
SLAM Data Fusion for Autonomous Vehicles

Internship report

Expleo Group
Autonomous Driving

by REN Kevin

FISE 2024 Autonomous Robotics

ENSTA Bretagne

August 25, 2024

Supervised by

Mohamed Outahar
Internship Supervisor

Luc Jaulin
Academic Supervisor



Acknowledgments. I would like to express my sincere gratitude to Mohamed Out-
ahar, my supervisor, for his invaluable support and insightful guidance throughout
this project. His mentorship was crucial to the successful completion of this study.

I am also deeply thankful to Mr. Jude Jbara Chakhtoura and Mr. Bilal Daass for
their invaluable contributions and assistance. Their deep knowledge and willingness
to help have significantly enhanced the quality and depth of this study.

Additionally, I wish to extend my sincere thanks to the entire Autonomous Dri-
ving team. Their collaborative spirit, dedication, and encouragement have provided
a supportive environment that greatly facilitated the completion of this project. The
team's collective expertise and enthusiasm were crucial in overcoming challenges and
refining the methods.

I would also like to express my deep appreciation to my teacher, Luc Jaulin,
whose expertise and teaching have greatly contributed to my understanding of this
field. His passion for the subject and his dedication to education have been a con-
stant source of inspiration.

I am deeply grateful for their support and encouragement.



Résumé
La localisation et la cartographie simultanées (SLAM) représentent un défi
fondamental dans le domaine de la robotique et des systèmes autonomes. Le
SLAM implique un processus complexe où un robot ou un véhicule autonome
évolue dans un environnement inconnu tout en construisant simultanément une
carte de ses environs et en déterminant sa position précise au sein de cette carte.

Bien que de nombreux algorithmes de SLAM utilisant un seul capteur puis-
sent atteindre une grande précision, aucun capteur unique ne peut pleinement
capturer les complexités d'un environnement réel, notamment dans le cadre de
la conduite autonome. Chaque type de capteur, malgré ses avantages, présente
des limitations inhérentes. C'est ici que la fusion de capteurs devient cru-
ciale. En combinant les données de plusieurs capteurs, tels que le LiDAR et
les caméras, les points forts d'un capteur peuvent compenser les faiblesses d'un
autre, conduisant ainsi à des solutions SLAM plus robustes et fiables.

Ce rapport se concentre principalement sur la fusion des algorithmes de
SLAM basés sur la vision et le LiDAR. Étant donné la présence quasiment
systématique des caméras et des capteurs LiDAR dans les véhicules modernes,
nous allons nous focaliser sur ces capteurs lors du développement de la méthode
de fusion. L'objectif de cet article est de développer une méthode de fusion
�tightly coupled� pour améliorer les performances du SLAM, en particulier
grâce à l'intégration des données LiDAR et caméra dans une optimisation jointe
[17].

Mots clés : SLAM, fusion, localisation, cartographie, LiDAR, vision

Abstract
Simultaneous Localization and Mapping (SLAM) is a fundamental chal-

lenge in robotics and autonomous systems. SLAM involves the complex process
of a robot or autonomous vehicle moving through an unfamiliar environment
while simultaneously constructing a map of its surroundings and determining
its precise location within that map.

While many SLAM algorithms using a single sensor can achieve high accu-
racy, no single sensor can fully capture the complexities of a real-world environ-
ment, especially in autonomous driving. Each sensor type, despite its strengths,
has inherent limitations. This is where sensor fusion becomes critical. By com-
bining data from multiple sensors, such as LiDAR and cameras, the strengths
of one sensor can compensate for the weaknesses of another, leading to more
robust and reliable SLAM solutions.

This report focuses primarily on the fusion of visual and LiDAR-based
SLAM algorithms. Given the widespread use of cameras and LiDAR in modern
vehicles, we focused on these sensors for the fusion approach to improve SLAM
precision and reliability. The goal of this article is to develop a tightly coupled
fusion method to improve SLAM performance, particularly through the inte-
gration of LiDAR and camera data in a joint optimization [17].

