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Abstract

Parameter estimation is an essential part of robotics. In order to make decisions a robot has
to know its environment. It must be able to locate itself or to locate others. A lot of work
has been done these last decade to bring new and more e�cient methods of dealing with those
problems. In particular, Interval Analysis has been used for several years to solve parameter
estimation problems.

Interval Analysis has brought a new way to take into consideration the uncertainty of
the sensors. It has also shown its robustness in dealing with outliers (measurement failed,
inaccurate). However, there are still a few problems left.

Among those are Fake Boundaries, sets that classic algorithms using intervals get stuck
on and cannot decide if they are solutions or not. We can remove those Fake Boundaries by
reformulating the problem. Indeed, using the Disjunctive Normal Form of the problem the
unclassi�ed sets can be classi�ed.

Another problem of interval analysis is outliers. GOMNE algorithm has proven robust to
deal with outlier but it has an issue. To remove ouliers it test every possible number of outlier
until it manages to �nd a solution to the problem. Also it requires to have an idea of the
distribution of the error in order to bound this error e�ciently. Using the Maximum likelihood
estimator we have a criteria that can rate parameters without needing any information about
the error.

Résumé

Estimer des paramètres est une partie importante de la robotique. Pour pouvoir prendre des
décisions, un robot doit connaitre son environnement, il doit être capable de se localiser ou
de localiser d'autres robots. Ces dernières années de grandes avancées ont été faites dans le
domaine de l'estimation de paramètre. En particulier, le calcul par intervalle est utilisé depuis
quelques années pour résoudre se type de problèmes.

Le calcul par intervalle apporte une nouvelle manière de traiter les imprécisions des capteurs.
De plus cette methode est robuste aux outliers (mesure fausse). Cependant tous les problèmes
n'ont pas été résolus.

Un de ces problèmes est les Fake Boundaries, des ensembles de paramètres pour lesquels
l'algorithme n'arrive pas à identi�er s'ils sont solutions du problème ou non. En reformulant
le problème en sa Forme Normale Disjunctive, on peut supprimer ses ensembles et résoudre le
problème.

Un autre problème du calcul par intervalle est les outliers. L'algorithme GOMNE est capable
d'estimer des paramètres mêmes en la présence d'outliers. Pour cela il test tous les nombres
d'outliers possible jusqu'à obtenir un problème résoluble. Il requière une certaine connaissance
de l'erreur sur les mesures. En utilisant l'estimateur maximum de vraisemblance on a un critère
qui nous permet de choisir les paramètres idéaux au problème sans avoir besoin de connaitre
la distribution de l'erreur.
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Introduction

In robotics, estimating parameters such as positions and distances can be essential to the mis-
sion of a robot. But of course in practical situations we are not able to determine precisely those
things. To obtain those parameters we rely on sensors. Such devices are not perfect, so the data
they provide is inaccurate, they have a non negligible uncertainty. They can also give false
data when something passes in front of the sensor for instance. Those values are called outliers.

As a result parameter estimation is challenging. In order to achieve our goal many methods
exist. Probabilistic methods have been used for decades. However, they usually only work in
speci�c cases and require the problem to have some characteristics. For instance the Kalman
�lter is a widely used estimator that has proved its e�ciency, nonetheless it was only designed
to be used for linear problems with Gaussian uncertainty. New methods have been developed
to cope with these disadvantages. Interval analysis has brought a new way to deal with such
problems but work still needs to be done. Interval analysis solves some issues from probabilistic
methods, but it also introduces new ones.

During my internship, I mainly worked on two problems.
First, I worked on eliminating fake boundaries when working with contractors. Contractors

make it possible to speed up computation by e�ciently shrinking the interval sets. However,
in some particular situations they are unable to identify if a set is solutions or not, those
sets are unclassi�ed. A human would be able to tell instantly if the sets are solutions or not
because those unclassi�ed sets appear on boundaries of sets, they are therefore called fake
boundaries. Fortunately, some ideas have emerged on how to deal with such problems. My
goal was to combine two methods that eliminate those Fake boundaries in order to obtain a
simpler method.

I also took part in the development of a new way to use interval analysis for parameter esti-
mation. This new method tries to deal with the two main problems when estimating something,
the uncertainty of the sensor that causes an error on the measurement and outliers that are
far from the real values and are caused by sensor failures or environmental events (something
getting in front of the sensor, etc.).
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Chapter 1

The University of Texas at El Paso
(UTEP)

1.1 Presentation

The University of Texas at El Paso is a public research university. It was founded in 1914
and was primarily focused on mines and metallurgy. It host over 23.000 students and 2.800
sta� members (1300 academic sta�, 1500 administrative sta�). Diana Natalicio became the
�rst female president of UTEP in 1988 and has been holding this position since then. She has
pushed for a better integration of the Hispanic community in the university to better re�ect the
demographic of El Paso (80% of Hispanic students). The university is composed of six colleges

Figure 1.1: President and Executive o�cers

that cover various disciplines, Business, Education, Engineering, Health Sciences, Liberal Arts
and Science. It also host a School of nursing and a School of Pharmacy.
The university spends a lot on research and has been responsible for the several discoveries in
Health Science (vaccine against Chagas disease, ...). The mechanical engineering department
is supported by big companies such as Lockheed Martin Corporation. NASA Aerospace also
helped �nance a laboratory in the university.
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1.2 The Computer Science Department

During my internship I worked in the Computer Science Department. The center I joined
works on Theoretical Research and Applications in Computer Science. It focuses on noisy
data processing, computer security and privacy and reasoning under uncertainty. The center
is divided in three research groups: ELMOS (Electronic Money and Security), IF (Interval
and Fuzzy, for processing of uncertainty) and GEOINFORMATICS (algorithm for processing
geospatial data). Despite this three distinct groups, researchers can participate in several
projects.

1.3 Economic analysis

The university has a major economic impact in El Paso. It has an operating budget of over
$400 million and its economic impact in El Paso County is estimated to be around $1.4 billion.
With almost 3.000 sta� members it is 5th largest employer in El Paso.

Figure 1.2: The budget of UTEP for 2013-14

1.3.1 Method of �nancing

UTEP gets its funding from di�erent sources. Of course tuitions and student fees account for a
big part of the university's budget ( 25%). However the e�orts of the direction to make education
a�ordable has led UTEP to have the lowest net price for a research university in the United
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States. Therefore other income sources have to compensate for that. The university makes
around $40 million with its assets (parking lots, housing, food services contract, Intercollegiate
Athletics contract). Over a $100 million comes from contracts and grant. Most of that coming
from �nancial aid programs and federal research. For instance the research done by the team
I joined was funded by the National Foundation grants CAREER 0953339. Other smaller
fundings complete the budget.

1.3.2 Spendings

Two categories represent most of the spendings.
Education is a big chunk of the spendings. The sta� salaries account for a quarter of the

total spendings. Also the university wants to provide accessible tuition, so it provides students
with scholarships ($20 million).

Research is the second major source of expenditure. All of the money from contracts and
grant is directly invested in the research activities of the university, it pays for the researchers'
salaries and for the equipments.
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Chapter 2

Introduction to interval analysis [1]

Intervals

An interval is a closed and connected subset of R. For example [−5; 6] , {7} , ]−∞; 3] are inter-
vals.
An interval can be de�ned by an lower bound x− and an upper bound x+ such as:

[x] =
[
x−;x+

]
=
{
x ∈ R, x− ≤ x ≤ x+

}

Just like for real numbers basic operators +,−, ∗, / exist. There is also the intersection operator
∩ and union operator ∪.
For � = {+,−, ∗, /,min,max}:

[x] � [y] = {x � y|x ∈ [x] , y ∈ [y]}

Function can also be de�ned for intervals. For instance,

f ([x]) = {f(x)| x ∈ [x]}

Boxes

A box [x] is an interval of Rn
. It is a vector of intervals [xi]:

[X] =
[
x−1 ;x+

1

]
∗
[
x−2 ;x+

2

]
∗ . . . ∗

[
x−n ;x+

n

]
= [x1] ∗ [x2] ∗ . . . ∗ [xn]

Contractor

A common way to work with intervals is to bisect the intervals into two and two compute the
two part separately. Therefore, as we bisect we get a more and more accurate solution of our
problem. However this has a major disadvantage. Indeed the complexity of those algorithms
is exponential relative to the accuracy we want. Contractors help to deal with this issue, they
don't change the computational complexity of the algorithm but they make it possible to shrink
the intervals faster by removing parts of the intervals that are not in the range of solution as
seen on �gure 2.1.
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Figure 2.1: E�ect of contractor on sample sets

De�nition 1 The operator L : IRn → IRn is a contractor if

• ∀ [x] ∈ IRn,L ([x]) ⊂ [x] (contractance)

• (x ∈ [x] ,L ({x]}) =⇒ x ∈ L ([x]) (consistence)

• L ({x}) = ∅ =⇒ (∃ε > 0,∀ [x] ⊂ B (x, ε) ,L ([x]) = ∅) (weak continuity)
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Chapter 3

Fake boundaries

The problem

When solving problems using a separator programming approach, we can sometime obtain
unwanted boundaries. Boundaries that are clearly in the solution set or out of the solution
set. Those boundaries have been called fake boundaries because the algorithm used to solve
the problems see them as unclassi�ed sets but a human is able to tell instantly if it belongs
or not to the solution. These boundaries appear when working with intersections, unions and
complement of sets.

