
Assistant Engineer Internship

Luc-André TERRINE

Supervisor: Andreas Rauh
Address: Carl Von Ossietzky University, Oldenburg, Germany

October 16, 2024

2

Abstract
As part of my formation at ENSTA Bretagne, I was required to complete an internship

in a foreign country as an engineering assistant. I was given the opportunity to fulfill this
requirement at the University of Oldenburg, where I joined their research team. My work
focused on optimizing the code for computing the equation of motion of a robotic arm, with
the goal of enabling the forward dynamics simulation of its multiple degrees of freedom.

Résumé
Dans le cadre de ma formation a l’ENSTA Bretagne, j’étais tenu de réaliser un stage a

l’étranger en tant qu’assistant ingénieur. J’ai eu l’opportunité de remplir cette obligation a
l’Université d’Oldenburg, oú j’ai rejoint leur équipe de recherche. Mon travail a consisté á
optimiser le code de calcul de l’équation de mouvement d’un bras robotique, dans le but de
permettre la simulation de la dynamique directe de ses multiples degrés de liberté.

Contents

Abstract . 2
0.1 The ViperX 300 S . 5
0.2 Objectives . 5

1 Equation of motion 7
1.1 Establishing the Equations of Motion (EOM) 7
1.2 Computing the Equations of Motion . 9

1.2.1 Addressing the First Issue: Trigonometric Simplification 10
1.2.2 Reducing Trigonometric Function Calls 10
1.2.3 Optimization of the C Matrix Calculation 10
1.2.4 Optimization Results . 12

1.2.4.1 Time Reduction for Matrix Construction 13
1.2.4.2 Evaluation Time Improvement 13

1.2.5 Conclusion of the Optimization Phase 14

2 Integration Model for Forward Dynamics 15
2.1 Initial Forward Dynamics Model . 15
2.2 Initial Results and Issues . 16
2.3 Incorporating Friction into the Model . 18
2.4 Revised Model with Friction Consideration . 19
2.5 Final Attempt: Swarm Optimization Approach 20
2.6 Future Work and Recommendations . 22
2.7 Conclusion of Integration Model Development 22

Conclusion 23

Acknowledgements 25
.1 Descriptions . 30

3

4 CONTENTS

Introduction

0.1 The ViperX 300 S
The ViperX 300 S is a robotic arm equipped with a gripper for object handling. It is

programmable using Python and ROS2, allowing for control and integration with other systems.
For this project, the robot is also equipped with a camera connected to a PC, providing visual
data to guide object detection and manipulation.

Figure 1: The ViperX 300 S

0.2 Objectives
The goal of the project was to program the ViperX 300 S to autonomously grasp a con-

tainer and pour liquid into a glass. This required ensuring that the arm’s movements were
coordinated with the real-time visual data from the camera to allow for accurate positioning
and manipulation.

I started from an existing base code that computed the robot’s equations of motion (EOM).
My task was to optimize this code to reduce computation time, ensuring the information

5

6 CONTENTS

processed by the camera could be used effectively by the motion algorithm, maintaining a
smooth flow of information between vision and movement.

Chapter 1

Equation of motion

1.1 Establishing the Equations of Motion (EOM)
The equations of motion for the ViperX 300 S robotic arm are derived using the Euler-

Lagrange formalism, which provides an efficient way to model the dynamics of multi-degree-
of-freedom systems. The arm has six rotational degrees of freedom (DoF), and the following
generalized Euler-Lagrange equation applies to each DoF:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= τk

Where:

• L = K − P is the Lagrangian, defined as the difference between the kinetic energy K

and potential energy P .

• qk are the generalized coordinates representing joint angles:

q =



θ1

θ2

θ3

θ4

θ5

θ6


• τk are the generalized torques applied to each joint:

τ =



τ1

τ2

τ3

τ4

τ5

τ6


7

8 CHAPTER 1. EQUATION OF MOTION

The kinetic energy K of the system is expressed as:

K = 1
2 q̇T D(q)q̇

Where D(q) is the inertia matrix. It describes the relationship between the velocities q̇ of
the robot’s joints and the kinetic energy. D(q) is a function of the robot’s configuration (i.e.,
the joint angles q) and encapsulates the mass distribution and geometrical properties of the
robot’s links.

