$% ENSTA

‘ BRETAGNE

Internship Report

Fvaluation of SLAM algorithms for autonomous
navigation in caves and tunnels

TalTech Center for Biorobotics

Simon Martineau

FISE 2025: Autonomous Robotics

Internship Supervisor: Roza Gkliva
Academic Supervisor: Luc Jaulin

Table of Contents
Acknowledgment
Abstract

Glossary
Introduction

1 Setting up the hardware and software
1.1 Context
1.2 My work
1.3 Results

2 Simulating dust clouds and visual noise
2.1 Context
2.2 The initial dust simulation algorithms
2.3 Measuring the effects of dust on LiDAR sensors
2.4 The final dust and visual noise simulation algorithms . .

2.5 Results

3 Experimentation phase and analysis
3.1 Customizing the Turtlebot4 robot
3.2 Initial experiments
3.3 The revised experiments
3.4 Observations
3.5 Analysis

Conclusion
List of Figures

Bibliography

© o o @

11
11
11
13
15
17

18
18
18
21
21
25

27

29

30

Acknowledgment

I would like to begin by expressing my gratitude to everyone at the Center
for Biorobotics of TalTech for everything they did to help me during my
4 month stay in Tallinn, Estonia. The guidance and support they gave
me during my internship was invaluable and helped me learn and discover
many things about the world of research.

I would like to acknowledge the efforts of my internship supervisor Roza
Gkliva, for always being supportive during my work and helping me over-
come the many hurdles I encountered.

I also want to thank everyone for helping me not only grow academically
and professionally, but also for helping me discover many places in Tallinn
and Estonia I wouldn’t have been able to see otherwise.

Figure 1: The lab members during my time in Tallinn

Abstract

This report documents the work I performed over 4 months between May
and August 2024 as part of my ERASMUS internship. 1 participated
in the ROBOMINERS project at the Center for Biorobotics at TalTech
under the supervision of Roza Gkliva. The goal of this internship was to
develop a program to evaluate the quality of maps being created by SLAM
algorithms aboard the RM3 robot during underground exploration. The
first part of this report shows my initial discovery of SLAM algorithms
and how I set up the hardware and software for this project. The second
part goes over the different algorithms I developed to simulate noise and
virtual dust clouds that could affect the robot’s sensors. The final part
goes over the experimentation phase and the conclusions I drew from the
different tests I performed.

Résumé

Ce rapport présente le travail que j’ai effectué pendant 4 mois, entre mai et
aout 2024, dans le cadre de mon stage ERASMUS. J’ai participé au projet
ROBOMINERS au Centre de Biorobotique de TalTech sous la supervision
de Roza Gkliva. L’objectif de ce stage était de développer un algorithme
capable d’évaluer la qualité des cartes produites grace a des algorithmes
SLAM sur le robot RM3, lors de I'exploration souterraine. La premiere
partie de mon rapport décrit ma découverte des algorithmes SLAM et la
mise en place du hardware et software nécessaire au projet. La deuxieme
partie présente le développement d’algorithmes simulant du bruit et des
nuages de poussiere virtuelle pour perturber les capteurs du robot. Puis,
la derniere partie présente la phase d’expérimentation et mes conclusions
sur les différents tests que j’ai menés.

Glossary

SLAM Simultaneous Localization and Mapping, a process used by robots
and autonomous vehicles to build a map of their surroundings while
keeping track of their own position within the environment. [1]

ROS2 Robot Operating System 2, a popular framework for writing robot
software. Programs are organized into nodes that can send data to
one another using pathways called topics. [2]

LiDAR Light Detection and Ranging, a remote sensing method that uses
laser light to measure distances. A 2D LiDAR sensor consists of a
laser sensor located on a rotating platform on the robot, measuring
the distance of hundreds of points per second in a plan around the

robot. [3]

IMU Inertial Measurement Unit, a sensor that measures the accelerations
it is subjected to. By integrating these measurements we are able
to deduce the speed and position of the sensor in real-time without
measuring anything in the environment. This makes it resilient to
environmental factors that could affect other sensors. [4]

RGBD Red Green Blue Depth, a sensing technology that captures color
and the distance of points in front of specialized cameras like the Intel
D455 ReadSense Camera. [5]

OS Operating System, system software that handles and manages com-
puter hardware and software resources.

Occupancy Grid A map generated by a mapping algorithm like SLAM.
It’s a representation of the environment where black squares indicate
where the algorithm believes there is an obstacle, and white squares
indicate where the space is free to move through. Gray areas haven’t
been scanned yet. [1]

Odometry The use of data from sensors to estimate a robot’s position
over time. Visual odometry uses camera data while LiDAR odome-
try uses environment distance measurements to estimate the robot’s
position. [6]

Introduction

Context of this Internship

ROBOMINERS is a project funded by the European Union which hopes
to further the EU’s ability to locate and collect raw materials. Key to this
program is the development of a bio-inspired robot capable of navigating
underground environments and mining mineral deposits. [7]

The Center for Biorobotics at TalTech developed the RM3 robot equipped
with whisker sensors and Archimedes’ screws for locomotion [8]. The
whisker sensors activate a signal when they are in contact with an object,
which helps the robot follow walls in a cave for example. The Archimedes’
screws are very useful for navigating in various terrain in an omnidirec-
tional manner. This robot is also equipped with a 2D LiDAR sensor and
an Intel D455 RealSense Camera.