Indeed if we look at four sets A,B and C de�ned such that,

A =
{

(x, y) ∈ R2|(x+ 2)2 + (x− 2)2 ≤ 32
}

B =
{

(x, y) ∈ R2|(x+ 2)2 + (x+ 2)2 ≤ 32
}

C =
{

(x, y) ∈ R2|(x− 2)2 + (x+ 2)2 ≤ 32
}

And if we are searching for X so that,

X = (A ∪ B ∪ C) ∩ (A ∪ B ∪ C) ∩ (A ∪ B ∪ C) ∩ (A ∪ B) ∩ (A ∪ B ∪ C) ∩ (A ∪ C)

We obtain the result shown on �gure 3.1a.

The cause

Several papers [2], [4] have shown that the existence of fake boundaries is directly linked to the
way the expression is written. Indeed those boundaries appear when the edge of a set is hidden
in the expression. For instance if we have the expression Y = A ∩ A, it is obvious that the set
Y is empty. However if we try to compute it using a contractor based approach, the boundary
of the set A will appear unclassi�ed as shown on �gure 3.1b. This is because contractor based
approach don't check if a given set is solution, instead they progressively shrink the sets around
the edges.

Using the full DNF form

In order to remove fake boundaries several methods exist. It has been shown that using the
full-DNF (Disjunctive normal form) of an expression, we can remove the unwanted boundaries.
Any expression has a unique full-DNF de�ned in De�nition 2.
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(a) Representation of X (b) Representation of Y = A ∩ A

Figure 3.1: Fake boundaries

De�nition 2 The grammar of a DNF is:

• disjunction ← (conjunction ∪ disjunction)

• disjunction ← conjunction

• conjunction ← (literal ∩ conjunction)

• conjunction ← literal

• literal ← Ai

• literal ← Ai

A DNF is called full if each of its variables appears exactly once in every clause.

This method is not perfect, to obtain the full DNF of an expression, we need to test every
tuple (A0,A1, . . . ,An) to

(
A0,A1, . . . ,An

)
. Therefore the computational complexity of the

method is high, we have 2n combination to test.

Using a Karnaugh map

Another method is to use Karnaugh map [2]. This method also has disadvantages. Building
Karnaugh map of an expression is not simple and in some cases we will also have to test
every combination. This method has however the advantage of producing simpler expression
to process. Thus, it will slightly reduce the computing time of the algorithms used to solve the
problem such as SIVIA (Set Inversion via Interval Analysis).
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A simpler method

The last method proves that we don't need a full DNF to remove fake boundaries. The idea of
this method is to simply use the DNF form of the expression. Finding the DNF of an expression
doesn't necessarily means testing every combination of inputs. It can be obtained using the
distributivity of the union and intersection operators and equivalence rules to modify the ex-
pression. Therefore, we can obtain an expression that doesn't produce fake boundaries without
having to test every combination. By developing (using the distributivity) and simplifying the
expression

X = (A ∪ B ∪ C) ∩ (A ∪ B ∪ C) ∩ (A ∪ B ∪ C) ∩ (A ∪ B) ∩ (A ∪ B ∪ C) ∩ (A ∪ C)

we can obtain the expression

X = (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C)

using this expression we obtain the result shown on �gure 3.2.

Figure 3.2: Representation of X (using the new method).
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Chapter 4

Parameter estimation

4.1 GOMNE Algorithm

In parameter estimation problems, we usually have three things:

• A series of inputs x0,x1, . . . ,xn

• A series of measurement y0,y1, . . . ,yn obtained using sensors

• An idea of the relation f between the inputs x0,x1, . . . ,xn and the parameter p0, p1, . . . , pl
that results in the measurements.

So given the inputs x0,x1, . . . ,xn and the measurements y0,y1, . . . ,yn we want to solve the
system of equations: 




f(x0, p0, p1, . . . , pl) = y0,

f(x1, p0, p1, . . . , pl) = y1,
...

f(xn, p0, p1, . . . , pl) = yn

(4.1)

The Guaranteed Outlier Minimal Number Estimator (GOMNE) algorithm o�ers a way to �nd
the parameters p0, p1, . . . , pl that work for this equation. Moreover if no parameters �t the
equation it can �nd the parameters that �t the maximum number of equations.

4.1.1 SIVIA Algorithm

The GOMNE algorithm uses Set Inversion via Interval Analysis (SIVIA) to obtain the param-
eters that solve the system of equations. It works by testing boxes P to see if the box is in
the set of solution, out of the set of solution or somewhere in between (unclassi�ed). In the
last case it split the box into two and starts over. This algorithm stops when the width of the
unclassi�ed boxes is smaller than a precision ε.
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Algorithm 1 SIVIA Algorithm

1: L← {[P ] (0)} ;
2: pull([x] , L);
3: if [f ] ([x]) ⊂ [y] then
4: Pin← [x]
5: else if [f ] ([x]) ∩ [y] = ∅ then
6: Pout← [x]
7: else if width ([x]) < ε then
8: Pbound← [x]
9: else

10: bisect [x] into [x] (1) and [x] (2) ;
11: L← [x] (1) ;
12: L← [x] (2) ;

13: if L 6= ∅ then
14: go to 2

Of course this algorithm cannot give the exact set of solutions P . It returns the inclusion

P− ⊂ P ⊂ P+

where P− = Pin
and P+ = Pout = Pbound ∪ Pin.

4.1.2 q-relaxed intersection

Just like many parameter estimation methods. Interval analysis method work better when we
have a lot of measurements. However the more data we have, the more likely we are to obtain
an empty set of parameters. This is the Demidenko paradox, with more data, we increase the
chance to obtain outliers, values that don't match the other.

To cope with this issue, relaxed intersection can be used. In essence, we allow the parameters
to satisfy only n− q measurement.
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4.1.3 The algorithm

Algorithm 2 GOMNE Algorithm

1: procedure test(P)
2: b← [0; 0]
3: for i in [1,. . ., size(y)] do
4: Fi = f(P, xi)
5: if subset(Fi, yi) then
6: b[0] = b[0] + 1

7: if not_disjoint(Fi, yi) then
8: b[1] = b[1] + 1

9: return b
10: procedure Recursive_SIVIA(P, q)
11: b = test(P )
12: if b[1] < size(y)− q then
13: Pout← P
14: else if b[0] >= size(y)− q then
15: Pin← P
16: else if width (P ) < ε then
17: Pbound← P
18: else
19: bisect P into P1 and P2

20: Recursive_SIV IA(P1, q)
21: Recursive_SIV IA(P2, q)

22: procedure GOMNE(P)
23: q ← 0
24: while Pin = ∅ do
25: Recursive_SIVIA(P, q)
26: q ← q + 1

15



4.2 Maximum compatibility method

To deal with uncertainty, we have seen that the GOMNE Algorithm tries to remove outliers.
Another method would be to increase the size of the y0,y1, . . . ,yn boxes. Instead of considering
that some measure are outliers and should not be considered we consider that every measure
is reliable and that it is the accuracy of the measure that we overestimated. Therefore, by
increasing the width of the intervals we eventually obtain a system that can be solved.

Figure 4.1: In�ating the uncertainty boxes inevitably results in a solvable system [6]

For parameters p0, p1, . . . , pl the error between the measured yi and the theoretical value
f(xi, p0, p1, . . . , pl) is

∆i = |yi − f(xi, p0, p1, . . . , pl)|
The goal is to minimize this error for all measurement, therefore we want to �nd p0, p1, . . . , pl
so that

min
p0,p1,...,pl

max
1≤i≤m

|yi − f(xi, p0, p1, . . . , pl)|

We obtain a MINIMAX estimation problem which can be resolved using interval methods.
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Chapter 5

The Maximum likelihood approach

5.1 The Idea

The objective of this new method is to deal with uncertainty and outliers at the same time.
We are trying to solve the following problem,

y = f(p) + e

e is the error vector of the measurements. To solve the problem we suppose that each element
of this vector is independent and that they are distributed with the following density shown on
�gure 5.1.

Figure 5.1: Density function

The main part, in the middle represent the data that we consider reliable. The part with a
lower probability represent the outliers.

We can note that if we set the value of ∆ we fall in the case of the GOMNE estimation
method where the only variable left if the probability of outliers. And in the GOMNE algorithm
we essentially try to �nd the smallest probability for which the system is solvable.

If now we set the value of the probability of outliers to zero, we are in the case of the
Maximum Compatibility method. We then have to �nd ∆ so that the error is included in
[−∆; ∆] and solve the problem using this value.
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To be able to set the value of ∆ or of the probability of outlier we need some information
about the distribution of the actual error. Even though we often make an hypothesis on this
distribution, a common hypothesis in robotics is to suppose the distribution is Gaussian, we
can't always make such assumption. The method proposed here doesn't need to have ∆ of po
constant. We will use the maximum likelihood estimator to "rate" the estimation.

The maximum likelihood estimator is de�ned such that

L
def
=

N∏

i=1

ρ(yi − f(p, xi))

So for the aforementioned density distribution we have to maximize

L(p,∆) =
1

(2∆)N−q(p,∆)
× 1

(2W )q(p,∆)

where q is the number of outlier.
Using this formula or its logarithm we can judge whether or not a set of parameter is a good

estimate of the solution.
For each p, we need to �nd the value

max
∆

(
1

(2∆)N−q(p,∆)
× 1

(2W )q(p,∆)

)

We can then select the parameters that have the maximum likelihood.
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5.2 The Result

In order to determine if the method has satisfying results, it was tested on a simple linear
example. Several error distributions were tried to see if the method was robust to fat tailed
distributions such as Cauchy distributions. A wide range of parameter was tried for each
distribution. These tests had the purpose to show that the Maximum likelihood method ended
up with results that were considering enough values (∆ high enough) and at the same time
were not considering to many values in order to remove outliers (∆ high enough).