The potential energy P is given by the sum of the gravitational forces acting on each link:

P =
n∑

i=1
mi · g · hi

n∑
i=1

dij(q) · q̈j +
∑
i,j

cijk(q) · q̇i · q̇j + gk(q) = τk

Where:

• dij(q) are the elements of the inertia matrix D(q), which encapsulates the inertial prop-
erties of the system.

• cijk(q) represents the Coriolis and centrifugal forces affecting the system.

• gk(q) is the gravitational vector, representing the gravitational forces acting on the system.

• q̈j is the joint acceleration, q̇i and q̇j are joint velocities.

• τk are the torques applied at each joint.

We can now express this equation in matrix form as:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ

Where:

• D(q) is the inertia matrix.

• C(q, q̇) is the Coriolis and centrifugal matrix.

• G(q) is the gravitational vector.

• τ is the vector of torques applied to the joints.

Note: The derivation of the equations of motion and the associated matrices D(q), C(q, q̇), and
G(q) were adapted from the research of Léo Bernard, University of Oldenburg (2023).

1.2. COMPUTING THE EQUATIONS OF MOTION 9

Figure 1.1: Program structure diagram

1.2 Computing the Equations of Motion
To compute the equations of motion for the robotic arm, we needed a method to calculate

the terms of the required matrices using a Python algorithm. The structure of the program is
illustrated in the following diagram:

All the geometrical and physical properties of the robot are stored in a Python script called
geometry_inertia.py. This file contains values such as the inertia matrices, the mass of
each part of the robot, and the transformation matrices between the different reference
frames of each robotic link.

Initially, the program followed a symbolic approach for computing the matrices. Using the
Sympy library, symbolic variables were defined to represent the angles of the robotâs degrees
of freedom and their derivatives.

Figure 1.2: Symbolic definition of joint angles and their derivatives

These symbolic elements were then loaded into the eom_6dof.py program, which took these
inputs and computed the D, C, and G matrices in symbolic form. However, this symbolic
approach led to significant computational delays, as the expressions for these matrices can
contain hundreds of complex terms, involving many iterations of trigonometric functions.

According to the documentation, the base program took up to 1 hour to compute the D, C,
and G matrices, and their evaluation time could take 1.6 seconds for every second of recorded
data. In practice, however, I encountered an issue where the program would never complete its
calculations, even after being left to run for multiple nights.

My task was to optimize this program to make it feasible for real-time use with the robotic
arm.

10 CHAPTER 1. EQUATION OF MOTION

1.2.1 Addressing the First Issue: Trigonometric Simplification
The first objective was to identify the functions in the program that caused unreasonably

long calculations. By adding time checks at key points in the code, I determined that the
trigsimp function (used to simplify trigonometric expressions) was causing the program to
hang when processing highly complex expressions.

To address this, I developed a new function called safe_trigsimp. This function attempts
to simplify the expression for a set time and aborts the operation if the time limit is exceeded.
This adjustment ensured that the program would no longer get stuck indefinitely.

Figure 1.3: The safe_trigsimp function

With this issue resolved, the next step was to find additional optimization methods to reduce
the overall calculation time.

1.2.2 Reducing Trigonometric Function Calls
The next goal was to reduce the number of trigonometric function evaluations in the sym-

bolic matrices. To achieve this, I created new symbolic variables to represent trigonometric
values of the joint angles. These new symbols replaced the multiple function calls within the
matrices, allowing for more efficient computation.

This was implemented using a dictionary that stored the relationships between the sym-
bolic variables and their corresponding trigonometric function calls. After computing the D
matrix, which is the simplest and is used to construct the terms of the C matrix, these
replacements were applied to streamline the calculation process.