Key words : SLAM, fusion, localization, mapping, LiDAR, vision



Table of contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Compagny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Formulation of the SLAM problem . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Variable Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 SLAM formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Solutions to the SLAM problem . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 EKF-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 FastSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 GraphSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 GraphSLAM Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Theoretical Aspects of the Graph SLAM Problem . . . . . . . . . 12

3.4 Solutions comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Types of Fusion Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Visual SLAM: ORB-SLAM 3 . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Map representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Local Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.5 Loop Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.6 Multi-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 LiDAR SLAM: LOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 LiDAR operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.3 Finding Feature Point Correspondence . . . . . . . . . . . . . . . . 22
4.3.4 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.5 LiDAR Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Fusion Algorithm: TVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Fusion of Visual-LiDAR Measurements . . . . . . . . . . . . . . . . 24
4.4.3 Limits of the TVLO method . . . . . . . . . . . . . . . . . . . . . . 25

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 ORB-SLAM 3 initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Graph fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Table of contents



6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix A Non-linear least square problem . . . . . . . . . . . . . . . 36

A.1 Gauss-Newton Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2 Levenberg-Marquardt Algorithm . . . . . . . . . . . . . . . . . . . . . . . 36

Appendix B Distance from a point to a set . . . . . . . . . . . . . . . . . 38

Appendix C Bundle-Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix D Task Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table of contents 4



Introduction

Simultaneous Localization and Mapping (SLAM) stands as a cornerstone challenge
in the domain of robotics and autonomous systems. SLAM entails the complex
process whereby a robot or autonomous vehicle navigates through an environment
while concurrently constructing a map of the surroundings and determining its pre-
cise location within that map. This task, recalling the 'chicken or the egg' dilemma,
necessitates the robot to solve for both the map and its own location simultaneously
without prior knowledge of either.

The significance of SLAM cannot be understated, as it underpins the autonomous
navigation capabilities across a wide range of applications�from household robots
that tidy our living spaces to unmanned aerial vehicles that explore uncharted
territories. The evolution of SLAM has been propelled by the convergence of advance-
ments in computational geometry, computer vision, the availability of cost-effective
and high-quality sensors.

At its core, SLAM is an inference problem that employs probabilistic models
to estimate the robot's trajectory and the layout of the environment. Various algo-
rithms have been developed to tackle SLAM, with popular approaches including
particle filters, extended Kalman filters, and GraphSLAM, each offering a unique
balance between accuracy and computational efficiency.

SLAM remains a fertile ground for active research and development, continually
pushing the boundaries of what autonomous systems can achieve. Many SLAM solu-
tions have been developed using sensors such as LiDAR, cameras, GNSS, and IMU.
While these algorithms are effective, they are not yet sufficient for fully autonomous
driving in urban environments. This limitation has led to the exploration of algo-
rithm fusion, which aims to increase the accuracy of vehicle pose estimation and
enhance the mapping process.

This article begins by delving into the mathematical foundations of SLAM and
exploring the diverse algorithms used to solve it in Section 2 and 3. This is followed
by a detailed discussion of the fusion method applied in Section 4 and 5. Sections
6 present the experiments and results, ending with a final conclusion.

5 Introduction



1 Compagny

Expleo is a global company specializing in engineering, consulting, and digital ser-
vices, with a focus on industries such as aerospace, automotive, defense, energy,
finance, life sciences, and transportation. With over 30 years of experience, Expleo
supports its clients in their digital transformation by providing innovative solutions
that optimize industrial processes, improve the quality of products and services.

Expleo's origins trace back to Assystem Technologies, which was the R&D sub-
sidiary of Assystem. This heritage has allowed Expleo to develop its research and
development division. The company continues to prioritize R&D as a core compo-
nent of its strategy, leveraging its expertise to stay at the forefront of technological
advancements.

Today, Expleo operates with a global workforce of over 19,000 employees across
more than 30 countries. This extensive network allows the company to combine
local expertise with a global perspective, making it a reliable partner for businesses
aiming to enhance their competitiveness and accelerate their digital transformation.