Figure 5.2: Maximum likelihood estimator (Gaussian)

Figure 5.3: Maximum likelihood estimator (Cauchy)

On �gure 5.2 we see that for a Gaussian distribution the maximum value of L is obtained
for ∆ ∈ [2σ; 2.5σ]. This makes sense because 95% of the values are in this interval and its is
an already commonly used con�dence interval for this distribution.

Also if we look at the Cauchy distribution on �gure 5.3 we see that the maximum of the
function is harder to identify. Cauchy distributions are fat tailed, they have a lot of outliers,
therefore �nding an appropriate ∆ is much harder. However if we take a look at the values for
which the function reaches its maximum, we see that every times, less than 20% of the values
are considered outliers. This shows that even for distributions with a lot of outliers this method
can �lter out those unwanted values.
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Chapter 6

Practical example

6.1 Description of the problem

To show that the aforementioned method works, we try to use it to solve a classic robotics
problem. Let's imagine a robot in a 2-dimensional environment with known landmarks. The
location of those landmarks is known and the robot is able to measure the distances between
it and the landmark. The measurements have an error that for the simulation will be either
Normally distributed or will follow a Cauchy distribution. The Cauchy distribution has been
chosen because it is a fat tailed distribution, it has a higher chance to produce outliers than a
Normal distribution.

The system we are trying to solve can be expressed by this equation:

yi = f(p,xi) i ∈ [1, N ] where N is the number of measurements

The yi are the measured distances, xi are a two dimensional vectors containing the coordinate
of the landmark. Finally p is a two dimensional vector containing the position of the robot we
are trying to estimate.
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6.2 The Program

The program has two parts, an interface in which the user can select the setup of the simulation,
and a window in which the user can see the result of the experiment.

6.2.1 Qt interface

The user interface is designed using Qt, a cross platform C++ library that provides tools to
create interactive user interfaces. Our interface is in several parts.

First, the user can select the parameters of the simulation, such as the number of measure-
ments, the uncertainty of those measurements, etc . . . The user can also enter a number that
will be used to generate random positions for the landmarks, that way we can compare the
results for

The user can also select the method to estimate the position of the robot. Two methods are
available. The GOMNE algorithm can be used in which case we need to enter the maximum
error we are accepting on the measurement before treating them as outliers. If the Maximum
likelihood estimation is selected no other information is needed since in this con�guration the
estimator doesn't do any supposition on the error.

Figure 6.1: Qt interface

6.2.2 VIBES

To display the result of the parameter estimation problem VIBES is used. VIBES provides a
way to easily display boxes so it is ideal to graphically represent a two dimensional problems.
Results of VIBES graphical representation have already been shown in the chapter on Fake
boundaries.
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6.3 The Results

After some testing, we can conclude that the GOMNE algorithm does work well when we are
able to set an appropriate ∆. Moreover, for common error distributions such as Gaussian
distribution with a well adjusted ∆ a solution is often found without having to consider any
outliers. However, if the value ∆ is chosen poorly we start to increase the number of oultlier
(if ∆ is too low) therefore the computing time. Also, if ∆ is too high the size of the solution
set increases which can also be a problem if we need a precise estimation.

Using the maximum likelihood method we manage to obtain an estimation of the best
parameters without the need to set a value ∆. The method seems to successfully �nd parameters
using ∆s that remove outliers but keep enough values in the reliable range.

However, in its current form the last method is much slower than GOMNE. As a result it
doesn't make sense to use this method if we have an idea of the type of distribution of the
measurements error. Unlike GOMNE this method �nds the number of outliers that maximize
the likelihood of having accurate parameters, therefore it essentially add an new dimension to
the problem which comes with an increase in computing time.

Figure 6.2: Localization problem using GOMNE (successful with two outliers)

22



Conclusion

This internship was successful for several reasons.
First it provided me with an international experience that cannot be obtained by other

means. I was able to meet and work with people from many di�erent origins (United-States,
Venezuela, Iran, France, Mexico). This made me realize that working in an international teams
has its challenges, di�erent point of view, di�erent ways to work. But it also showed me that
the diversity in a team can be a strength and that teaming up with people from other culture
can bring a new perspective to a project.

This internship was also very educational. Despite the fact that I had previously worked on
interval analysis at ENSTA Bretagne, I �rst struggled a bit because the work done by professor
Kreinovich is much more theoretical and focuses on the mathematics involved. However after
some time I started to understand better the mathematical aspects of interval analysis. It gave
me a much more complete understanding of this �eld.

This also enable me to see and experience the way a research team works. I realized that
doing research does not mean working on a single project. The researchers I have worked with
were involved in many di�erent project simultaneously. This comforted me since I have a hard
time focusing on one speci�c project for a long time. Of course working on multiple things
at once has it disadvantages especially after having spent some time on another project it is
hard to get back into another but it also help to take a step back from something to get a new
perspective.
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Abstract—Set intervals techniques are an efficient way of
dealing with uncertainty in spatial localization problems. In these
techniques, the desired set (e.g., set of possible locations) is
represented by an expression that uses intersection, union, and
complement of input sets – which are usually only known with
interval uncertainty. To find the desired set, we can, in principle,
perform the corresponding set-interval computations one-by-one.
However, the estimates obtained by such straightforward com-
putations often contain extra elements – e.g., fake boundaries. In
this paper, we show that we can eliminate these fake boundaries
(and other extra elements) if we first transform the original set
expression into an appropriate DNF/CNF form.

I. FORMULATION OF THE PROBLEM

Location and mapping problems are important. In many
practical situations, we are interested in location and mapping:
we want to find the location of an object, and we want to find
the exact boundaries of a region.

In many cases, we can use the GPS signals to get reasonably
accurate locations of different objects. This possibility is based
on the fact that in most situations, electromagnetic propagate in
the atmosphere with a known (and practically constant) speed
and along straight lines.

For underwater objects, however, determining the exact
location is not easy: radio-signals like the GPS signals do not
penetrate in water. In principle, we can use sound signals to
“ping” the object and thus, determine its location. However,
due to inhomogeneity of water and to the presence of many
potential obstacles, the direction and speed of a sound signal
may change as the signal propagates.

Set computation: a useful tool for solving location and
mapping problems. To locate an underwater object, we
usually perform several measurements. Based on each mea-
surement, we can find the set S of all the locations x which
are consistent with the measurement results. In this case, if
we perform n measurements, and find the corresponding sets
S1, . . . , Sn, then we can conclude that the actual location x
belongs to all these sets. In this case, the set S of all possible
locations x is the intersection of the n sets corresponding to
n measurement results: S = S1 ∩ . . . ∩ Sn.

We also know that the underwater object is in the water, so
it cannot be inside the 3-D areas that were already identified
as underwater rocks or peers. If we denote the corresponding
“impossible-to-be” sets by I1, . . . , Im, then we can get a better
description of the set of possible locations S as the difference

S = (S1 ∩ . . . ∩ Sn)− (I1 ∪ . . . ∪ Im),

where A−B denotes the set difference.
This is an idealized situation, when we are sure that all the

sensor recordings describe a signal reflected by the object. In
practice, we may have outliers – recordings which are caused
by some external noise or by a reflection from a nearby object.
For such outlier reflections, the corresponding set Si describes
the location of a different object; as a result, the intersection
of this set with the others sets Sj (that describe reflections
from the object of interest) may be empty.

One of the techniques that helps to locate an object in such
situations is based on knowing the maximum possible number
of outliers q. In this case, instead of taking the intersection of
all n sets Si – i.e., instead of considering the set of all the
elements that belong to all n sets, we consider the set of all
the elements that belong to at least n − q different sets Si.
Such a “q-relaxed intersection” can also be described in terms
of union and intersection: namely, it can be described as

S =
⋃

A

⋂

i∈A
Si,

where we consider all possible subsets A ⊆ {1, . . . , n} with
at least n− q elements.

This idea implicitly assumes that all the sensors are equally
reliable. In practice, different sensors may have different
reliability. This reliability can be gauged by the probability pi
that the signal coming out of the i-th sensor actually reflects
the location of the desired object. Then, the probability that
the signal from the i-th sensor is an outlier is equal to 1− pi.

Different sensors are usually independent. So, if a location x
appears as possible based on the data provided by two sensors
i and j, then the probability that this location is not real – i.e.,



the probability that both sensors malfunctioned – is equal to
the product (1−pi)·(1−pj). In general, for each location x, if
A ⊆ {1, . . . , n} is the set of all the sensors i for which x the
possible location (i.e., for which x ∈ Si), then the probably
that this is a wrong location – i.e., that all the sensors from
this set malfunctioned – is equal to the product

∏
i∈A

(1 − pi).

It is reasonable to conclude that the location x is possible if
the probability of a mistake is sufficiently small: smaller than
some threshold p0:

∏

i∈A
(1− pi) ≤ p0.

For computational purposes, it is convenient to replace the
product with the sum by taking minus logarithm of both sides;
then, this condition takes the form

∑

i∈A
wi ≥ w0,

where we denoted wi
def
= − ln(1 − pi) and w0

def
= − ln(p0).

The resulting set of possible locations then takes the following
form:

S =
⋃

A:
∑
i∈A

wi≥w0

(⋂

i∈A
Si

)
.

When all the sensors are equally reliable, i.e., when all the
probabilities p1 = . . . = pn are equal, and thus,

w1 = . . . = wn,

the condition
∑
i∈A

wi ≥ w0 simply means that the set A

contains at least
w0

w1
elements. So, for

q = n− w0

w1
,

this means that we consider all the subsets with at least n− q
elements.

