
"message": "test2 with PID: 17216 was killed"
}
}
status

Status provides information about running measurement profiles. In order to initiate profile
verification action status and identification of task must be triggered.

Input JSON:

{"action":"status", "task id":"test2"}

If the status action is performed on not running profile.
Output JSON:
{

Zacharie El Abdalaoui

"status": "Info",
"message": "No active tasks"

}
On the other hand, the running profile can provide status information about running processes

related to the profile.

Output JSON:
{
"test2": {
"pid": 17216,
"start time": 1466670966,
"progress": 0O,
"current task": 2,
"max tasks": 5,
"task time": 20,
"project time": 88,
"data file": "\/mnt\/data\/test2-1466670966\/test2-002\/test2-002~
2016.06.23T08.36.28.gz",

"data file size": 0
}y
"system": {
"timestamp": 1466670990,
"memory": {
"free": 214876,
"occupied": 35524,
"total": 250400
b
"storage": {
"type": "overlay",
"free": 1026312,
"occupied": 6968,
"total": 1033280
b

"load": {
"Tmin": "0.08",
"Smin": n0.03n,
"15min"™: "0.04"

Status provides information about FlowTester itself as well as information about measurement
supporting processes.

Module Results

Access to each measurement is provided through FlowTester APl which provides
o Measurement listing in order to show results of finished measurements

Results delete

JSON measurement descriptor

File download from the results directory

Actions: list, summary, detail, delete

gne Zacharie El Abdalaoui

summary

Basic statistics of stored measurements.
¢ measurements - number of stored measurements
o tasks - number of stored tasks
e size - size of all measurements in bytes

Input JSON:
{"action":"summary"}
Output JSON:
{
"measurements": 2,
"tasks": 7,
"size": 3
}
list
Input JSON:
{"action":"1list"}
Output JSON:
{
"testl1l-1466663949": {
"timestamp": "Thu Jun 23 06:39:09 UTC 201l6",
"size": 67,
"report": false,
"instances": {
"1": "testl-001",
"2": "testl-002"

}
by
"test2-1466670966": {
"timestamp": "Thu Jun 23 08:36:06 UTC 201l6",
"size": 222,
"report": false,
"instances": {
"1": "test2-001",
"2": "test2-002",
"3": "test2-003"

}
}
detail
{"action":"detail", "measurement" :"test1-1466663949","instance":"1"}
{

"files": [

"filename": "test1-001-2016.06.23T06.39.09.gz",
"size": 219,
"modified": "Thu Jun 23 06:39:31 UTC 2016",

ENSTA
Bretagne Zacharie El Abdalaoui

p.34

"mimetype": "application\/x-gzip"
b
{
"filename": "testl1l-001-
2016.06.23T06.39.09 load.csv",
"size": 1,
"modified": "Thu Jun 23 06:39:29 UTC 2016",
"mimetype": "text\/csv"

"filename": "testl.dat",

"size": 1,

"modified": "Thu Jun 23 06:39:09 UTC 2016",
"mimetype": "text\/csv"

"filename": "testl.profile",

"size": 2,

"modified": "Thu Jun 23 06:39:09 UTC 2016",
"mimetype": "application\/json"

}
1y
"results": [
{
"mimetype": "text/csv",
"graphtype": "parsed",
"size"™: 42693,
"modified": "2016-08-11T14:25:03.922020",
"filename": "test3.2016.06.08T09.13.17 parsed.csv"
1y
{
"mimetype": "image/png",
"graphtype": "all",
"size": 183564,
"modified": "2016-08-11T14:25:06.217375",
"filename": "test3.2016.06.08T09.13.17 all avg.png"
}
]
}
delete
Input JSON:

{"action":"delete", "measurement" :"test1l-1466663949"}

Output JSON:

{
"testl1-1466663949": {

"status": "OK",
"message": "Result testl-1466663949 was sucessfully deleted"

}
Module Servers

p. 35

ENSTA
Bretagne Zacharie El Abdalaoui

Projects

API prikazy

ubus call flowtester task '{"action":"start","value":"test1"}’'
e start, stop, delete, create, list, status

ubus call flowtester results '{"action":"list","value":"test1"}'
e |ist, detail, delete

ubus call flowtester servers '{"server”:"flowping", "action":"start"}'
e action: start, stop, enable, disable, status
o server: flowping, iperf