The company's commitment to R&D is evident in its continuous efforts to develop
and integrate new technologies, ensuring that its clients benefit from the most
advanced and effective solutions available. Through its robust R&D initiatives,
Expleo not only addresses the current needs of its clients but also anticipates future
challenges and opportunities, positioning itself as a leader in innovation and tech-
nological excellence.

2 Formulation of the SLAM problem

The SLAM is a process enabling a robot to construct a spatial map of their envi-
ronment while concurrently determining their own position within it. This process
entails real-time estimation of both the robot's trajectory and the locations of envi-
ronmental landmarks, all without relying on any prior knowledge of the robot's
starting point.

2.1 Variable Notation

Consider a robot moving within an environment. The robot is capable of detecting
landmarks through its sensors, as shown in Figure 1. Let 𝑘 be a real number. As
described in [4] for the system at time 𝑘, the following is defined :

¡ xk the state vector of the robot describing its location and orientation at
time k

¡ uk the control vector applied at time k¡ 1 to drive the vehicle to a state xk

¡ mi the vector describing the location of the ith landmark whose true location
is assumed time invariant

Formulation of the SLAM problem 6



¡ zik the observation vector from the ith landmark at time k. To indicate that
all observations are being considered simultaneously, the vector 𝑧𝑘 is denoted.

¡ X0:k= fx0; � � �;xkg the history of robot states

¡ m= fm0; � � �;mng the set of all landmarks

¡ Z0:k= fz1; � � �; zkg the set of all landmark observations

Figure 1. The SLAM problem. The true locations of both robot and landmarks are never
known [4]. Notations are explained below.

2.2 SLAM formulation

The SLAM problem can be formulated in probabilistic terms :

P (xk;mjZ0:k;U0:k;x0) (1)

In (1) x0 will be omitted to lighten the notation. The joint posterior density of
landmark locations and vehicle state at time 𝑘, given the recorded observations,
control inputs up to and including time 𝑘, along with the initial vehicle state, is
described by this probability distribution and can be denoted as bel(xk;m) :

bel(xk)=P (xk;mjZ0:k;U0:k;x0) (2)

Additionally, we define pred(xk) as :

pred(xk)=P (xk;mjZ0:k¡1;U0:k;x0) (3)

This represents the probability distribution of xk and m before a measurement is
taken. Hence, this distribution is termed the predicted distribution. To efficiently
estimate this distribution, a recursive formulation is necessary. For this purpose, we
will define the observation and control models.

7 Section 2



Assuming that the state transition follows a Markov process, meaning that the
state at time k only depends on its state at time k¡ 1 and the control at time k,
the control model can be described as follows :

P (xkjxk¡1;uk) (4)

The observation model describes the probability of observing zk assuming we know
xk and m :

P (zkjxk;m) (5)

Using Bayes formula in (1) the so-calledmeasurement-update equation is derived :

bel(xk;m) =
P (zkjxk;m)

P (zkjZ0:k¡1;U0:k)
pred(xk) (6)

And expanding (3) yields the time-update equation :

pred(xk) =

Z
P (xkjxk¡1;uk)P (xk¡1;mjZ0:k¡1;U0:k¡1)dxk¡1

=

Z
P (xkjxk¡1;uk)bel(xk¡1)dxk¡1 (7)

Thereby the SLAM algorithm can be implemented in a standard two-step recursive
prediction-correction (time-update and measurement-update) form.

3 Solutions to the SLAM problem

Three main families of solutions to SLAM problems exist: extended Kalman filter
SLAM (EKF-SLAM), FastSLAM and GraphSLAM. Particularly, the EKF-SLAM
and GraphSLAM assume Gaussian noise on sensor data, while FastSLAM theoreti-
cally operates with any type of noise. In the following, these three methods will be
briefly explained, followed by a comparison at the end of this section.

3.1 EKF-SLAM

As outlined in section 2.2, the SLAM problem can be decomposed into two main
parts: the time-update and the measurement-update, similarly to the EKF frame-
work. Consequently, under the assumption of Gaussian noise, the SLAM formulation
can be adjusted to fit EKF formulation as follows :

P (xkjxk¡1;uk)!xk= f(xk¡1;uk)+wk

P (zkjxk;m)!zk=h(xk;m)+vk
(8)

Solutions to the SLAM problem 8



where f denotes the system's kinematics, accompanied by white noisewk associated
with the motion model characterized by covariance Qk. Additionally, h denotes the
observation model, while vk represents white noise associated with observations,
characterized by covariance Rk.