The above description includes the cases when the location
appears as possible based on the signals from all the sensors. In
some cases, however, when we know that a certain percentage
of sensors is bound to malfunction, we may want to dismiss
locations that appear on too many sensors – that would
probably mean that the signal is too strong and is, thus, not
a reflection from the object of interest. This leads to more
complex schemes.

We can consider more sophisticated combination schemes.
In all these cases, the desired set A is described as an
expression that combines the input sets A1, . . . , An, . . . by
using the three basic set operations: union, intersection, and
complement. Thus, for localization problems, it is important
to be able, given sets A1, . . ., to compute the set A described
by such an expression. Such computation is known as set
computation.

Need for set intervals. In many practical situations, we know
the inputs sets only approximately. For example, in practice,
we only have an approximate information about the 3-D

location I1 of an underwater rock – one of the locations where
an underwater object cannot be. In the ideal case, when we
know the exact 3-D map of this rock, for each spatial location
x, we know whether x belongs to this set or not. In practice:
• for some locations x, we know that x ∈ I1;
• for some other locations x, we know that x 6∈ I1;

however,
• for some locations x, we do not know whether x ∈ I1 or

x 6∈ I1.
Such a situation can be naturally described by listing two sets:
• the set I1 of all the locations x that we know are inside

I1, and
• the set I1 of all the locations that can be inside I1, i.e.,

locations x for which we either know that x ∈ I1, or we
do not know whether x ∈ I1 or not.

In this case, the only information that we have about the actual
(unknown) set I1 is that this set is in between I1 and I1:

I1 ⊆ I1 ⊆ I1.

Interval and set-interval computations are indeed very useful
in location and mapping problems, especially for underwater
objects; see, e.g., [1], [2], [3], [4], [5], [6], [7], [8].

Resulting computational problem. The need to consider set
intervals in set computations leads to the following computa-
tional problem.

We have a set-theoretic expression A = f(A1, . . . , AN ) that
expressed the desired set A as a result of a sequence of basic
set-theoretic operations (union, intersection, and complement)
applied to the original sets A1, . . . , AN .

In general, we do not know the sets Ai. Instead, for each i,
we know the lower set Ai and the upper set Ai for which Ai ⊆
Ai. The only information that we have about the unknown set
Ai is that Ai ⊆ Ai ⊆ Ai ⊆ Ai. In other words, for each i,
we know the corresponding set interval

Ai =
[
Ai, Ai

] def
= {Ai : Ai ⊆ Ai}.

For different sets Ai ∈ Ai, in general, we get different sets
A = f(A1, . . . , AN ). Our objective is to find the class of all
such sets A:

A = {f(A1, . . . , AN ) : A1 ∈ A1, . . . , AN ∈ AN}.

How this problem is solved now. It is known (see, e.g., [10])
how to compute the range for the case when the set operation
f(A1, . . .) is simply one of the three basic set operations.
In this case, we have explicit formulas for the corresponding
range A:
• for the union f(A1, A2) = A1 ∪A2, we have

A =
[
A1 ∪A2, A1 ∪A2

]
;

• for the intersection f(A1, A2) = A1 ∩A2, we have

A =
[
A1 ∩A2, A1 ∩A2

]
;



• for the complement f(A1, A2) = A1 −A2, we have

A =
[
A1 −A2, A1 −A2

]
.

In general, we can:
• parse the expression f(A1, . . . , An), i.e., represent the

formula f(A1, . . . , An) as a sequence of elementary set-
theoretic operations, and then

• perform computations step-by-step, replacing each ele-
mentary set operation with the corresponding operation
with set intervals.

One can prove, by induction, that as a result, we always get
an enclosure A′ ⊇ A for the desired range; see, e.g., [9].

Problem: fake boundaries. It is known that while the above
procedure always leads to an enclosure for the desired class
A, the resulting class A′ is often larger than the desired class
A, i.e., contains many unneeded sets.

This can be easily illustrated on the following toy example.
Let U be the universal set, and let us assume that we know
nothing about the set A1 ⊆ U . In this case, the range A1 of
possible sets A1 is simply the class of all the subsets of the
universal set: A1 = [∅, U ].

Suppose now that we want to compute the range of the
function f(A1) = A1∪(U−A1). Of course, for every set A1,
the resulting set f(A1) is simply equal to the universal set, so
the actual range is A = {U} = [U,U ]. Let us see, however,
what we get if we apply the above procedure. According to
the above procedure, we first represent the expression f(A1)
as a sequence of elementary set-theoretical operations:

• first, we compute A2
def
= U −A1;

• then, we compute the union A = A1 ∪A2.
According to the above procedure, we perform these two
operations with set intervals:
• first, we compute

A2 = U −A1 = [U,U ]−
[
A1, A1

]
=

[U,U ]− [∅, U ] = [U − U,U − ∅] = [∅, U ] ;

• then, we compute

A′ = A1 ∪A2 =

[∅, U ] ∪ [∅, U ] = [∅ ∪ ∅, U ∪ U ] = [∅, U ] .

Thus, instead of the single set U , we get the class of all
possible subsets of U .

We can give more realistic examples where the resulting
class has unnecessary sets. For example, let us assume that
we have three sets A, B, and C, and we are computing the
expression

X = (A ∪B ∪ C) ∩ (A ∪B ∪ (U − C)).

One can easily check that this expression is equivalent to X =
A ∪B, so the actual range is equal to

X =
[
X,X

]
=
[
A ∪B,A ∪B

]
.

Fig. 1. Actual range X

On the example, when all three sets are disks with uncertain
boundary, the desired class X is shown in Fig. 1.

What will happen, however, if we apply the above algorithm
to the original expression? To compute this expression:

• first, we compute the union A1
def
= A ∪B ∪ C;

• then, we compute the difference A2
def
= U − C;

• after that, we compute the union A3
def
= A∪B ∪A2; and

• finally, we compute the intersection A = A1 ∩A3.
In this case, the above algorithm leads to the following result:
• first, we compute the range of A1 = A ∪B ∪ C as

A1 =
[
A ∪B ∪ C,A ∪B ∪ C

]
;

• then, we compute the range of A2 = U − C, as

A2 = [U,U ]−
[
C,C

]
=
[
U − C,U − C

]
;

• after that, we use the ranges for A, B, and A2, to estimate
the range of A3 = A ∪B ∪A2, as

A3 =
[
A ∪B ∪ (U − C), A ∪B ∪ (U − C)

]
;

• finally, we estimate the range of the intersection A as
A′ =

[
A′, A′

]
, where

A′ = (A ∪B ∪ C) ∩ (A ∪B ∪ (U − C)) and

A′ = (A ∪B ∪ C) ∩A ∪B ∪ (U − C)).

We can see that the upper bound A′, in addition to the desired
values A∪B, also contains all the values from the “boundary”
C − C of the set interval C; see Fig. 2.

These fake boundaries is what we need to eliminate.

It is, in principle, possible to eliminate fake boundaries.
In [9], we have proven:
• that the range A always has the form of a set interval
A =

[
A,A

]
for appropriate sets A and A, and

• that it is, in principle, possible to compute both sets A
and A.

Specifically:



Fig. 2. An estimate X′ with a fake boundary

• we get exactly the upper set A if we apply the above
step-by-step algorithm to the equivalent canonical DNF
form of the expression f(A1, . . . , AN ), and

• we get exactly the lower set A if we apply the above
step-by-step algorithm to the canonical CNF form of the
expression f(A1, . . . , AN ).

The notions of the canonical DNF and CNF forms come from
propositional logic – which makes perfect sense since there is
a 1-1 correspondence between set operations and propositional
formulas:
• the condition x ∈ A1 ∪A2 means that

(x ∈ A1) ∨ (x ∈ A2);

• the condition x ∈ A1 ∪A2 means that

(x ∈ A1)& (x ∈ A2); and

• the condition that x ∈ A1 −A2 means that

(x ∈ A1)&¬(x ∈ A2).

By replacing union with “or”, intersection with “and”, etc.,
we can thus assign, to each set operation f(A1, . . . , AN ),
a propositional formula F (a1, . . . , aN ) for which a point x
belongs to the set f(A1, . . . , AN ) if and only the formula
F (a1, . . . , aN ) is true for the variables ai describing whether
x belongs to Ai or not:

x ∈ f(A1, . . . , AN )⇔ F (x ∈ A1, . . . , x ∈ AN ).

For each propositional formula, we can build a canonical DNF
form by enumerating all the combinations of truth variables
(a1, . . . , aN ) for which this formula is true.

For example, the above set operation

(A ∪B ∪ C) ∩ (A ∪B ∪ (U − C))

corresponds to the propositional formula

(a ∨ b ∨ c)& (a ∨ b ∨ ¬c).
By enumerating all possible tuples (a, b, c) for which this
propositional formula is true, we can form the canonical DNF
form. Specifically:

• this propositional formula is true when a = b =
c =“true”; this leads to the term a& b& c;

• this formula is also true when a = b =“true” and
c =“false”; this leads to a& b&¬c;

• it is true when a =“true”, b =“false”, and c =“true”; this
leads to a&¬b& c;

• it is true when a =“true” and b = c =“false”; this leads
to a&¬b&¬c;

• it is true when a =“false” and b = c =“true”; this leads
to ¬a& b& c;

• finally, it is true when a =“false”, b =“true”, and
c =“false”; this leads to ¬a& b&¬c.

The formula is true if one of these cases is true. So, our
formula F (a, b, c) has the following canonical DNF form:

(a& b& c) ∨ (a& b&¬c) ∨ (a&¬b& c)∨

(a&¬b&¬c) ∨ (a& b& c) ∨ (¬a& b&¬c).