Spravce systému
o Systémovy soubor /etc/config/flowtester
o V souboru jsou ulozeny zakladni parametry nutné pro béh systému FlowTester
a aplikaci FlowPing a Iperf v rezimu server
o Vramciintegrace s GUI se o¢ekava moznost editace konfiguraéniho souboru
e Flowping/lperf server
o Proobé aplikace v serverovém rezimu by méla byt moznost jejich ovladani pies
weboveé rozhrani, tak jako je tomu u béznych sluzeb OS OpenWRT viz polozka
Startup.
o Oba servery jsou ovladany pfes ubus rozhrani
e Systémové prostiedi
o VytaZeni konfigurace LAN, WAN, Switche, WiFi, systému (hostname,
passwords, datum a €as etc.) do vlastniho rozhrani
« Sablona vzhledu systému
o Nalezeni a aplikace vhodné Sablony prostfedi, které bude spjaté se systémem
FlowTester a bude pouzivané napfic celym systémem.

Spravce paternt
o Aplikace umozriuje definovat patterny pomoci JavaScriptového rozhrani, takovyto
pattern je automaticky zobrazen
e Na zafizeni je mozné ulozit obecné N pattern(, ty je nasledné mozné spravovat
o Mazat
o Editovat
e Vkladani patternu z externiho souboru

Spravce méficich uloh
e Zalozeni nové méfici ulohy, kde je mozné nastavit
o Pattern
= Je pozadovana volba patternu provozu
= Po zvoleni je tento patern za¢lenén do JSON definujicim méfeni

Zacharie El Abdalaoui

o Cilova adresa
o Port
o Cas spusténi
= Rucni spusténi
= NacCasované spusténi
e Spravce uloh
o Vypada jako seznam, kde se indikuje, zda se jedna o naplanovanou ulohu nebo
tlohu k ruénimu spusténi
o V pfipadg, Ze je uloha spusténa, je zobrazen jeji aktualni stav
= Méfeni x/N
= Progresbar
Odhadovany ¢as dokon&eni méreni
= Tlaéitko pro zastaveni méreni
o V pfipadé, Ze se jedna o ulohu k ruénimu spusténi je zde tlacitko pro spusténi
a nasledné zastaveni méfeni
o Moznost editovat nastaveni méfici ulohy
= Typicky vypnout naCasovani ulohy nebo naopak nastaveni Casovani
uloze.

Spravce vysledku
e Zobrazeni hotovych méfeni
o Kazdy fadek vypisu bude obsahovat informace
= Kdy méfeni probihalo
= Jména profilu, kterym vysledek vznikl
e Detailni pohled na mareni
o Zobrazeno po rozkliknuti odpovidajiciho Fadku v seznamu méfeni
o Zobrazi se nahled na vysledky méfeni
= Pomoci tabulek budou zobrazeny zakladni pohledy na data
= S vyuzitim obratu pro ziskani soubori v base64 budou zobrazeny
zavéry z vyhodnoceni
= Seznam souboru ke stazeni

Dashboard

e Zobrazeni prubéhu probihajicich méfeni:
o Aktualni data na In/Out rozhranich
o Aktualni data stavu systému
o Aktudlni data/statistiky probihajicich testu
o Monitoring diskového ulozisté

o Cinnost k dashboardu je nutné optimalizovat s ohledem na pozadavek minimaini

zatéze systému.

Abstracts

Keywords: OpenWRT, Linux, Lua, LuCi, HTML, Shell, JSON
1. FlowTester system configuration

Familiarize yourself with LUCl a web user interface of OpenWRT. Customize graphical style of
the web interface using some modern framework in order to be long-term sustainable and

Zacharie El Abdalaoui

responsive. Using basic widgets, implement basic functionality to control FlowPing, Iperf,
FlowTester configuration files, and system properties like LAN, WAN, WiFi, etc.
Instructions:

e Project for 1 or 2 persons

e Duration: 1 month

e Required skills: HTML, Lua, JSON, Shell, CSS, JS

o Expected outputs: SW module, documentation

2. Measurement configurator

Familiarize yourself with LuCIl a web user interface of OpenWRT. Use and extend LuCl in order
to create a graphical pattern generator such that it enables easily manage and describe
patterns used by the FlowTester. Additionally, these patterns can be used for definition of
measurements which implementation is a part of this project as well.
Instructions:

e Project for 1 or 2 person

e Duration: 1 month

e Required skills: HTML, Lua, JSON, JS

o Expected outputs: SW module, documentation

Zacharie El Abdalaoui