Similar to the EKF, the hat symbol signifies the mean function and the following
notation will be adopted :

�̂kjk=E(�kjZ0:k;U0:k)
�̂kjk¡1=E(�kjZ0:k¡1;U0:k)

The covariance of (xk;m)T is denoted by P�j�. Subsequently, the estimation of the
robot and landmark poses is processed by the EKF.

Time-update
The time-update step uses the motion model to predict the state xk knowing

the input u at time k :

x̂kjk¡1 = f(x̂k¡1jk¡1;uk) (9)
Pk jk¡1 = Jf TPk¡1jk¡1Jf +Qk (10)

where Jf is the Jacobian of f evaluated at x̂k¡1jk¡1. The state vector is (xk;m)T .
However, since landmarks have no motion, there is no need to perform a time-update
for landmarks.

Observation-update
The observation-update step uses the measurements to correct the prediction,

as the prediction is typically less accurate : 
x̂k jk
m̂k

!
=

 
x̂k jk¡1
m̂k¡1

!
+Wk(zk¡h(x̂kjk¡1; m̂k¡1))

Pk jk=Pk jk¡1¡WkSkWk

T

Sk= Jh
TPk jk¡1Jh+Rk

Wk=Pk jk¡1JhSk
¡1

(11)

where Jh is the Jacobian of h evaluated at (x̂kjk¡1; m̂k¡1).

3.2 FastSLAM

The FastSLAM algorithm constitutes the second family of SLAM solutions, intro-
duced by Montemerlo et al. [13]. It represents a significant conceptual shift in the
design of recursive probabilistic SLAM, as it does not necessitate the assumption of
Gaussian noise. FastSLAM is based on particle filters, the details of which will not
be provided here.

The drawback of particle filters is the need to generate enough particles to
adequately cover the problem space. Given the dimensionality of the state space in
the SLAM problem, this would require an excessive number of particles. However, by
employing Rao-Blackwellization (RB), it is possible to drastically reduce the number

9 Section 3



of particles required. Given the product rule P (x1; x2)=P (x2jx1)P (x1), if P (x2jx1)
is known, only P (x1) needs to be sampled. The joint distribution can therefore be
represented as fw(i); x1

(i); P (x2jx1
(i))g16i6n where i denotes the particle number and

w(i) the weight associated with the particle i. Applying this property to the SLAM
problem yields :

P (X0:k;mjZ0:k;U0:k)=P (mjX0:k;Z0:k)P (X0:kjZ0:k) (12)

and the joint distribution is represented by fwk
(i);X0:k

(i) ; P (mjX0:k
(i) ;Z0:k)g16i6n. It's

worth noting that the probability distribution is on the trajectory X0:k rather than
xk. That leads to the independence of each landmarks i.e. P (mjX0:k; Z0:k) =Q
i=0

n
P (mijX0:k;Z0:k). The map is now represented as a set of independent Gaus-

sian noises. This representation transforms the joint map covariance from quadratic
complexity to linear complexity. The recursive estimation is conducted through
particle filtering for pose states, while the EKF is employed for the map states [4].
Moreover in particle filtering, the robot pose is assumed to be known, as each particle
has a precise pose, unlike in EKF-SLAM where the vehicle pose is represented by
a Gaussian distribution. This simplifies map construction, as there is no longer
uncertainty on the vehicle pose affecting landmark poses.