In order to successfully navigate and map an underground environment, we
need to use SLAM algorithms. Current solutions for mapping underground
environments consist of manually displacing a tripod mounted terrestrial
scanner which is very time consuming [9], so this new approach is necessary.
The challenge with underground environments is that there is no access to
GNSS. The robot can only use its own sensors to obtain information about
its environment and position. This problem is very challenging because
the robot must simultaneously locate itself in its environment and build a
map. This is known as a chicken and egg problem, both localization and
mapping require each other to be solved.

Figure 2: Photo of the RM3 robot

Goals of this internship

There exist many different types of SLAM algorithms that are used in
industry and research [10]. One popular type of SLAM is called LiDAR-
Inertial SLAM because the 2 sensors used to gather data about the envi-
ronment are a LIDAR and an IMU sensor. Another popular kind of SLAM
algorithm is called Visual-Inertial SLAM because it uses a camera and an
IMU.

My first objective with this internship was to examine which SLAM algo-
rithms existed and to select the best ones to use for underground explo-
ration. My second objective was to write an algorithm that could evaluate
the real-time performance of the SLAM algorithms and switch between
them to use the best one at any given time. The final objective was to
perform experiments and examine the results of the evaluation algorithm.

Description of the Research Center
The Center for Biorobotics at TalTech is a research center focused on
the development of new robotics and sensing technologies. During my

time in this laboratory, four major projects were being pursued by various
researchers beyond the ROBOMINERS project.

The first project was a PhD thesis on the topic of legged locomotion on
muddy surfaces. The objective was to study how to optimize the GO-1
robot’s speed, energy efficiency, and stability while walking through mud.

The second project was also a PhD thesis on controlling a submersible
robot called U-CAT in six degrees of motion using only four fins.

The third project involved developing a new type of sensor called the
Hydromast. By analyzing the oscillations of the sensor’s bar in moving
water, researchers could deduce the speed of the water. The aim is to
provide a more affordable solution for measuring slow-moving currents.

The final project focused on developing small capsules equipped with pres-
sure sensors and IMUs. The objective is to study the pressure experienced
by fish as they pass through hydroelectric dams, ensuring the dams meets
safety guidelines.

Figure 3: GO-1 robot used for legged
locomotion on muddy surfaces.

Figure 5: U-CAT submersible robot
used for underwater navigation.

Figure 4: Hydromast sensor used to
measure water flow.

Figure 6: Pressure sensor capsules used
to study underwater pressure variations.

1 Setting up the hardware and software

1.1 Context

In order to begin my work, I needed to start learning how SLAM works and
what currently exists in the field of underground autonomous navigation.
I also needed to understand what factors would cause the biggest issues to
the sensors and information processing during exploration.

Another important step was choosing which SLAM algorithms were best
suited for this task. Lastly, I needed to setup the computers and software
drivers.

1.2 My work

I spent the first few weeks reading any material I found online explain-
ing how SLAM works in the hopes that better understanding the internal
workings of these algorithms would help me later. The YouTube series by
Cyril Stachniss was a big help [11]. I then started listing every modern
SLAM algorithm I found in research papers and tried to compare them.
DARPA recently had a robotics competition called Subterranean Chal-
lenge (SubT) where 4 university groups tried mapping a cave network
[12]. However, I then learned that despite publishing their results, most
researchers didn’t publish their source code. I did find a SLAM algorithm
online called ORB SLAM 3 that seemed interesting, but despite spending
multiple days trying to install it, there were too many issues with it.

Researchers from the lab explained to me that research software doesn’t
undergo the same level of testing as production software, and break much
more easily. So I switched course and decided to use 2 SLAM algorithms
I knew worked because the researchers of the lab already had experience
with them, NAV2 by Open Navigation LLC [13]. and RTAB-Map by
the IntRoLaB of Sherbrooke University [14]. We also decided with my
supervisor that testing the algorithms on a smaller robot called Turtlebot4
would be simpler, as it was smaller, lighter and well suited for student
projects. Setting up the Turtlebot4 took more time than expected. On
top of ROS2, it used a Discovery Server to manage communications on
the network, which led to a host of bugs that we needed to fix. Once
Turtlebot4 was up and running, I could start running NAV2 and produce
maps of the laboratory.

Having successfully setup the LiDAR-Inertial SLAM algorithm, the next
step was to setup the Visual-Inertial SLAM algorithm RTAB-Map. The
lab had an NVIDIA Jetson Nano computer available equipped with CUDA
which made it ideal for image processing. We spent some time getting a
working OS installed, but had to settle with Ubuntu 18.04, the last Ubuntu
OS supported by NVIDIA for this computer. We also managed to get
ROS2 working on the Jetson Nano computer. I then searched for a driver
that could interface the Jetson Nano to the Intel D455 RealSense Camera
and supported ROS2. There was one provided by Intel, but it wasn’t
stable and couldn’t be used alongside ROS2. T later did find a non-official
driver that could work, but only on Ubuntu 20.04 or 22.04. We decided to
stop using the Jetson Nano computer and to search for another computer
which would support the right OS and had sufficient processing power.