1.2.3 Optimization of the C Matrix Calculation
The computation of the C matrix is notably the most complex among the three matrices

D(q), C(q, q̇), and G(q). This complexity arises because the C matrix depends on both the

1.2. COMPUTING THE EQUATIONS OF MOTION 11

Figure 1.4: Dictionary mapping trigonometric functions to symbolic variables

joint angles and their derivatives. The terms of the C matrix are computed using the following
formula:

cijk = 1
2

(
∂dkj

∂qi

+ ∂dki

∂qj

− ∂dij

∂qk

)

In the original code, the calculation of the C matrix was performed in a nested loop structure
as shown below:

C = Matrix(np.zeros((n_dof,n_dof))) # n_dof is equal to 6
for i in range(n_dof):

for j in range(n_dof):
Cki = 0
for dof in range(1, n_dof+1):

k = dof - 1
cijk = (1/2) * (diff(D[k,j], q[i]) + diff(D[k,i], q[j]) - diff(D[i,j], q[k]))
Cki += cijk * q_dot[j]

C[k,i] = Cki

This approach, however, led to inefficiency. The code was structured to calculate three
different partial derivatives of the same column of the D matrix within three nested loops,
which resulted in unnecessary calculations being repeated, consuming significant computational
resources.

To optimize this process, I introduced a new approach that precomputes the derivatives of
the D matrix and stores them in a 3D array. This allowed for faster retrieval of these terms
during the calculation of the C matrix, avoiding redundant calculations.

The optimized version starts by computing and storing the derivatives of the D matrix in
a 3D Jacobian array:

12 CHAPTER 1. EQUATION OF MOTION

Creates a 3D Jacobian matrix of D derivatives to simplify the computation of C
div_matrix = np.zeros((n_dof, n_dof, n_dof), dtype=object)
for i in range(n_dof):

for j in range(n_dof):
print("Coefficient", i, j)
for k in range(n_dof):

div_matrix[i,j,k] = diff(D[i,j], q[k])

Replaces symbols with trigonometric functions
div_matrix[i,j,k] = expression_sub(div_matrix[i,j,k], replacement)

By storing the partial derivatives in div_matrix, we can directly fetch the required terms
during the calculation of the C matrix. This approach significantly reduced the computation
time:

C = Matrix(np.zeros((n_dof, n_dof)))
for i in range(n_dof):

for j in range(n_dof):
print("ck:", i, j)
Cki = 0
for dof in range(1, n_dof+1):

k = dof - 1
cijk = (1/2) * (div_matrix[k,j,i] + div_matrix[k,i,j] - div_matrix[i,j,k])
Cki += cijk * q_dot[j]

C[k,i] = Cki

This method greatly reduced the number of repetitive calculations by precomputing the
derivatives, thus streamlining the evaluation of the C matrix. This optimization was a key step
in improving the overall efficiency of the algorithm for calculating the equation of motion.

1.2.4 Optimization Results
The optimization techniques applied to the symbolic computation of the D, C, and G

matrices yielded significant improvements in runtime and computational efficiency. Initially,
the program used a symbolic approach to define and compute the matrices, which resulted in
extensive calculation times due to the complexity of the trigonometric and algebraic expressions
involved.

The optimizations were achieved through two primary strategies:

• Reducing redundant calculations by storing all derivative terms of the inertia matrix D(q)
in a 3D array, allowing for efficient access to these terms during the computation of the
Coriolis matrix C(q, q̇).

1.2. COMPUTING THE EQUATIONS OF MOTION 13

• Simplifying the symbolic expressions by introducing a time-limited trigonometric simpli-
fication function, ensuring that overly complex expressions do not stall the program.

After implementing these methods, the symbolic matrices were transformed into numerical
functions using the lambdify method from the SymPy library, which allowed the matrices to be
evaluated directly as functions of q and q̇.

1.2.4.1 Time Reduction for Matrix Construction

The most significant improvement was observed in the total runtime of the eom_6dof.py
script. Before optimization, constructing the matrices took approximately 1 hour. After opti-
mization, this time was reduced to 17 minutes â a reduction of over 70%.

1.2.4.2 Evaluation Time Improvement

In addition to matrix construction, the evaluation of the matrices (i.e., converting symbolic
expressions into numerical values during real-time operation) was greatly optimized. The eval-
uation time for the D, C, and G matrices after optimization was only 9% of the time required
before optimization, making the system more responsive to real-time inputs from the camera
and sensor feedback.