We assume that, at time k¡ 1 the joint state is represented by fwk¡1
(i) ;X0:k¡1

(i) ;
P (mjX0:k¡1

(i) ;Z0:k¡1)g16i6N. At each time-step k particles are drawn from a pro-
posal distribution � and a weight wk

(i) to compensate for any discrepancy. The
general form of a RB particle filter is given by [4]

1. For each particle compute the proposal distribution and draw a sample from
it1 :

xk
(i)��(xkjX0:k¡1

(i) ;Z0:k;uk)

X0:k
(i)= fX0:k¡1

(i) ;xk
(i)g

2. Weight samples according to :

wk
(i)=wk¡1

(i) P
¡
zkjX0:k

(i)
;Z0:k¡1

�
P
¡
xk
(i)jxk¡1

(i)
;uk

�
�(xk

(i)jX0:k¡1
(i) ;Z0:k;uk)

3. If a certain condition is met (which can be defined based on specific criteria,
as no official condition exists), resampling is performed. It selects particles,
with replacement, from the initial set fX0:k

(i)gi including their associated maps,
with the probability of selection proportional to wk

(i). Then the selected par-
ticles are assigned a uniform weight of wk

(i)=1/N .

4. For each particle, an EKF update is performed on the observed landmarks
as a simple mapping operation with known vehicle pose.

1. FastSLAM has two versions and the proposal distribution � differs depending on the version used.

Solutions to the SLAM problem 10



3.3 GraphSLAM

3.3.1 GraphSLAM Basic Idea

The last family of SLAM solutions is GraphSLAM, which was first introduced by S.
Thrun and M. Montemerlo in [18]. Figure 2 illustrates the principle of GraphSLAM.
Each node represents robot poses (xi)i or map points (mi)i. Edges correspond
to motion constraints or measurement constraints. The former links two vehicle
poses thanks to proprioceptive sensors, while the latter links robot pose and map
point pose thanks to exteroceptive sensors. Each edge in the graph represents a
nonlinear constraint, which, as we shall see later, reflects the negative log likelihood
of the measurement and motion models. Adding such constraints to the graph is
straightforward for GraphSLAM, involving minimal computation. The sum of all
constraints results a nonlinear least squares problem [9, 18].

Figure 2. Illustration of GraphSLAM with 5 poses and two map points: Nodes in the
graph represent vehicle poses and map point locations. Solid edges connect consecutive
robot poses, obtained with proprioceptive sensors, while dashed edges connect poses with
features obtained with exteroceptive sensors.

The GraphSLAM algorithm is composed of two main blocks: the front-end and
the back-end.

The graph construction (front-end) is responsible for processing sensor data
and extracting relevant information to build the graph representation of the envi-
ronment. It involves tasks such as feature extraction, data association, and the
generation of constraints between robot poses and landmarks based on sensor mea-
surements. Feature extraction typically involves identifying distinctive features in
sensor data, such as visual keypoints in camera images or distinctive points in lidar
scans. Data association is the process of associating observed features with previ-
ously mapped landmarks or creating new landmarks if necessary.

11 Section 3



The graph optimization (back-end) is responsible for optimizing the graph
representation of the environment to estimate the most likely trajectory of the
robot and the positions of landmarks. It involves solving a large-scale optimiza-
tion problem to minimize the error between predicted and observed measurements,
typically formulated as a nonlinear least squares problem. The back end algorithm
iteratively refines the estimates of robot poses and landmark positions by adjusting
their values to minimize the overall error in the graph. This optimization takes
into account the uncertainties in sensor measurements and the constraints between
different elements in the graph.

3.3.2 Theoretical Aspects of the Graph SLAM Problem

Given the notation in (8) and assuming Gaussian noises, the kinematic and obser-
vation models can be written as :

p(xkjxk¡1; uk)= const: exp
�
¡1
2
(xk¡ f(xk¡1; uk))TQk

¡1(xk¡ f(xk¡1; uk))
�

p(zkjxk;m)= const: exp
�
¡1
2
(zk¡h(xk;m))TRk

¡1(zk¡h(xk;m))
� (13)

Let x0 be the initial pose of the vehicle. The objective is to maximize the log-
likelihood, given by :

log(L)= const:¡x0T
0x0¡
X
k

ex;k
T Q¡1ex;k¡

X
k

ez;k
T Rk

¡1ez;k (14)

where ex;k=xk¡ f(xk¡1; uk) and ez;k= zk¡ h(xk;m).
Dropping the constant term, maximizing the log-likelihood is equivalent to min-

imizing the loss function :

JGraph=x0
T
0x0+

X
k

ex;k
T Q¡1ex;k+

X
k

1
2
ez;k
T Rk

¡1ez;k (15)

In the graph representation, poses are represented by vertices, while the errors ex;k
and ez;k are typically represented by edges between two vertices. Optimizing the
graph then corresponds to minimizing this loss function.