We settled on the Raspberry Pi5 computer because it had the best process-
ing power available, which is required to run RTAB-Map. Unfortunately,
we discovered after buying it that it only supported Ubuntu 24.04 and
Ubuntu 23.04. We still managed to get the driver working for the D455
RealSense Camera so it would communicate to ROS2. To install ROS2, we
compiled it from source as the installation process kept failing. We then
installed RTAB-Map and after fixing many dependency issues and writing
a launch file to successfully run every required program, we had a working
Visual-Inertial SLAM algorithm working on a portable computer.

1.3 Results

After finishing this first phase, we had successfully prepared many core sys-
tems that would be used for the rest of this project. The Turtlebot4 robot
was successfully connected to the network and had the LiDAR-Inertial
SLAM algorithm NAV2 working in it’s internal computer. The Raspberry
Pi5 computer now had the necessary software to run the Visual-Inertial
SLAM algorithm RTAB-Map and the Intel D455 RealSense Camera. Now
the objective was to replicate environmental factors that could test how
these SLAM algorithms would work in an underground setting.

Figure 8: Intel D455 RealSense RGBD

camera

Figure 7: RPLIDAR A1MS sensor

Figure 9: NVIDIA Jetson Nano computer
Figure 10: Raspberry Pi5 computer

Figure 11: Turtlebot4 robot
10

2 Simulating dust clouds and visual noise

2.1 Context

According to various research papers published on the topic, subterranean
navigation contains multiple challenges that make it more difficult than
subsurface navigation [4] [10]. The lack of GNSS access, the structure-
less zones such as long tunnels, the lack of illumination and the presence
of obscurants in the air such as fog, dust and smoke are all problematic
[15]. In summary, underground environments reduce the capabilities of
environment-dependent sensors.

Having not found any algorithms or techniques online to evaluate the per-
formance of SLAM, I decided it would be interesting to create virtual noise
that could replicate the conditions the robot would find underground. I
could then see what impact this noise would have on SLAM performance
and use those indicators to evaluate SLAM performance.

I decided I would write one program for NAV2 that would make it seem
like the LiDAR sensor picked up on a dust cloud in the environment. For
RTAB-Map, I decided I would write a program that would create various
types of visual noise for the camera to see their effects.

2.2 The initial dust simulation algorithms

I first started to tackle how I would make the Turtlebot4 computer think
the LiDAR sensor detected objects in the environment that weren’t ac-
tually there. I wrote a ROS2 node that received LiDAR data from the
LiDAR through the /scan topic and republished the data through the
/scan modified topic. I wrote a program that would create many hun-
dreds of points in the shape of a circle and asked the program to detect
the points if the angle to those points was similar to that of the LiDAR
measurements. This approach worked but wasn’t perfect, and consumed
too much computation power to be useful.

I had started working on a second version of the code when my supervisor
warned me about a flaw in my approach. When the robot would be moving,
the virtual obstacles would stay in the robot’s reference frame. However,
if we want to be more realistic, the obstacles should be still in the world’s
reference frame.

11

r

¥

=

Figure 12: Example of a virtual circle obstacle

I got back to work on a 3rd version of this program. I thought of various
ways of making such a zone that would be still in the environment as the
robot moved around. I decided to create a rectangular zone made up of
4 corner points defined in the map reference frame. These points would
be the only points that would receive a frame transform from the map
reference frame to the robot’s reference frame so the process would be
computationally inexpensive.

The program then calculates the distance to these corner points and sets
the new LiDAR measurements of this area to be similar to the distance
to those rectangle corners. This new approach was initially thought to
be successful, but had a major flaw. This approach had the side effect of
giving the dust cloud the shape of an arc. This can be seen in the image
below. On the left is a giant black arc that represents the virtual obstacle.

Figure 13: Example of an "arc shaped” virtual obstacle

12

2.3 DMeasuring the effects of dust on LiDAR sensors

Around this time, I told one of the researchers of the lab how I had re-
searched online for the effects dust has on LiDAR and hadn’t found any-
thing useful. He recommended I do my own experiment in order to back
up what I was simulating. Although it was likely, I had no proof at this
time whether LiDAR would actually pick up on dust. I decided I would
write a 4th and final code that didn’t have the issues of the previous ones
and was based on experimental data.

I setup the following experiment. I placed the robot within a cardboard
box and activated its RPLIDAR A1MS8 sensor with NAV2 and RViZ to
visualize the sensor’s measurements. I waited a few seconds for NAV2 to
stabilize as the initial measurements are given a lot of weight to know
the shape of the environment. I then sprinkled dust in front of the robot
and recorded the measurements of the LiDAR. I did this multiple times at
different distances and intensities to see if there were any variations.

Figure 14: Photo of me dropping dust in front of the robot

Based on my experiments, I concluded the following:

e When dust is within 20cm of the robot, it isn’t registered by the Li-
DAR. This may be due to some physics properties like the LiDAR
light getting scattered, but a more likely explanation is that NAV2
has some filter for scattered measurements within 20cm of the robot.

13

However, I wasn’t able to find any documentation that gave an ex-
planation for this.

e Beyond 20cm, dust is detected by the LiDAR sensor and behaves like
a cloud of random points within the dust zone.