Figure 1.5: Graph of the result of the optimization of the program in term of time

The reduced computation and evaluation times directly impacted the performance of the
robot’s control system. Prior to optimization, the lengthy computation times hindered the
robot’s ability to process information from the camera and execute movements in real-time.

14 CHAPTER 1. EQUATION OF MOTION

By improving the efficiency of matrix calculations, the robot can now exchange information
with the camera and other sensors in a timely manner. This ensures smoother and more respon-
sive motion control, making the system viable for real-time operations like object manipulation,
as initially intended in the project.

1.2.5 Conclusion of the Optimization Phase
The optimizations carried out on the symbolic computation process were crucial for en-

abling the robotic arm to function effectively within the project’s real-time constraints. By
reducing both the matrix construction time and the evaluation time, the robot is now capable
of integrating the camera data into its movement calculations. This improvement makes it pos-
sible for the robot to execute complex tasks, such as grasping objects and performing precision
movements, in a more reliable and efficient manner.

Chapter 2

Integration Model for Forward
Dynamics

In this chapter, we discuss the process of developing and refining a model for the forward
dynamics of the robotic arm to compute the state vector q (degrees of freedom) from the
joint torques τ . This was a challenging task that required several iterations to find a suitable
approach, starting from the base matrix equation of motion.

2.1 Initial Forward Dynamics Model
We remind that the components of the state vector q are represented by

q =



θ1

θ2

θ3

θ4

θ5

θ6


and its derivative is given by

q̇ =



θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6


.

We began with the robot’s equation of motion in its standard form:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ

15

16

From this equation, we derived the expression for the acceleration of the state vector q as
follows:

q̈ = D(q)−1 (τ − C(q, q̇)q̇ − G(q))

To facilitate numerical integration, we defined the state vector Q as:

Q =
(

Q1

Q2

)

where:

Q1 = q and Q2 = q̇

The derivatives of these components are:

Q̇1 = Q2

Q̇2 = D(q)−1 (τ − C(q, q̇)Q2 − G(q))

With these elements in place, we used the odeint function to numerically integrate the
equations of motion, using the initial conditions of q and the torque τ as inputs.

2.2 Initial Results and Issues

Despite setting up the integration process based on the equations, the results indicated a
significant flaw in the model. The computed solutions tended to diverge rapidly as soon as they
started increasing in value, as shown in the graph below.

2.2. INITIAL RESULTS AND ISSUES 17

Figure 2.1: Computation of the theta components over time

Its derivative is shown in the following graph:

18

Figure 2.2: Computation of the theta dot components over time

In these graphs, the theoretical model of the joint angles is shown in red, while the compu-
tation of the forward dynamics is shown in blue.

This divergence suggested that our model failed to account for certain physical phenomena,
specifically the friction forces acting on the system. Without incorporating friction, the values
grew uncontrollably, resulting in an unrealistic simulation of the robot’s motion.

2.3 Incorporating Friction into the Model
To address this issue, we modified the equation of motion to include friction forces:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ − τfriction(q̇)

We defined the frictional torque τfriction(q̇) as a linear function of velocity:

τfrictioni
(θ̇i) = ai · θ̇i + bi

for each of the six components of the q vector.
However, in practice, the friction behavior depended on the sign of the velocity (q̇), leading

to different linear equations for acceleration and deceleration. We formulated these conditions
as follows:

If θ̈ > 0, τfrictioni
= a+

i · θ̇i + b+
i

2.4. REVISED MODEL WITH FRICTION CONSIDERATION 19

Figure 2.3: Representation of the friction torque in relation of the angle speed

If θ̈ < 0, τfrictioni
= a−

i · θ̇i + b−
i

We created graphs of the torque τ as a function of q̇ and identified these linear friction
components for each element of the system.

2.4 Revised Model with Friction Consideration

Upon reattempting to compute the equation of motion with the new friction model, the
results showed improvements. The solution no longer diverged as rapidly, indicating that our
friction model had a stabilizing effect. However, the function still did not accurately follow the
theoretical trajectory of the robot’s motion.