Using Levenberg-Marquardt Algorithm (LMA) involves computing the infor-
mation matrix H and information vector �. For more details on LMA and the
information matrix and vector, please refer to Appendix A. From these, we deduce
the successive poses of the robot and landmarks. In particular, it requires computing
the inverse of H, which is quadratic in the size of the map. However, optimizations
can be made to reduce this complexity. The outcome is a sparse information matrix,
which results in linear complexity. For a detailed explanation, refer to [18]. At the
end we are able to compute the robot and landmarks poses.

3.4 Solutions comparison
The comparison is summarized in Table 1. Below are some additional details.

EKF-SLAM

Solutions to the SLAM problem 12



EKF-SLAM builds upon the Extended Kalman Filter (EKF), inheriting its advan-
tages and drawbacks. Specifically, the observation update step requires updating
all landmark poses and the covariance matrix at each observation, leading to qua-
dratic complexity.

FastSLAM
The primary advantage of FastSLAM is its independence from the assumption

of Gaussian noise. Landmarks are treated independently, allowing for updates to
only a few landmarks at each step, unlike EKF-SLAM, where all landmark poses
and the covariance matrix need to be updated at each observation step. Addition-
ally, its inherent filtering capability handles incorrect data association effectively, as
particles with wrong data association are more likely to disappear in the resampling
process [13]. This characteristic makes FastSLAM suitable for various scenarios.
However, the resampling step in FastSLAM results in the loss of historical particle
pose information, leading to decreased accuracy. Furthermore, in complex environ-
ments, a significant number of particles may be necessary, which could result in
excessive computational time despite FastSLAM's linear complexity.

GraphSLAM
One of the primary advantages of GraphSLAM lies in its modular complexity.

The objective is to minimize JGraph. Unlike other methods such as EKF-SLAM
and FastSLAM, GraphSLAM allows for the optimization of only selected poses by
fixing the others, thereby achieving faster computation. Optimizing the entire map
each time may not significantly improve localization and mapping. For instance,
only the most recent poses may require optimization, as past poses have likely
already been optimized effectively, leading to a substantial reduction in optimization
computation time. Another approach to optimize the back-end is to group certain
nodes together. This results in a simpler graph, making global optimization more
time-efficient despite a loss of precision. The effectiveness of this approach depends
on the quality of the grouping strategy; the better the strategy, the lower the loss
of precision. This area of research is still actively evolving. For example, The ORB-
SLAM algorithm utilizes the method referred to as the essential graph to simplify
the initial graph [14].

EKF FastSLAM GraphSLAM
Accuracy Moderate High High

Time complexity O(k2) O(n log(k)) Modular
Space complexity O(k2) O(n+ k) O(nodes+ edges)

Robustness towrong
data association

No Yes Yes

Gaussian assumption Yes No Yes
Full SLAM* No No Yes

Table 1. Comparison between the different SLAM algorithms method. k denotes the
number of landmarks, n denotes the number of particles for both EKF and FastSLAM.
�nodes� and �edges� denote, respectively, the number of nodes and edges in GraphSLAM.
(*) Full SLAM refers to the process of estimating the entire trajectory of the robot or
vehicle, rather than just its current pose.

13 Section 3



For these reasons, the Graph-Based algorithm has been chosen, as it has become
the standard approach in current algorithms.

4 Fusion Algorithm

In the autonomous driving field, no single sensor can perfectly capture the com-
plexities of a real-world environment. Each sensor type, while powerful, comes with
its own set of limitations. For example, LiDAR sensors, despite their accuracy in
depth measurement, struggle with low-reflectivity surfaces, leading to incomplete
or inaccurate data. Similarly, GPS signals can be unreliable or entirely unavailable
in certain locations, such as urban canyons or in a tunnel. Even when GPS data
is available, the signal can suffer from multi-path effects or interference, resulting
in degraded accuracy. Given these shortcomings, relying on a single sensor can
compromise the effectiveness of SLAM (Simultaneous Localization and Mapping)
systems.