The image below is a screenshot of a video recording of me spraying dust
in front of the LiDAR sensor. The image is an occupancy grid map. The
black squares represent where the cardboard box surrounded the robot.
The purple dots represent the measurements of the LiDAR laser points.
The purple dots in the red zone represent the dots that hit the dust I was
spraying in that area. This proves that dust does in fact impact LiDAR,
and given its distribution, that it can be modeled by a random distribution
of points.

Figure 15: Image of experimental LIDAR measurements of a dust cloud

14

2.4 The final dust and visual noise simulation algorithms

My 4th and final code had to be as close to the experimental data as
possible and had to solve the problems previous versions had. I decided to
try a new approach. As before, 4 points were defined in the environment
reference frame in the shape of a rectangle to define the dust zone. The
code performs a coordinate transform and places the points in the robot’s
reference frame. Then, all the LiDAR points within the arc of the rectangle
points are given 5 new random distances. If one of those distances puts
the point in the rectangle zone, it stays there. This is a very simple and
brute force method of getting the points within this zone, but it works well
and the virtual noise observed looked similar enough to the experimental
results.

- - ."ih ——

Figure 16: An example of a virtual dust cloud (red rectangle) generated by the final code

The next step was to create a code that would generate virtual noise for
the camera. I created a node that subscribed to the camera data topic
/camera/pi3/color/image raw and published the topic /image modified.
I had initially planned to add a dust cloud or fog filter, but they would have
been too computationally expensive and difficult to make. So I decided to
produce the following virtual noise.

15

e Add noise would produce uniform random noise on the camera image
with an amplitude of the user’s choosing.

e Change lighting would lower the RGB values of the image in the
hopes of seeing what effects darker environments can have on RTAB-
Map.

e Add_blur would produce a Gaussian blur with a matrix size deter-
mined by the user.

e Add water drops would produce random specs of white across the
image. The idea was to try to reproduce the effects water would have
if it fell on the camera lens. This function wasn’t used in the end.

I believed it was interesting to observe what effects RGB noise would have
on the SLAM algorithm, but there are 2 major issues with my approach.
Unlike with the LiDAR virtual dust cloud that stays in one place in the
environment, here the noise is constantly affecting the camera image in
the same way. Pursuing this would have been very complicated since I
would also have had to take the distance to the zone into account in the
camera frame. Another issue is that I didn’t add any noise to the depth
measurements. I didn’t take the time to see how I could modify its data,
but I still performed an experiment to see the effect dust clouds have on
the depth sensor.

Below is a photo from the depth sensor on the D455 camera. I sprinkled
dust in front of the camera to see whether it would detect it. As you can
see in the green rectangle, the dust was observed in the form of blobs.
This indicates that any SLAM algorithm using a depth sensor in an en-
vironment where air obscurants like dust is present will have to take this
environmental factor into account. For the sake of time, I was not able to
during this internship.

16

Figure 17: Photo from the depth sensor on the D455 camera detecting dust in the green
rectangle

2.5 Results

Following this phase of the project, I now had a python code capable of
producing virtual dust clouds that simulate my experimental observations.
I also had a code able to add various types of noise to the camera’s images.
I wrote launch files and YAML files to ensure I could easily and quickly run
both of these codes with the noise parameters I wanted. I also modified
NAV2 and RTAB-Map slightly so they would subscribe to my modified
topics instead of the original ones.

17

3 Experimentation phase and analysis

3.1 Customizing the Turtlebot4 robot

Now that the software side of this project was setup and ready to go,
I needed to complete the hardware setup. The Turtlebot4 robot already
came equipped with a LIDAR sensor and onboard Raspberry Pi4 computer
[16] that could handle the calculations of the NAV2 program. But I needed
to equip the new Raspberry Pi5 computer that could run RTAB-Map and
the D455 camera.

So I went ahead and designed a simple support structure onto which I
could attach the Pi5 and a camera support previously designed and built
by the lab. My CAD design is shown below. After printing it with the
lab’s 3D printer, I attached it onto the robot and everything was ready to
go. I did have to calculate the precise position of the camera relative to the
robot’s center as this transform would be used during the map building

process.

Figure 19: CAD design of the Pi5 and cam-

Figure 18: Turtlebot4 with Raspberry Pi5 era support structure
computer and Intel D455 camera

3.2 Initial experiments

Once everything was setup, I worked on designing the parameters of the
experiment. The objective of these tests was to get the robot to build maps
of different parts of the laboratory while adding custom virtual noise to
both SLAM processes. I decided on the following parameters and zones.

18

For the zones to test:

e Navigating the office space where I worked due to its many obstacles
and complex geometry.

e Navigating the hallway at the end of the lab due to its simpler geom-
etry and lack of obstacles.

e Turning still in the kitchen area due to its complex geometry.

e Doing a lap around the laboratory.

As for the noise I would add, for NAV2:
e One run without any added noise for reference.
e One run with a dust cloud at 30% density.
e One run with a dust cloud at 60% density.

e One run with a dust cloud at 100% density.

And for RTAB-Map, I would add the following noise:
e One run without any added noise for reference.
e Add random noise at 10 amplitude.
e Add random noise at 20 amplitude.
e Add Gaussian Blur (5*5 kernel)
e Add Gaussian Blur (11*11 kernel)
e Change the lighting to 50%.
e Change the lighting to 0%.