20

Figure 2.4: Computation of the theta components over time with the new friction model

Figure 2.5: Computation of the theta dot components over time with the new friction model

2.5 Final Attempt: Swarm Optimization Approach
During the final weeks of the project, we employed a swarm optimization method to further

refine the model. Using the pyswarms library, we applied particle swarm optimization to identify

2.5. FINAL ATTEMPT: SWARM OPTIMIZATION APPROACH 21

the best parameters for the friction model that would yield a more accurate representation of
the equation of motion.

Figure 2.6: Computation of the theta components over time with the swarm optimization

Figure 2.7: Computation of the theta dot components over time with the swarm optimization

The results showed some improvements, with the model roughly following the expected
curve for the first and third component of the system, albeit for a limited duration.

22

2.6 Future Work and Recommendations
Despite these advancements, the optimized model did not entirely resolve the discrepancies,

particularly over longer time periods. There are several avenues for further exploration to
enhance the accuracy of the equation of motion, including:

• Applying the simplex method to fine-tune the friction model parameters.

• Exploring disturbance observer techniques to compensate for unmodeled dynamics
and external disturbances.

• Investigating non-linear friction models that might better capture the real behavior of
the system.

2.7 Conclusion of Integration Model Development
The development of an accurate integration model for the robot’s forward dynamics proved

to be a complex and iterative process. While significant progress was made, especially with the
inclusion of friction and swarm optimization, further refinement is necessary to achieve a fully
reliable model. The groundwork laid during this project a few basis for continued investigation
into more sophisticated methods to model and control the robotic system’s dynamics. But
there are still a lot of work and experimentation that need to be done.

Conclusion

The first part of my project, focusing on the optimization of the equation of motion code,
was ultimately a success. I was able to significantly reduce the computation time, making
the code much more efficient and viable for real-time communication with the camera system.
This improvement was crucial for enabling the robotic arm to interact dynamically with its
environment, laying a solid foundation for future developments.

However, there is still considerable work to be done on the forward dynamics aspect of
the project. Despite testing multiple methods, we have not yet achieved a fully successful
model. This is to be expected, as finding the correct forward dynamics model often involves
a process of trial and error, requiring careful adjustments and testing to identify the most
accurate approach.

One of the main challenges during the optimization phase was analyzing the existing code
to identify the points where it was getting stuck. This was a critical task because each code run
could take several hours, and a wrong decision could lead to significant time losses. Therefore,
making strategic choices on what information to print and analyze was key to understanding
the bottlenecks and improving the performance.

For the forward dynamics phase, the primary difficulty lies in finding the right model and
thoroughly analyzing why certain models fail to perform as expected. This part of the project
remains a work in progress.

Ultimately, this internship has been a valuable learning experience. It not only deepened my
technical skills in optimization and forward dynamics but also enhanced my problem-solving
abilities, particularly in analyzing code and refining models for robotic systems. I know this
experience will serve a lot of uses in my future career.

23

24

Acknowledgements

I would like to express my sincere gratitude to Professor Andrea Rauh, who not only gave
me the opportunity to work at the University of Oldenburg but also provided valuable guidance
and support throughout my internship. His insights and encouragement helped me navigate
through the many challenges I faced during this project.

I would also like to thank Professor Frederike Bruns for her assistance with various coding-
related questions and for her willingness to share her expertise whenever I encountered technical
difficulties.

Finally, I am grateful to Léo Bernard, whose previous work laid the foundation for my
internship project. His detailed documentation made it easier for me to understand the key
elements of the project and build upon his research effectively.

25

26

Bibliography

[1] L. Bernard, Establishing the equation of motion of a ViperX 300S robotic arm, 2024.

[2] NumPy Developers, NumPy: Fundamental package for scientific computing with Python,
https://numpy.org/

[3] SciPy Developers, SciPy: Scientific computing tools for Python, https://scipy.org/

27

28 BIBLIOGRAPHY

Code Documentation for ViperX
Equations of Motion (EOM)

Description
This code handles the generation of equations of motion (EOM) for the ViperX robotic arm.

It consists of three main components:

• geometry_inertia.py: Used in conjunction with eom_6dof.py to create the EOM ma-
trices in symbolic form before converting them into numerical functions.

• eom_6dof.py: Works with the inertia and geometry calculations to derive the dynamic
equations for a 6-degree-of-freedom (6-DOF) robotic system, focusing on transforming
these symbolic equations into numerical models.