This propositional formula corresponds to the following set
function:

(A ∩B ∩ C) ∪ (A ∩B ∩ (U − C))∪

(A ∩ (U −B) ∩ C) ∪ (A ∩ (U −B) ∩ (U − C))∪

((U −A) ∩B ∩ C) ∪ ((U −A) ∩B ∩ (U − C)).

One can easily check that if we compute X by applying the
above step-by-step procedure to this formula, we get exactly
the desired upper bound X = A ∪B.

To compute the canonical CNF form, we, vice versa, list
all the tuples (a1, . . . , aN ) for which the original propositional
formula is false. Then, we say that the propositional formula is
true if the tuple is different from each of these false-producing
tuples.

Let us show how this procedure works on the example of
the same (A∪B ∪C)∩ (A∪B ∪ (U −C)) and propositional
formula (a ∨ b ∨ c)& (a ∨ b ∨ ¬c).
• This formula is false when a = b =“false” and c =“true”.

To avoid this tuple, we need to make sure that either a is
true, or n is true, or c is false. The corresponding term
is a ∨ b ∨ ¬c.

• This formula is also false when a = b = c =“false”. To
avoid this tuple, we need to make sure that either a is
true, or n is true, or c is true. The corresponding term is
a ∨ b ∨ c.

The formula is true for some tuple if this tuple is different
from both false-inducing tuples, i.e., if

(a ∨ b ∨ ¬c)& (a ∨ b ∨ c);

this is the canonical CNF form of the original formula.
This propositional formula corresponds to the following set
operation:

(A ∪B ∪ (U − C)) ∩ (A ∪B ∪ C).



One can easily check that if we compute the lower set X by
applying the above step-by-step algorithm to this set operation,
we will get the exact lower set

X = A ∪B.

Problem: using canonical DNF and CNF forms requires
too much computation time. The main problem with the
above idea is that often, it requires too many operations.
For example, in the above example, the canonical DNF form
requires computing 6 intersections of 3 set intervals each –
and then computing the union of the resulting set intervals.

In general, when we have N sets, we can have 2N different
true-false tuples (a1, . . . , aN ), For each of these tuples, the
corresponding propositional formula is either true or false. If
for a tuple, the given formula is true, then this tuple leads to
a term in the canonical DNF form. If for this tuple, the given
formula is false, we get a term in the canonical CNF form.
To perform the above computations, we need to use both the
DNF form (to compute A) and the CNF form (to compute A).
Thus, overall, we need to compute the set interval values of
2N terms.

In some practical situations, when we have many sensors,
the number N can be huge; in this case, 2N can be astronom-
ically, unrealistically huge. So, a natural question is: how can
we perform set interval computations faster and still eliminate
all fake boundaries?

What we do in this paper. In this paper, we show how
computations-without-fake-boundaries can be performed much
faster.

II. HOW TO AVOID FAKE BOUNDARIES FASTER: MAIN
IDEA

Main idea. Our main idea is to use general DNF and CNF
forms instead of the canonical ones.

For a propositional formula, a DNF form is a disjunction
(“or”-combination) of conjunctions, i.e., “and”-combinations
of propositional variables and their negations. In set-theoretic
terms, a DNF form is thus a union of intersections of sets and
their complements.

For example, for the above formula, a∨b is a DNF form, in
which each of the conjunctions a and b consists of only one
term. In this case, A∪B is the corresponding set expression.

Alternatively, we could use the following DNF expression:

(a& b) ∨ (a&¬b) ∨ (¬a& b),

which corresponds to the set operation

(A ∩B) ∪ (A ∩ −B) ∪ (−A ∩B),

where we denoted −A def
= U −A.

Similarly, for a propositional formula, a CNF form is a
conjunction (“and”-combination) of disjunctions, i.e., “or”-
combinations of propositional variables and their negations.
In set-theoretic terms, a DNF form is thus an intersection of
unions of sets and their complements.

For example, for the above formula, a ∨ b is a CNF form,
with only one disjunction a ∨ b. In this case, A ∪ B is the
corresponding set expression.

Let us show that by using the general DNF and CNF forms,
we can indeed get the same exact bounds A and A as by using
the canonical DNF and CNF forms.

Proposition 1. Let f(A1, . . . , AN ) be a set operation in the
DNF form, and let A1, . . . ,AN be set intervals. Then, if we
apply the above step-by-step algorithm to this data

(f(A1, . . . , An),A1, . . . ,AN ),

the resulting upper set A′ will be equal to the upper set A of
the corresponding range

A =
[
A,A

]
= f(A1, . . . ,AN ).

Proof.

1◦. Due to the above-mentioned result from [9], the range A
has the form of a set interval A =

[
A,A

]
. Thus, the upper

set A is equal to the union of all the possible sets from this
range – i.e., to the union of all the sets A = f(A1, . . . , AN )
corresponding to different combinations of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it
is sufficient to prove that the set A′ is equal to the union of
all such sets A = f(A1, . . . , AN ).

2◦. Let us first prove that the union A of all the sets A =
f(A1, . . . , AN ) is indeed contained in the resulting set A′.

To prove this, we will prove that for each tuple
(A1, . . . , AN ) with Ai ∈ Ai for all i, the set A =
f(A1, . . . , AN ) is a subset of A′. Indeed, the set operation
f(A1, . . . , AN ) has a DNF form

f(A1, . . . , AN ) = (Ai ∩ −Aj ∩ . . . ∩Ak) ∪ (. . .) ∪ . . .

When we apply the above step-by-step algorithm to this form,
when computing A′, we replace Ai with

Ai ⊇ Ai

and −Aj with
−Aj ⊇ −Aj .

For each term, this replacement makes it larger (or the
same), so each conjunction is contained in the result of the
corresponding replacement:

(Ai ∩ −Aj ∩ . . . ∩Ak) ⊆
(
Ai ∩ −Aj ∩ . . . ∩Ak

)
.

Since this inclusion holds for each conjunction, it holds for
their union as well:

(Ai ∩ −Aj ∩ . . . ∩Ak) ∪ (. . .) ∪ . . . ⊆
(
Ai ∩ −Aj ∩ . . . ∩Ak

)
∪ (. . .) ∪ . . . ,

i.e., indeed, A ⊆ A′.



3◦. To complete the proof, we need to show that the set A′
produced by the algorithm is contained in the union A of all
the sets A = f(A1, . . . , AN ) corresponding to Ai ∈ Ai.

To prove this, we will show that every element x ∈ A′

belongs to a set A = f(A1, . . . , AN ) for appropriately chosen
sets Ai ∈ Ai. Indeed, let x ∈ A′. Since the set A′ is defined as
a union of several conjunctions (intersections), the fact that the
element x belongs to this union means that it belongs to one of
these intersections, e.g., to a set of the type Ai∩−Aj∩. . .∩Ak.
This means that for the appropriate choice of the sets A1, . . .,
namely, for Ai = Ai, Aj = Aj , . . . , the element x belongs
to the corresponding intersection from the DNF expression
f(A1, . . . , AN ).

Since x belongs to this intersection, and the set
f(A1, . . . , AN ) is a union of several such intersections, we
thus conclude that the element x belongs to the set A =
f(A1, . . . , AN ) – and hence, that x belongs to the union A of
all such sets.

The proposition is proven.

Proposition 2. Let f(A1, . . . , AN ) be a set operation in the
CNF form, and let A1, . . . ,AN be set intervals. Then, if we
apply the above step-by-step algorithm to this data

(f(A1, . . . , An),A1, . . . ,AN ),

the resulting lower set A′ will be equal to the lower set A of
the corresponding range

A =
[
A,A

]
= f(A1, . . . ,AN ).

Proof.

1◦. Due to the above-mentioned result from [9], the range
A has the form of a set interval A =

[
A,A

]
. Thus, the

lower set A is equal to the intersection of all the possible
sets from this range – i.e., to the intersection of all the sets
A = f(A1, . . . , AN ) corresponding to different combinations
of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it
is sufficient to prove that the set A′ is equal to the intersection
of all such sets A = f(A1, . . . , AN ).

2◦. Let us first prove that the intersection A of all the sets
A = f(A1, . . . , AN ) indeed contains the resulting set A′.

To prove this, we will prove that for each tuple
(A1, . . . , AN ) with Ai ∈ Ai for all i, the set A =
f(A1, . . . , AN ) is a superset of A′. Indeed, the set operation
has a CNF form

f(A1, . . . , AN ) = (Ai ∪ −Aj ∪ . . . ∪Ak) ∩ (. . .) ∩ . . .

When we apply the above step-by-step algorithm to this form,
when computing A′, we replace Ai with

Ai ⊆ Ai

and −Aj with
−Aj ⊆ −Aj .

For each term, this replacement makes it smaller (or the same),
so each disjunction contains the result of the corresponding
replacement:

(Ai ∪ −Aj ∩ . . . ∪Ak) ⊇
(
Ai ∪ −Aj ∪ . . . ∪Ak

)
.

Since this inclusion holds for each disjunction, it holds for
their intersection as well:

(Ai ∪ −Aj ∪ . . . ∪Ak) ∩ (. . .) ∩ . . . ⊇
(
Ai ∪ −Aj ∪ . . . ∩Ak

)
∩ (. . .) ∩ . . . ,

i.e., indeed, A ⊇ A′.

3◦. To complete the proof, we need to show that the set A′

produced by the algorithm contains the intersection A of all
the sets A = f(A1, . . . , AN ) corresponding to Ai ∈ Ai.

We will prove this by contradiction. Let us assume that
for some x ∈ A, we have x 6∈ A′. Since the set A′ is
defined as an intersection of several disjunctions (unions), the
fact that the element x does not belongs to this intersection
means that it does not belong to one of these intersecting
unions, e.g., to a set of the type Ai ∪ −Aj ∪ . . . ∪ Ak. This
means that for the appropriate choice of the sets A1, . . .,
namely, for Ai = Ai, Aj = Aj , . . . , the element x does not
belong to the corresponding union from the CNF expression
f(A1, . . . , AN ).