Below is a visualization of the effect each visual noise has on what the
robot sees. Also, the reason I didn’t go beyond an amplitude of 20 for
the random noise is that going beyond consistently caused RTAB-Map’s
odometry to fail. And of course, changing the lighting to 0% turns the
screen black so I didn’t add the picture. I didn’t have an image of random
noise with an amplitude of 10 or 20, but I did add one with an amplitude
of 50 for illustrative purposes.

19

(a) Random noise added (b) Reduced lighting to 50%

(c) Gaussian blue (5*5 kernel) (d) Gaussian blue (11*11 kernel)

(e) No added noise

Figure 20: The different visual noises I added to simulate tougher environments.

My initial method of repeatedly applying the noise in real time was very
flawed. The first issue was that it took a lot of time to run the robot
through the different zones of the experiment with each type of noise
added. The second issue is with scientific rigor, I wasn’t doing the ex-
act same route each time so comparing the maps wouldn’t be as simple.
My supervisor recommended I run the robot through the different zones
once and record the ROS2 topics that I needed. Only then would I re-
run the recordings and apply a different virtual noise each time to see the
effects.

20

3.3 The revised experiments

I wrote a new program to record every topic both SLAM algorithms needed
to function. I then ran the robot through the different areas while only
recording data. I could now rerun the robot’s recordings multiple times
while adding my custom noise.

I observed multiple interesting phenomenons by looking at the maps pro-
duced by NAV2 and RTAB-Map. The first and most important is that
despite my efforts to make this experiment repeatable, the probabilistic
nature of SLAM [10] made it so that rerunning the same data recording
and noise could produce a different map for RTAB-Map. Below is an ex-
ample. The same data and the same type of noise was used, but in 2 trials
of this test RTAB-Map failed midway leading to an incomplete map. In
the 2nd trial, RTAB-Map didn’t fail and completed the map.

This made me realize I needed to run multiple trials of each noise and area
combination for RTAB-Map, as it was much more prone to variations in
the maps that were built than NAV2. I decided to run 3 trials of each
RTAB-Map test and observe any differences. Also it’s important to know
what I mean when I say a SLAM algorithm failed. The program kept
running well, but it could no longer determine the robot’s position in the
map, so it couldn’t build the map anymore.

3.4 Observations

In total, I ran 73 trials of these tests, so I cannot show all the maps pro-
duced in this report. I can however, show one comparison that illustrates
my observations well. Below is the example. It shows NAV2 and RTAB-
Map, as well as NAV2 with artificial dust in a red zone, building a map of
the hallway of the laboratory.

Here are my observations for NAV2

e NAV2 is able to form very precise and clear maps. Having spent 4
months in this lab, it’s clear to me what part of the lab the robot
navigated through.

e NAV2 is also very robust, the maps produced were always nearly
identical to one another. There was never an issue with loop closure
or major sections being duplicated.

21

(b) RTAB-Map with random noise in office, trial 2

Figure 21: 3 trials of RTAB-Map in the office area using random noise at an amplitude
of 20

e The dust cloud I generated in the red zone did have an effect on the
map that was produced. We can see many point obstacles that aren’t
present in the map that was generated without added noise. When
I had 30% or 60% dust density, there were respectively less point
obstacles appearing.

e With 30% dust density, the dust cloud barely leaves an impression on
the map.

e With 60% dust density, the dust cloud is able to leave a few point
obstacles.

e With 100% dust density, the dust zone becomes difficult to see through.
Significant detail is lost in the point obstacles and walls might not be
correctly detected.

22

e Only the area where the virtual dust was present was affected, the
rest of the map is largely identical to the map with no added noise.
This observation remained consistent in all maps for NAV2.

e Areas where the robot only briefly observed the virtual dust cloud
show more point obstacles than areas the LiDAR observed longer. A
filter in NAV2 must be helping to eliminate point obstacles if they
are detected longer.

e NAV2 does suffer in the presence of glass, as the LIDAR sensor’s lasers
will go through the glass. There was usually a duplication of walls
near where glass walls were located in the laboratory.

e The /scan topic was only sending around 60Kb of data per second
from the LiDAR to the Turtlebot4’s computer.

Here are my observations for RTAB-Map

e RTAB-Map is much less precise than NAV2 in every test that I con-
ducted.

e This is despite the much greater amount of data that is used in the
process. Roughly 6Mb of data (100x that of NAV2) is sent to the
RTAB-Map computer every second across multiple topics, but espe-
cially though the camera data topics.

e There is a much greater chance for RTAB-Map to fail than with
NAV2. Across most maps, RTAB-Map had trouble completing the
map. However, it was observed that RTAB-Map is capable of recov-
ering the robot’s position in the map after having lost it.

e The added noise to the RGB data had little to no impact for most
maps that were produced. Even 0% lighting resulted in an identical
looking map.

e A lack of environmental detail had a major effect on the map be-
ing produced. The hallway section saw frequent loop closure failures.
This is to say, RTAB-Map failed to see that it was navigating a pre-
viously mapped zone and duplicated the hallway on the second pass
through it. This is a catastrophe in underground navigation.