• inverse_integration.py: Focuses on forward dynamics, using the previously generated
EOM to simulate the robot’s behavior over time. It applies numerical integration methods
to predict the system’s state based on applied forces or torques. It then plots a graph
comparing the the computed equation to a theoretical model

• inverse_integration_swarm.py: Serves the same purpose but attempts a swarm par-
ticles approach to solve the problem.

Disclaimer
To utilize the numerical functions generated by this code, ensure that the you’re starting

the code in the directory:
robotic_arm-main-ros2_arm_ws_17m/robotic_arm-main-ros2_arm_ws_17m/ros2_arm_ws_17m/src/my_package

If you intend to work with different files or configurations, you will need to redefine the file
paths accordingly.

Also note that the forward integrations pis still a work in progress and doesn’t give a
satisfying result yet.

29

30 BIBLIOGRAPHY

.1 Descriptions

geometry_inertia.py
• T_inv()

– Purpose: Computes the inverse of a transformation matrix.
– Utility: Converts coordinate frames in kinematic chains.

• T()

– Purpose: Constructs a transformation matrix from given parameters.
– Utility: Describes the relative position and orientation of robotic links.

• expression_sub()

– Purpose: Substitutes symbolic expressions with specified values or simplified forms.
– Utility: Converts symbolic equations into a form suitable for numerical evaluations.

eom_6dof.py
• timeout_handler()

– Purpose: Handles timeouts during long-running computations.
– Utility: Ensures efficient use of computational resources.

• safe_trigsimp()

– Purpose: Safely simplifies trigonometric expressions.
– Utility: Enhances the stability of numerical calculations.

• V()

– Purpose: Computes the potential energy of the robotic system.
– Utility: Used in forming the Lagrangian for deriving equations of motion.

• Jv() and Jω()

• Purpose: Calculate the Jacobian matrices for linear (Jv) and angular (JÏ) velocities.

• Utility: Map joint velocities to end-effector velocities, essential for robotic control.

m2f_subst()

• Purpose: Transforms a symbolic matrix into a numerical function

.1. DESCRIPTIONS 31

• Dynamic Functions (G_func(), D_func(), C_func(), CG_func())

– G_func(): Computes the gravitational force vector.
– D_func(): Represents the inertia matrix.
– C_func(): Represents the Coriolis force matrix.
– CG_func(): Combines Coriolis and gravitational forces.

inverse_integration.py
– tau_frot()

∗ Purpose: Calculates the frictional torque in the robot’s joints based on the model
presented in the report.

∗ dy()
· Purpose: Determines the derivative of the system’s state vector for numerical

integration.

inverse_integration_swarm.py
The following coefficients are used to define the torque equations for both positive
and negative accelerations:

∗ a0, b0, m0, p0, ... , a5, b5, m5, p5
Purpose: These coefficients describe the linear relationship between the torque and
the system state, aiding in more accurate simulation of dynamic behavior.

7
Version du 05/04/2019

RAPPORT D’EVALUATION
ASSESSMENT REPORT

Merci de retourner ce rapport par courrier ou par voie électronique en fin du stage à :

At the end of the internship, please return this report via mail or email to:

 ENSTA Bretagne – Bureau des stages - 2 rue François Verny - 29806 BREST cedex 9 – FRANCE

 00.33 (0) 2.98.34.87.70 / stages@ensta-bretagne.fr

I - ORGANISME / HOST ORGANISATION

NOM / Name ___

Adresse / Address ___

 __

Tél / Phone (including country and area code) _______________________________________

Nom du superviseur / Name of internship supervisor

 __

Fonction / Function __

Adresse e-mail / E-mail address __

Nom du stagiaire accueilli / Name of intern

II - EVALUATION / ASSESSMENT

Veuillez attribuer une note, en encerclant la lettre appropriée, pour chacune des caractéristiques

suivantes. Cette note devra se situer entre A (très bien) et F (très faible)

Please attribute a mark from A (excellent) to F (very weak).

MISSION / TASK

❖ La mission de départ a-t-elle été remplie ? A B C D E F

 Was the initial contract carried out to your satisfaction?