Since x does not belong to this union, and the set
f(A1, . . . , AN ) is an intersection of several such unions, we
thus conclude that the element x does not belongs to the set
A = f(A1, . . . , AN ) – and hence, that x does not belongs to
the intersection A of all such sets A. This contradicts to our
assumption that x belongs to this intersection. Thus, indeed,
every element x ∈ A belongs to A′, i.e., A ⊆ A′.

The two inclusions, from Parts 2 and 3 of this proof, imply
that A ⊆ A′ and A′ ⊆ A. thus, A = A′. The proposition is
proven.

Conclusion. Thus, to perform set interval computations and
avoid fake boundaries, it is not necessary to transform the
original expression into canonical DNF and CNF forms – any
DNF and CNF forms will do.

The above example shows that CNF and DNF forms can
indeed be much shorter than the canonical ones, so we can
indeed speed up computations – without introducing fake
boundaries.

III. HOW DO WE GET SHORTER DNF AND CNF FORMS

Main idea. How can we get shorter DNF and CNF forms?
To get the canonical DNF forms, we start with all the tuples
for which the corresponding propositional formula is true.
For each tuple, we can then write down the corresponding
conjunction.

If we have two conjunctions that differ only by one variable,
i.e., which have the form F & v and F &¬v, then, we can
easily see, we can replace the part (F & v)∨ (F &¬v) of the
original DNF formula with the equivalent simpler term F .



Similarly, to get a CNF form, we start with all the tuples
for which the corresponding propositional formula is false.
For each tuple, we can then write down the corresponding
disjunction.

If we have two disjunctions that differ only by one variable,
i.e., which have the form G∨v and G∨¬v, then, we can easily
see, we can replace the part (G∨v)& (G∨¬v) of the original
CNF formula with the equivalent simpler term G.

By applying this procedure again and again, we can get
shorter and shorter expressions.

DNF example. Let us show how this idea can work on the
above example. We start with the canonical DNF form

(a& b& c) ∨ (a& b&¬c) ∨ (a&¬b& c)∨
(a&¬b&¬c) ∨ (a& b& c) ∨ (¬a& b&¬c)

that describes all the tuples for which the original formula
(a ∨ b ∨ c)& (a ∨ b ∨ ¬c) is true.

By looking at the above formula, we immediately see the
pairs of conjunctions that differ by only one variable and be
thus combined together:
• the conjunctions a& b& c and a& b&¬c can be com-

bined into a single conjunction a& b;
• the conjunctions a&¬b& c and a&¬b&¬c can be com-

bined into a single conjunction a&¬b, and
• the conjunctions ¬a& b& c and ¬a& b&¬c can be com-

bined into a single conjunction ¬a& b.
After these replacements, the original DNF formula is simpli-
fied into the following form:

(a& b) ∨ (a&¬b) ∨ (¬a& b).

This form can be further simplified:
• by combining a& b and a&¬b, we get a, and
• by combining a& b and ¬a& b, we get b.

Thus, we get the simplified DNF form a ∨ b.
We could reach this form differently. We could:
• combine the conjunctions a& b& c and a&¬b& c into a

single conjunction a& c;
• combine the conjunctions a& b& c and a&¬b& c into

a single conjunction b& c; combine the conjunctions
a& b&¬c and a&¬b&¬c into a single conjunction
a&¬c;

• combine the conjunctions a& b&¬c and ¬a& b& c into
a single conjunction b&¬c.

Then, we would get the new DNF form

(a& c) ∨ (b& c) ∨ (a&¬c) ∨ (b&¬c).
Then, new combinations are possible; we could:
• combine a& c and a&¬c into a single conjunction a,

and
• combine b& c and b&¬c into a single conjunction b.

Thus, we will get the same short DNF form a ∨ b.

CNF example. In the CNF case, we start with the canonical
CNf form

(a ∨ b ∨ c)& (a ∨ b ∨ ¬c)

AB AB AB AB

C

C

1 1 10

1 1 10

Fig. 3. Karnaugh map of the original formula

AB AB AB AB

C

C

1 1 10

1 1 10

(a)

AB AB AB AB

C

C

1 1 10

1 1 10

(b)

Fig. 4. Karnaugh map illustrating simplification of DNF (a) and CNF (b)
forms

that describes all the tuples (a, b, c) for which the original
propositional formula is false.

For this formula, there is only one possible combination:
we can combine the disjunctions a∨ b∨ c and a∨ b∨¬c into
a single disjunction a ∨ b.

Karnaugh maps: a graphical representation of this idea.
The above idea can be graphically represented by a Karnaugh
map, where:
• cells corresponds to tuples,
• 1 (= “true”) 0 (= “false”) in a cell indicates whether the

original formula is true or false for the corresponding
tuple, and

• tuples differing by only variable are neighbor.
The Karnaugh-map representation of the original propositional
formula is given on Fig. 3, and the above DNF and CNF
reductions are illustrated on parts (a) and (b) of Fig. 4.
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Abstract—To properly process data, we need to take into
account both the measurement errors and the fact that some
of the observations may be outliers. This is especially important
in radar-based localization problems, where some signals may
reflect not from the analyzed object, but from some nearby object.
There are known methods for dealing with both measurement
errors and outliers in situations in which we have full information
about the corresponding probability distributions. There are also
known statistics-based methods for dealing with measurement
errors in situations when we only have partial information
about the corresponding probabilities. In this paper, we show
how these methods can be extended to situations in which we
also have partial inf0ormation about the outliers (and even to
situations when we have no information about the outliers). In
some situations in which efficient semi-heuristic methods are
known, our methodology leads to a justification of these efficient
heuristics – which makes us confident that our new methods will
be efficient in other situations as well.

I. FORMULATION OF THE PROBLEM

Need for data processing. In many practical situations, we
are interested in the values of the quantities p1, . . . , pm which
are difficult to measure directly.

For example, when solving a localization problem – whether
it is a problem of locating a robot (see, e.g., [3]) or of locating
a satellite (see, e.g., [4]) – we are interested in the coordinates
p1, . . . of this object. It is possible to directly measure physical
quantities such as distance, velocity, density, etc. However,
coordinates are an artificial construction that does not directly
correspond to any physical quantity. As a result, it is not
possible to directly measure coordinates of an object.

The quantities of interest do affect results of some mea-
surements; namely, the value of the corresponding easier-to-
measure quantity y depends, in a known way, on the values
p1, . . . , pm – and on some auxiliary quantities x1, . . . , xn that
describe the measurement’s setting:

y = f(p1, . . . , pm, x1, . . . , xn).

For example, to determine 3-D coordinates (p1, p2, p3) of
an object, we can measure the distance

y =

√√√√
3∑

i=1

(pi − xi)2

between the object of interest and another object with known
coordinates (x1, x2, x3).

So, to find the values of pi, we measure the value yk

of the corresponding quantity y under different settings
(xk1, . . . , xkn), and then reconstruct the desired values pi from
the condition that

yk = f(p1, . . . , pm, xk1, . . . , xkn) (1)

for all the measurements k = 1, . . . ,K.
For example, to locate an object, we measure the distance

between this object and several objects with known coordi-
nates. This is how, e.g., radar-based systems determine the
coordinates of an airplane.

Such reconstruction is an important case of data processing.

Need to take into account measurement uncertainty and
outliers. Measurement are never absolutely accurate; see,
e.g., [18]. As a result, there is always a non-zero difference
between the measurement result yk and the actual (unknown)
value f(p1, . . . , pm, xk1, . . . , xkn) of the corresponding quan-
tity:

∆yk
def
= yk − f(p1, . . . , pm, xk1, . . . , xkn) ̸= 0. (2)

It is important to take into account this measurement uncer-
tainty when processing data.

Measurement errors are usually reasonably small. Hence,
the measured value yk is usually close to the actual value



f(p1, . . . , pm, xk1, . . . , xkn). However, the measuring instru-
ment is not always 100% reliable. Sometimes, the measuring
instrument malfunctions, and we get outliers, values which
are very different from the actual values of the corresponding
quantity. In processing data, we also need to take into account
the existence of outliers.

This is especially important in localization problems, where
the radar-type signal, instead of reflecting from the desired
object, reflects from some other objects. In this case, the
corresponding measurement result describes the distance to
a different object – i.e., from the viewpoint of our problem,
is an outlier.

What is known, what are the remaining problems, and
what we do in this paper. There are many efficient techniques
for taking into account measurement uncertainty. There are
also techniques for taking into account outliers, and there
are techniques for taking into account both measurement
uncertainty and outliers.

Such methods work well if we have a complete knowledge
about the probabilities of different values of the measurement
error and the probabilities of different outliers. In practice,
however, we often only have a partial information about these
probabilities – all the way to the case when we have no infor-
mation about such probabilities at all; see, e.g., [18]. In such
extreme situations, there are methods that take into account
either measurement uncertainty or outliers – but not both.
In this paper, we briefly overview and analyze the existing
techniques of taking into account measurement uncertainty
and outliers, and then use this analysis to develop a natural
new technique for taking into account both measurement
uncertainty and outliers.

The structure of this paper is as follows. In Section 2, we
describe the methods of dealing with uncertainty – beware,
however that we will describe them in such a way so as to
prepare us for the new technique. In Section 3, we use our
analysis to show how outliers can also be taken into account.