23

Figure 22: Hallway of the lab mapped by
NAV2 with no added noise

Figure 24: Hallway of the lab mapped by
RTAB-Map with no added noise

Figure 26: Hallway of the lab mapped
by RTAB-Map with Gaussian blur 11*11
added

Figure 23: Hallway of the lab mapped by
NAV2 with an added dust zone (red rect-
angle) at 100% density

Figure 25: Hallway of the lab mapped by
RTAB-Map with random noise at an am-
plitude of 20 added

Figure 27: Hallway of the lab mapped by
o RTAB-Map with lighting at 0%

3.5 Analysis

We can deduce many interesting things from these observations. NAV2,
and LiDAR-Inertial SLAM algorithms in general, seem to be the most well
equipped to deal with underground exploration.

e NAV2 produced much cleaner and precise maps than RTAB-Map.

e [t required less data to operate which is important as network con-
nection is limited underground.

e [t showed to be more resilient against tougher environmental condi-
tions such as the long corridor of the lab’s hallway and the kitchen
area that contained many chairs as obstacles.

However, evaluating the SLAM performance is still a challenge and some-
thing I wasn’t able to finish during this internship. Both NAV2 and RTAB-
Map come with an indicator that could be used but don’t give information
about the environmental conditions.

e For NAV2, the covariance matrix represents the robot’s uncertainty
which could be used as a factor to estimate the robot’s confidence
in the map it is producing. But little research online explains how
this works or what thresholds on the matrix constitute a good or bad
map.

e For RTAB-MAP, there exists a Quality factor that is calculated in
real-time. I didn’t find an explanation online for what it calculates,
but by reading the source code I found it corresponds to the number of
points it successfully matched between 2 consecutive camera frames.
The higher the number, the better the visual odometry. If Quality
reached 0, the robot no longer knew where it was within its own
map and RTAB-Map could not longer produce the map. This factor
remains very interesting and should be used to evaluate the quality
of the map as it ties directly to the robot’s estimated position which
affects the map.

Although this experiment may not have indicated distinguishing effects
on the generated maps by each type of noise, it does indicate a number of
interesting findings.

25

e NAV?2 is already largely robust to dust clouds, at least in the way I
simulated them. As long as dust does not surround the robot com-
pletely, it should be successful in mapping a 2D map. But to detect a
dust cloud, a program should look for point obstacles appearing and
disappearing erratically on the map. This can indicate the presence
and location of air obscurants like dust that can impact the LiDAR
sensor’s precision.

e Using a SLAM algorithm that heavily depends on the robot’s IMU is
very important for underground exploration. The IMU is not affected
by environmental factors and this benefit has shown to be very useful
with NAV2. RTAB-Map on the other hand had trouble with loop
closure even during short time periods. It gave less importance to its
IMU data and heavily relied on potentially flawed camera data.

e RTAB-Map relies much more on its depth data than RGB data. While
necessary in the case of a lack of lighting especially underground, its
depth data has shown to not be sufficient in many cases such as the
hallway which lacked detail. This made linking depth points between
2 frames more difficult.

To summarize my conclusions on these experiments, we can say that NAV2
is more reliable and appropriate for underground mapping. It comes
equipped with filters capable of distinguishing between environmental ob-
stacles and dust, as I simulated it at least. Yet we can look to evaluate its
performance through a program that searches for rapid obstacle probabil-
ity variations, at least for dust clouds. The covariance matrix is potentially
another way of evaluating the algorithm’s quality.

As for RTAB-Map, we now know that its most important sensor is the
camera depth sensor. This makes this visual-inertial SLAM algorithm
able to work in the dark. However, environments that lack detail or quick
movements for the robot will make the visual odometry lose track of the
robot’s position. Keeping track of the Quality factor is essential to build-
ing a correct map. It does not however, warn in the case of loop closure
failure, so having an algorithm go through and try to read the IMU or
detect overlapping lines in the map can be interesting.

26

Conclusion

In conclusion, my internship at the Center for Biorobotics at TalTech
was a very enriching experience. I got to engage in research and observe
firsthand its most rewarding aspects as well as its challenges. The Center
for Biorobotics was an incredible place to do my internship as its core
objectives and strengths, to explore undiscovered areas, perfectly align
with my own aspirations in the field of robotics. I also got to participate
in the work of other researchers and see the challenges of field work, the
levelheadedness that is required when dealing with computer bugs, and
the camaraderie within the researchers of this laboratory.

During my internship, my work focused on selecting SLAM algorithms and
testing them to see how they could be evaluated in terms of quality. This
subject is becoming very important in robotics as autonomous vehicles
navigate dynamic and uncharted environments. This task helped me learn
a lot about ROS2, how to deal with computer errors, the important criteria
to look for when selecting hardware, how SLAM algorithms work and their
limitations.

During my work, I wrote a code that enables a user to simulate a dust
cloud anywhere in the environment that the LiDAR sensor will detect. I
also wrote a code that adds various types of visual noise to a camera data.
These codes can be used to challenge different SLAM algorithms and test
their resilience to different environmental factors.

If I had more time, I would have tried to write a code that would simulate
a dust cloud for the camera depth sensor. Given that I now know that
RGB noise doesn’t have much influence on the quality of the map, testing
the depth sensor is the next logical step.

I would have also tried to write a code to detect the presence of dust by
reading the map generated by NAV2. I believe that having a program try
to detect quick variations in the obstacle probabilities in the occupancy
grid would have been promising.