❖ Manquait-il au stagiaire des connaissances ? oui/yes non/no

Was the intern lacking skills?

Si oui, lesquelles ? / If so, which skills? ___

ESPRIT D’EQUIPE / TEAM SPIRIT

❖ Le stagiaire s’est-il bien intégré dans l’organisme d’accueil (disponible, sérieux, s’est adapté au

travail en groupe) / Did the intern easily integrate the host organisation? (flexible, conscientious,

adapted to team work)

 A B C D E F

Souhaitez-vous nous faire part d’observations ou suggestions ? / If you wish to comment or make a

suggestion, please do so here

COMPORTEMENT AU TRAVAIL / BEHAVIOUR TOWARDS WORK

Le comportement du stagiaire était-il conforme à vos attentes (Ponctuel, ordonné, respectueux,

soucieux de participer et d’acquérir de nouvelles connaissances) ?

Carl von Ossietzky Universität Oldenburg

Ammerländer Heerstraße 114-118
26111 Oldenburg, GERMANY

+49 441 798-4195

Prof. Dr.-Ing. habil. Andreas Rauh and Dr.-Ing. Friederike Bruns
Professor / Postdoctoral Researcher

andreas.rauh@uni-oldenburg.de; friederike.bruns@uni-oldenburg.de

Luc-André Terrine

X

M. Terrine integrated well into the group and was overall reliable

X

The overall intership can be evaluated as good, with slight tendency to grade C due delays and imprecision in report preparation

mailto:stages@ensta-bretagne.fr

Did the intern live up to expectations? (Punctual, methodical, responsive to management
instructions, attentive to quality, concerned with acquiring new skills)?

ABCDEF

Souhaitez-vous nous faire part d'observations ou suggestions ?/ Ifyou wish to comment or make a
suggestion, please do so here M. Terrine showed good willingness to aquire new knowledge and to familiarize with his

subject. However, he had to be remined several times to search actively for discussions with his supervisors.

INITIATIVE — AUTONOMIE /INITIATIVE— AUTONOMY

Le stagiaire s'est rapidement adapte ä de nouvelles situations ? ABZDEF
(Proposition de solutions aux problemes rencontres, autonomie dans le travail, etc.)

Did the intern adapt well to new situations? ABÜDEF
(eg. suggested solutions to problems encountered, demonstrated autonomy in his/her job, etc)

Souhaitez-vous nous faire part d'observations ou suggestions ?/ Ifyou wish to comment or make a
suggestion, please do so here He worked very autonomously, however, the efficiency of his work could have been

much better if he would have searched more actively for help. Especially, given recommendations to improve the submitted

presentation slides and the report were not considered. The report was submitted with a delay of 4 weeks and will be difficult to use for follow-up

CULTUREL - COMMUNICATION / CULTUREL — COMMUNICATION

Le stagiaire etait-il ouvert, d'une maniere generale, ä la communication ?
Was the intern open to listening and expressing himself/herself?

students due to a lack of precision.

Ai3CDEF

Souhaitez-vous nous faire part d'observations ou suggestions ?/ Ifyou wish to comment or make a
suggestion, please do so here see above

OPINION GLOBALE / OVERALL ASSESSMENT

La valeur technique du stagiaire etait : A)B C D E F
Please evaluate the technical skills of the intern:
Despite the shortcomings mentioned above, the overall grade is B as the student tried to continuously improve his technical skills. However,

III - PARTENARIAT FUTUR / FUTURE PARTNERSHIP his code documentation could have been much better.

❖ Etes-vous prei ä accueillir un autre stagiaire I'an prochain ?

Wouldyou be willing to host another intern nextyear? oui/yes n non/no

Fait ä Oldenburg

In

Carl von Ossietticy
Universität
Oldenburg

je 18/10/2024

, an

Fakultät II
Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik
Abt. Verteilte Regelung in vernetzten Systemen
Prof. Dr. Andreas Rauh
0-26111 Oldenburg

Signature Entreprise Signature stagiaire
Company stamp Intern 's signature

re'a.) (Prof. Dr.-Ing. A. Rauh)

' (Dr. F. Bruns)

8
Version du 05/04/2019

Merci pour votre coopdration
We thank you very much for your cooperation