Most of our results are new. In some cases, as a particular
case of our general approach, we get a well-known effective
outlier-processing technique; the fact that in some cases, we
get well-known well-established efficient techniques makes us
confident that our method will be efficient in other situations
as well.

II. HOW MEASUREMENT UNCERTAINTY IS USUALLY
TAKEN INTO ACCOUNT

Case when we know the exact probability distribution of
the measurement error. Let us first consider a situation in
which we have a complete information about the probability
density function ρ(∆y) that describes the probability distri-
bution of the measurement error. In this case, once we have
the measurement results yk (1 ≤ k ≤ K) corresponding to
settings xk = (xk1, . . . , xkn), then for each parameter tuple
p = (p1, . . . , pm) and for each k, the probability to observe
yk is proportional to ρ(∆yk) = ρ(yk − f(p, xk)).

Measurement errors corresponding to different measure-
ments are usually independent. Thus, the probability of observ-
ing all the observed values y1, . . . , yK is equal to the product
of the probabilities of observing each value yk. Thus, this

probability is proportional to the product
K∏

k=1

ρ(yk −f(p, xk)).

In this case, we usually have different parameter tuples
which are consistent with the given observations. If we need
to select a single “best estimate”, it is reasonable to select the
parameter tuple which is the most probable, i.e., for which

the product L def
=

K∏
k=1

ρ(yk − f(p, xk)) takes the largest

possible value. This idea is known as the Maximum Likelihood
Method; see, e.g., [14]. Under reasonable conditions, this
method indeed leads to estimates which are optimal in some
reasonable senses; see, e.g., [14], [19].

Example. Let us consider a simple example, in which the
measurement error is normally distributed with 0 mean and
a known standard deviation σ. In this case, the probability
density function has the form

ρ(∆y) =
1√

2π · σ
· exp

(
− (∆y)2

2σ2

)
.

Minimizing the corresponding product

L =
K∏

k=1

1√
2π · σ

· exp

(
− (∆yk)2

2σ2

)
(2)

is equivalent to minimizing minus logarithm of this product

ψ
def
= − ln(L) = K · ln(

√
2π · σ) +

1

2σ2
·

K∑

k=1

(∆yk)2. (3)

One can easily see that this minimization is equivalent to
minimizing the sum

K∑

k=1

(∆yk)2 =

K∑

k=1

(yk − f(p, xk))2.

This minimization – known as the Least Squares Method – is
one of the most widely used data processing techniques.

What is we only have partial information about the
probabilities: case of a finite-parametric family. In some
cases, we do not know the exact probability distribution of
the measurement errors, but we are aware that it belongs to
a known finite-parametric family of probability distributions
ρ(∆y, θ) depending on the parameter tuple θ = (θ1, . . . , θℓ).

In this case, the corresponding “likelihood function” L takes

the form L =
K∏

k=1

ρ(∆yk, θ). Now, instead of selecting only

only the parameters p of the model, we also need to select
the parameters θ of the corresponding probability distribution.
In this case, it is reasonable to select the most probable pair
(p, θ), i.e., the pair for which the product

L =
K∏

k=1

ρ(yk − f(p, xk), θ)



takes the largest possible value.

Example. Let us assume that the measurement error is nor-
mally distributed with 0 mean, but this time, the standard
deviation σ is unknown. In this case, we have ℓ = 1 and
θ1 = σ. So, we need to maximize the expression (2) – or,
equivalently, minimize the expression (3) – with respect to
both p and σ.

Minimizing the expression (3) with respect to parameters p
leads to the same Least Squares estimate as before. Once we
find p, we can differentiate the expression (3) with respect to
σ, equate the derivative to 0, and get the desired expression

σ =

√√√√ 1

K
·

K∑

k=1

(yk − f(p, xk)2.

What if we only have partial information about the prob-
abilities: non-parametric case. In many practical situations,
we do not know the finite-parametric family containing the
actual distribution. For example, often, all we know is the
upper bound ∆ on the measurement error; see, e.g., [18].
In this case, the only information that we have about the
actual probability distribution ρ(∆y) is that this distribution
is located somewhere on the interval [−∆,∆].

There are many such probability distributions. To apply
the Maximum Likelihood principle in this case, we need to
select a single “most reasonable” distribution from all these
possible distributions. Each of these distributions ρ(∆y) can
be characterized by its uncertainty (entropy)

S = −
∫
ρ(∆y) · ln(ρ(∆y)) d∆y

that describes how many binary (“yes”-“no”) questions we
need to ask to uniquely determine the corresponding value
∆y; see, e.g., [2], [8], [16].

Out of all possible distributions ρ(∆y) we have distributions
located on a single value v. For these distributions, we do not
need any questions, we already know the value v. However,
selecting such a distribution would be cheating – in actuality,
we do not know the value ∆y, so we would like to select the
distribution that to the largest extent reflects this uncertainty. In
other words, it is reasonable to select a distribution for which
the entropy is the largest possible.

For all the distributions ρ(∆y) located on the inter-
val [−∆,∆], maximum of entropy under the constraint∫∆

−∆
ρ(∆y) d∆y = 1 can be obtained by using the Lagrange

multiplier method, that reduces the corresponding constraint
optimization problem to the unconstrained optimization prob-
lem

−
∫ ∆

−∆

ρ(∆y) · ln(ρ(∆y)) d∆y+

λ ·
(∫ ∆

−∆

ρ(∆y) d∆y − 1

)
→ max

ρ(∆y)

for an appropriate Lagrange multiplier λ. Differentiating this
expression with respect to ρ(∆y) and equating the derivative

to 0, we conclude that ρ(∆y) = const, i.e., that we have
a uniform distribution on the interval [−∆,∆], with the
probability density

ρ(∆y) =
1

2∆
.

This selection makes perfect sense: since we have no reason
to believe that some values from the interval [−∆,∆] are more
probable than others, it is therefore reasonable to conclude that
all the values from this interval are equally probable. This
argument goes back to Laplace and is thus known as Laplace
Indeterminacy Principle.

Now that we have selected a probability distribution, we can
use the Maximum Likelihood method to find the correspond-
ing parameter values p. In this case, each probability density
ρ(∆yk) is equal to 0 if ∆yk is outside the interval [−∆,∆] and
to a constant (equal to 1/(2∆)) when ∆yk inside this interval.
Thus, the product L of the corresponding probabilities is equal
to 0 if one of the values ∆yk is inside the interval, and to the

same constant
1

(2∆)K
when |∆yk| ≤ ∆ for all k. So, instead

of a single tuple p, we know need to describe all the tuples p
for which |yk − f(p, xk)| ≤ ∆ for all k = 1, . . . , k.

The problem of finding the range of such tuples under
interval uncertainty (∆yk ∈ [−∆,∆]) is a particular case of
interval computations; see, e.g., [5], [15]. In interval compu-
tations, there are many efficient techniques for solving this
problem [5], [15].

What if we have no information whatsoever about the
probabilities of measurement errors. In some practical
situations, we have no information at all about the probability
distribution ρ(∆y) of the corresponding measurement error.
This situation is somewhat similar to the previous one – with
the only difference that now, we do not know the bound ∆.

How can we find a good estimate for this value ∆? A
reasonable idea is to use the Maximum Likelihood method
and select the value ∆ for which the corresponding likelihood

L =
1

(2∆)K
is the largest possible. Once can easily see that

the smaller ∆, the larger this likelihood L. Thus, selecting
the largest possible L is equivalent to selecting the smallest
possible ∆.

The only constraints on ∆ is that we should have ∆ ≥ |∆yk|
for all k. This is equivalent to having ∆ ≥ max

k
|∆yk|.

The smallest value satisfying this inequality is the value
∆ = max

k
|∆yk|. Thus, minimizing ∆ means selecting the

parameter p for which the corresponding maximum

max
k

|∆yk| = max
k

|yk − f(p, xk)|

is the smallest possible; see, e.g., [9].
The corresponding minimax approach is indeed frequently

used in data processing; see, e.g., [1], [5], [6], [11], [12], [13],
[20], [21], [22], [23].

III. HOW TO TAKE OUTLIERS INTO ACCOUNT

Which cases are possible? In the previous section, we
considered possible types of knowledge about the probability



distribution. In our analysis, we considered the following four
cases, in the decreasing order of the available information
about the probabilities:

• we know the exact distribution;
• we know the finite-parametric family of distributions;
• we know the upper bound on the (absolute value) of the

corresponding difference; and
• we have no information whatsoever, not even the upper

bound.

If we take outliers into account, then, in principle, we may
have the same four possible types of information about the
corresponding probability density function ρ0(∆y). At first
glance, it may therefore seem that we can have 4 × 4 = 16
possible combinations. In reality, however, not all such com-
binations are possible.

Indeed, once we gather enough data, we can determine the
corresponding probability distributions. Thus, the fact that we
do not yet have detailed information about the probability
distribution of the measurement error means that we have
not yet collected a sufficient number of measurement results.
In this case – since the number of outlier is usually much
smaller than the number of actual measurement results – we
have even fewer outliers. So, if we cannot determine the
probability distribution for the measurement errors, even more
so, we cannot determine the probability distribution for the
outliers either. In general, for the same reason, the amount of
information that we have about the outliers is smaller than the
amount of information that we have about the measurement
errors.

Hence, instead of 16 options, we only have options in which
the amount of information about the outlier-related probability
distribution ρ0(∆y) does not exceed the amount of information
about the probabilities of measurement errors ρ(∆y). Let us
consider all these cases one by one.

Full information about both distributions. Let us first con-
sider the ideal case, when we have the complete information
about the probabilities. Specifically:

• we know the probability density function ρ(∆y) that
describes the probability of different values of the mea-
surement error, and

• we know the probability density function ρ0(∆y) that de-
scribes the probability of different values of the difference
∆y = y − f(p, x) corresponding to outliers y.