And finally, I would have also liked to test the link between the covari-
ance matrix and the quality of the generated map. Subjecting NAV2 to
much worse noise and environmental factors could have helped revealed
something, but this remains to be seen.

27

I can’t thank everyone at the lab enough for everything they did for me
during my internship. It was a truly memorable experience and I believe all
the skills and knowledge I gained during these 4 months will be invaluable
to me going into my professional career in robotics.

If anyone is interested in looking though the codes I wrote during my in-
ternship, I have linked the URL to my GitHub page below. This repository
contains 2 packages, turtlebot4 bringup and turtlebot4 slam noise.
turtlebot4 bringup contains the launch files required to launch the dif-

ferent noise tests as well as the files to set the parameters. turtlebot4_slam noise
contains the codes that simulate the virtual dust cloud as well as the visual

noise.

URL: https://github.com/SimonMartineau/turtlebot4-project

28

List of Figures

S O = W N~

17

18

19
20

21

22
23

24
25

26

27

The lab members during my time in Tallinn 2
Photo of the RM3 robot 5
GO-1 robot used for legged locomotion on muddy surfaces. . 7
Hydromast sensor used to measure water flow. 7
U-CAT submersible robot used for underwater navigation. . 7
Pressure sensor capsules used to study underwater pressure

variations. L. 7
RPLIDAR AIMS sensor 10
Intel D455 RealSense RGBD camera 10
NVIDIA Jetson Nano computer 10
Raspberry Pi5 computer 10
Turtlebot4 robot 10
Example of a virtual circle obstacle 12
Example of an ”arc shaped” virtual obstacle 12
Photo of me dropping dust in front of the robot 13

Image of experimental LiDAR measurements of a dust cloud 14
An example of a virtual dust cloud (red rectangle) generated

by the final code L. 15
Photo from the depth sensor on the D455 camera detecting
dust in the green rectangle 17
Turtlebot4 with Raspberry Pi5 computer and Intel D455 cam-
ETA . o v e e e e e e e e 18
CAD design of the Pi5 and camera support structure 18
The different visual noises I added to simulate tougher envi-
ronments. . . o.o.o Lol 20
3 trials of RTAB-Map in the office area using random noise
at an amplitude of 20o 22

Hallway of the lab mapped by NAV2 with no added noise . 24
Hallway of the lab mapped by NAV2 with an added dust zone
(red rectangle) at 100% density, 24
Hallway of the lab mapped by RTAB-Map with no added noise 24
Hallway of the lab mapped by RTAB-Map with random noise

at an amplitude of 20 added 24
Hallway of the lab mapped by RTAB-Map with Gaussian blur
11*11 added 24

Hallway of the lab mapped by RTAB-Map with lighting at 0% 24

29

Bibliography
References

[1] Riisgaard, S., & Blas, M. R. (2005). Slam for dummies. SLAM for
Dummies. URL: https://dspace.mit.edu/bitstream/handle/
1721.1/119149/16-412j-spring-2005/contents/projects/
laslam_blas_repo.pdf. (accessed: May 2024).

[2] ROS2 Documentation. URL: https://docs.ros.org/en/rolling/
index.html. (accessed: September 2024).

3] What is Lidar and how does it work?. Synopsys. (n.d.-a).
URL: https://www.synopsys.com/glossary/what-is-lidar.html.
(accessed: May 2024).

[4] Zhao, S., Zhang, H., Wang, P., Nogueira, L., & Scherer, S. (2021c).
Super Odometry: IMU-Centric LIDAR-Visual-Inertial estimator for
challenging environments. 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). URL: https://doi.org/
10.1109/iros51168.2021.9635862. (accessed: May 2024).

[5] Intel D455 RealSense Camera Website. URL: https://www.
intelrealsense.com/depth-camera-d455/. (accessed: September
2024).

[6] Olson, E. (2007, January 8). A Primer on odometry and motor control.
A Primer on Odometry and Motor Control. URL: http://web.mit.
edu/6.186/2007/tutorials/odomtutorial/odomtutorial.pdf. (ac-
cessed: September 2024).

[7] ROBOMINERS Website. URL: https://robominers.eu/about/. (ac-
cessed: September 2024).

[8] Center for Biorobotics Website. URL: https://taltech.ee/en/
biorobotics/prototypes. (accessed: August 2024).

9] Zlot, R., & Bosse, M. (2013b). Efficient Large-Scale 3D mobile map-
ping and surface reconstruction of an underground mine. In Springer
tracts in advanced robotics (pp. 479-493). URL: https://doi.org/
10.1007/978-3-642-40686-7_32. (accessed: May 2024).

30

[10] Zhu, J., Li, H., & Zhang, T. (2023b). Camera, LiDAR, and IMU
based Multi-Sensor Fusion SLAM: a survey. Tsinghua Science &
Technology, 29(2), 415-429. URL: https://doi.org/10.26599/tst.
2023.9010010. (accessed: May 2024).

[11] Cyril Stachniss Youtube Channel. URL: https://www.youtube.com/
@CyrillStachniss. (accessed: May 2024).

[12] DARPA Subterranean Challenge Competition Website. URL: https:
//www.darpa.mil/program/darpa-subterranean-challenge. (ac-
cessed: August 2024).