In this case, once we have the measurement results yk (some of
which may come from malfunctioning and are thus outliers),
the probability of these observations occurring depends not
only on the parameters p, but also on which of the values yk

are outliers and which are actual measurement results. Once
we know the set M ⊆ {1, . . . ,K} of indices k for which yk is
the actual measurement, we can then compute the probability
L as

L =

(∏

k∈M

ρ(∆yk)

)
·


∏

k ̸∈M

ρ0(∆yk)


 .

Now, we can use the Maximum Likelihood approach to
determine both the parameter tuple p and the set M .

Once p is found, and thus, the values ∆yk = yk − f(p, xk)
are determined, maximizing the product L means:

• selecting k ∈ M if the value ρ(∆yk) is larger than
ρ0(∆yk), and

• selecting k ̸∈ M if the value ρ0(∆yk) is larger than
ρ(∆yk).

In both cases, the resulting factor in the product L takes the
form max(ρ(∆yk)), ρ0(∆yk)).

The resulting value L takes the following form:

L =
K∏

k=1

max(ρ(∆yk)), ρ0(∆yk)) =

K∏

k=1

max(ρ(yk − f(p, xk)), ρ0(yk − f(p, xk))).

We thus need to select the parameters p for which this product
attains the largest possible value.

Comment. From the computational viewpoint, the correspond-
ing problem is similar to the usual maximum likelihood
problem, with a new function g(∆y) def

= max(ρ(∆y), ρ0(∆y))
instead of the original probability density function ρ(∆y). It is
worth mentioning, however, that, in contrast to the probability
density function ρ(∆y) for which

∫
ρ(∆y) dy = 1, for the

new function g(∆y), we have, in general,
∫
g(∆y) dy >

∫
ρ(∆y) dy = 1

(as long as the probability densities ρ(∆y) and ρ0(∆y) are
different).

Full information about ρ(∆y), finite-parametric family
for ρ0(∆y). In this case, instead of single distribution ρ0(∆y),
we have a finite-parametric family of distributions ρ0(∆y, φ)
with unknown parameters φ. In such a situation, we need to
determine all the parameters p and φ from the requirement
that the likelihood

L =
K∏

k=1

max(ρ(∆yk), ρ0(∆yk, φ)) =

K∏

k=1

max(ρ(yk − f(p, xk)), ρ0(yk − f(p, xk), φ))

attains the largest possible value.

Full information about ρ(∆y), bound W on the outlier-
related differences ∆yk. In this case, based on the maximum
entropy approach, as a distribution ρ0(∆y), we select a uni-
form distribution on the interval [−W,W ], with the probability

density ρ0(∆yk) =
1

2W
.

In such a situation, we determine the parameters p from the
requirement that the likelihood

L =
K∏

k=1

max

(
ρ(∆yk),

1

2W

)
=



K∏

k=1

max

(
ρ(yk − f(p, xk)),

1

2W

)

attains the largest possible value under the constraint that

|∆yk| = |yk − f(p, xk)| ≤ W

for all k = 1, . . . ,K.

Full information about ρ(∆y), no information whatsoever
about the outlier-related differences ∆yk. In this case, we
select the value W for which the likelihood L as described
in the previous example if the largest possible – under the
constraint that |∆yk| ≤ W for all k.

One can easily see that the smaller the bound W , the larger

the density
1

2W
and thus, the larger the likelihood function.

Thus, to determine the largest possible value of the likelihood
function L, we must select the smallest possible value W . The
constraints on W have the form that W ≥ |∆yk| for all k. The
smallest possible value W that satisfies all these constraints is
the value

W = max
ℓ

|∆yℓ| = max
ℓ

|yℓ − f(p, xℓ)|.

Substituting this expression into the above formula, we con-
clude that we need to select the parameters p for which the
likelihood

L =

K∏

k=1

max


ρ(yk − f(p, xk),

1

2 · max
ℓ

|yℓ − f(p, xℓ)|




attains the largest possible value.

Finite-parametric information about ρ(∆y) and about
ρ0(∆). In this case, instead of single distributions ρ(∆y) and
ρ0(∆y), we have finite-parametric families of distributions
ρ(∆y, θ) and ρ0(∆y, φ) with unknown parameters θ and φ.
In such a situation, we need to determine all the parameters
p, θ, and φ from the requirement that the likelihood

L =

K∏

k=1

max(ρ(∆yk, θ)), ρ0(∆yk, φ)) =

K∏

k=1

max(ρ(yk − f(p, xk), θ), ρ0(yk − f(p, xk), φ))

attains the largest possible value.

Finite-parametric information about ρ(∆y), bound W on
the outlier-related differences ∆yk. In such a situation, we
determine the parameters p and θ from the requirement that
the likelihood

L =
K∏

k=1

max

(
ρ(∆yk, θ),

1

2W

)
=

K∏

k=1

max

(
ρ(yk − f(p, xk), θ),

1

2W

)

attains the largest possible value under the constraint that

|∆yk| = |yk − f(p, xk)| ≤ W

for all k = 1, . . . ,K.

Finite-parametric information about ρ(∆y), no informa-
tion about the outlier-related differences ∆yk. In this case,
similarly to the above case when we had no information
about the outlier-related differences ∆yk, we should select the
smallest possible W , i.e., W = max

ℓ
|∆yℓ|. Thus, we need to

select the parameters p and θ for which the likelihood

L =

K∏

k=1

max


ρ(yk − f(p, xk), θ),

1

2 · max
ℓ

|yℓ − f(p, xℓ)|




attains the largest possible value.

Bound ∆ on the measurement errors, bound W on the
outlier-related differences ∆yk. In this case, by using the
maximum entropy approach, we select the following distribu-
tions:

• the measurement errors are uniformly distributed on the
interval [−∆,∆], with the probability density

ρ(∆y) =
1

2∆
;

• the outlier-related differences ∆yk are uniformly dis-
tributed on the interval [−W,W ], with the probability

density ρ0(∆y) =
1

2W
.

In this case, we need to select the parameters p that maximize

the likelihood L =
K∏

k=1

g(∆y), where

g(∆y) = max(ρ(∆y), ρ0(∆y)).

For the above uniform distributions, the auxiliary function
g(∆y) takes the following form:

• for the values ∆y for which |∆y| ≤ ∆, we have

g(∆y) =
1

2∆
;

• for the values ∆y for which ∆ < |∆y| ≤ W , we have

g(∆y) =
1

2W
; and

• for the values ∆y for which |∆y| > W , we have
g(∆y) = 0.

Thus, maximizing the product L =
∏

k=1

g(∆yk) means min-

imizing the number of outliers under the constraint that
|∆yk| = |yk − f(p, xk)| ≤ W for all k. In other words, we
select p for which, under the above constraints, the number
of observations for which |yk − f(p, xk)| > ∆ is the smallest
possible.

Bound ∆ on the measurement errors, no information
about the outlier-related differences ∆yk. In this case, since
we take W = max

ℓ
|yℓ − f(p, xℓ)|, there are no longer any

limitations on p.



Thus, in this case, the maximum likelihood method simply
means selecting the values of the parameters p for which the
number of outliers (i.e., values for which |yk −f(p, xk)| > ∆)
is the smallest possible.

Comment. This idea has been actively used, as a heuristic idea,
to deal with data processing under outliers, see, e.g., [3], [7],
[10]. Several practical applications of this heuristic idea are
described, e.g., in [3].

Our probability-based justification for this heuristics was
first announces in [17] (see also [4]).

Final case, when we have no information about the
probabilities. Finally, let us consider the case when we
have no information about the probabilities, neither about the
probabilities of different values of the measurement errors, nor
about the probabilities of different outlier-related differences

∆y = y − f(p, x).

In this case, we need to select the corresponding bounds ∆
and W for which the corresponding likelihood function attains
its largest possible value. Similar to the previous cases, for
each parameter tuple p, the maximum of the likelihood L is
attained if we take W (p) = maxℓ |∆yℓ|, so it only remains to
select p and ∆.

For each p and ∆, let us denote by n(p,∆) the number
of values k for which |yk − f(p, xk)| ≤ ∆. In terms of this
notation, the desired likelihood value

L(p,∆) =

K∏

k=1

g(yk − f(p, xk))

has the form

L(p,∆) =
1

(2∆)n(p,∆)
· 1

(2W (p))K−n(p,∆)
,

i.e., equivalently, the form

L(p,∆) =
1

(2W (p))K
·
(
W (p)

∆

)n(p,∆)

.

Maximizing this expression is equivalent to minimizing its
minus logarithm

ψ(p,∆) = − ln(L(p,∆)) =

K · ln(2W (p)) + n(p,∆) · (ln(∆) − ln(W (p))).

Thus, to get the maximum likelihood, for each p, we need
to select ∆ for which the expression ψ(p,∆) is the smallest
possible. We then select the parameters for which the resulting
minimum is the smallest possible, i.e., for which the following
expression is the smallest possible:

ψ(p) = min
∆

(K · ln(2W (p))+n(p,∆) · (ln(∆)− ln(W (p)))),

where W (p) = max
ℓ

|yℓ − f(p, xℓ)| and

n(p,∆) = #{k : |yk − f(p, xk)| ≤ ∆}.

Comment. To check how well our method works, we have
applied this idea to the situations when the values ∆yk

are distributed according to several reasonable distributions:
normal, heavy-tailed power law, etc.

In all these cases, we get 5-20% values classified as outliers.
This is in line with the usual case of normal distribution, where
5% of the values lie outside the 2σ interval and are, thus,
usually dismissed as outliers,
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