[13] Macenski, S., Martin, F., White, R., & Clavero, J. G. (2020). The
marathon 2: A navigation system. 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). URL: https://doi.
org/10.1109/iros45743.2020.9341207. (accessed: June 2024).

[14] Labbé, M., & Michaud, F. (2018). RTAB-map as an open-source
lidar and wvisual simultaneous localization and mapping library for
large-scale and long-term online operation. Journal of Field Robotics,
36(2), 416—446. URL: https://doi.org/10.1002/rob.21831. (ac-
cessed: June 2024).

[15] Khedekar, N., Kulkarni, M., & Alexis, K. (2022). MIMOSA: A Multi-
Modal SLAM Framework for Resilient Autonomy against Sensor Degra-
dation. 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). URL: https://doi.org/10.1109/iros47612.
2022.9981108. (accessed: June 2024).

[16] Turtlebot4 User-Guide Website. URL: https://turtlebot.github.
io/turtlebot4-user-manual/overview/features.html. (accessed:
June 2024).

31

Py RAPPORT D’EVALUATION
§5 %) ASSESSMENT REPORT

ENSTA

3retagne

ENSTA Bretagne — Bureau des stages - 2 rue Frangois Verny - 29806 BREST cedex 9 — FRANCE
00.33 (0) 2.98.34.87.70 / stages@ensta-bretagne.fr

- ORGANI| S$HAE ORGANISATION
NOM / Name: TalTech Centre for Biorobotics

Adresse / Address: Akadeemiatee 15A+111 Tallinn 12618

Tél/ Phone (including country and area code):

Nom du superviseur / Name of internship supervisor: Roza Gkliva

Fonction / Function: Researcher

Adresse e-mail / E-mail address: roza.gkliva@taltech.ee

Nom du stagiaire accueilli / Name of intern: Simon Martineau

I + EVAL UARISESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques
suivantes. Cette note devra se situerentre A (t r éesF b(iterne)s f ai bl e)
Please attribute a mark from A (excellent) to F (very weak).

MISSION / TASK
La mission de départ a-t-elle été remplie ?
Was the initial contract carried out to your satisfaction? A

Mangquait-il au stagiaire des connaissances ? D’oui/yes [] non/no
Was the intern lacking skills?

Si oui, lesquelles ? / If so, which skills?

As anyone in research, especially the less experienced of us, Simon lacked some skills related to
software development, versioning, robot hardware and limitations, etc. During his internship he
worked very hard and methodically to learn new skills and to implement them in his work.

ESPRIT D’EQUIPE / TEAM SPIRIT

Le stagiaire s’est-il bien intégré dans 1’organisme d’accueil (disponible, sérieux, s’est adapté au
travail en groupe) / Did the intern easily integrate the host organisation? (flexible, conscientious,adapted
to team work) A

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

Simon integrated in the team of the Centre for Biorobotics, collaborated with the teammates and
participated in both professional and social evenﬁ His good communication and organizational
1

[Version du 05/04/2019)

skills helped him to collaborate and to keep track of his progress. He also attended a summer
workshop at Tartu University on behalf of the group and presented his project there.

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme a vos attentes (Ponctuel, ordonné, respectueux,
soucieux de participer et d’acquérir de nouvelles connaissances) ?Did the intern live up to
expectations? (Punctual, methodical, responsive to managementinstructions, attentive to quality,
concerned with acquiring new skills)? A

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

He tracked his own progress with methodical daily logging of his activities, analyzing and
evaluating each task and its results. Additionally, via weekly meetings with his supervisors, he
discussed the methods he developed and used, and asked for feedback and instructions when

necessary.

INITIATIVE — AUTONOMIE / INITIATIVE — AUTONOMY

Le stagiaire s’est —il rapidement adapté a de nouvelles situations ?
(Proposition de solutions aux problémes rencontrés, autonomie dans le travail, etc.)

Did the intern adapt well to new situations? A
(eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc.)

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

Yes, despite the numerous hardware issues that he faced, due to software and hardware
incompatibilities, he always demonstrated a positive behaviour towards troubleshooting and
development. He worked independently towards his tasks, but also asked for feedback and for
instructions when needed.

CULTUREL - COMMUNICATION / CULTURAL — COMMUNICATION
Le stagiaire était-il ouvert, d’une manicre générale, a la communication ?
Was the intern open to listening and expressing himself /herself? A

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a
suggestion, please do so here

As mentioned above, he used the supervisors’ reqular instructions and feedback to improve his
work. In certain situations he requested these instructions, in other situations, they were given
during the reqular meetings.

OPINION GLOBALE / OVERALL ASSESSMENT

La valeur technique du stagiaire était :
Please evaluate the technical skills of the intern: A

I - PARTENARI ATFURJBHRARTNERSHIP

es-vous prét a accueillir un autre stagiaire 1’an prochain ?
Et t 11 tre st r hain ?

Would you be willing to host another intern next year? [voui/yes [] non/mo

Fait a s

le

In Tallinn, Estonia ,
2

Version du 05/04/2019)

on 30/08/2024

(E(‘ ’/y‘v',"JJ

Signature Entreprise Signature stagiaire
Company stamp Intern’s signature

=

Merci pour votre coopération
We thank you very much for your cooperation

'Version du 05/04/2019