This is where sensor fusion becomes critical. By combining data from multiple
sensors, such as LiDAR, cameras, and GPS, the strengths of one sensor can com-
pensate for the weaknesses of another, leading to more robust and reliable SLAM
solutions. Sensor fusion not only mitigates the individual limitations of each sensor
but also enhances the accuracy of pose estimation and the mapping process, which
are crucial for the safe and efficient operation of autonomous systems.

While other sensors like GPS and IMU could also be incorporated into the
fusion process, for simplicity, this discussion focuses primarily on the fusion of visual
and LiDAR-based SLAM algorithms. Since these sensors are widely available on
modern vehicles, this fusion method not only improves the precision and reliability
of SLAM but also makes advanced SLAM technologies more accessible to a larger
audience. By leveraging the complementary strengths of these sensors, we can push
the boundaries of what autonomous systems are capable of achieving in diverse and
challenging environments.

4.1 Types of Fusion Algorithms

There are two main categories of fusion algorithms in SLAM: loosely coupled and
tightly coupled fusion. These approaches differ in how they integrate data from
multiple sensors or sensor modalities within a fusion system.

Loosely coupled fusion refers to an approach where data fusion occurs at
the end of the process. Each sensor provides its own measurements or estimates,
and separate SLAM algorithms operate in parallel, each utilizing different types of
sensors. The results of these individual SLAM algorithms are then merged. In this
approach, there is typically limited communication or interaction between sensors,
and each sensor may have its own processing pipeline.

Fusion Algorithm 14



Tightly coupled fusion, on the other hand, involves combining sensor data
at a lower level of abstraction. These systems involve sharing data and information
between sensors in real-time or near real-time. Sensors may be synchronized to
ensure their data is aligned temporally and spatially, and they may share informa-
tion such as calibration parameters or state estimates. Tightly coupled fusion often
entails joint processing of sensor data, where measurements from one modality are
used to enhance or refine measurements from another. This approach is typically
chosen when sensors provide complementary information.

Within tightly coupled fusion, two types can be distinguished :

¡ Sensor data fusion, where data from multiple sensors are merged first,
followed by the application of a SLAM algorithm.

¡ Process fusion, where two SLAM algorithms are combined to create a more
robust solution.

In a loosely coupled system, the benefits include reduced computational burden,
straightforward system architecture, and ease of implementation. However, these
systems often face limitations in terms of positioning accuracy. On the other hand,
tightly coupled systems are computationally demanding, making implementation
more challenging but they offer more precise state estimation, particularly in com-
plex and dynamic environments [22].

As accuracy is paramount in autonomous driving, this document presents the
results obtained using a tightly coupled method. Accordingly, the following sec-
tions will first introduce the two selected algorithms�one utilizing cameras and the
other utilizing LiDAR. Subsequently, the fusion method used to combine these two
approaches will be detailed.

4.2 Visual SLAM: ORB-SLAM 3
For Visual SLAM, ORB-SLAM3 has been retained as ORB-SLAM3 is a state-of-the-
art feature-based visual SLAM system with public code source, designed for real-
time localization and mapping using monocular, stereo, or RGB-D cameras. It builds
upon the success of its predecessors, ORB-SLAM and ORB-SLAM2, introducing
several improvements and new features. In comparison to ORB-SLAM, which only
utilizes a monocular camera, ORB-SLAM3 incorporates additional sensors such as
stereo cameras and IMUs (Inertial Measurement Units) that enhance performance
and robustness (see Table 2).

OV2SLAM Stereo DSO ORB-SLAM2 ORB-SLAM3
[5] [21] [16] [2]

Translation (%) 0.98 0.93 1.15 0.91(�)

Rotation (deg/m) 0.0023 0.002 0.0027 <0.0027(�)

Iteration Runtime (s) 0.01 0.1 0.06 <0.06(�)

Stereo Yes Yes Yes Yes
IMU No No No Yes

Table 2. Comparison of accuracy on the KITTI Dataset. (�)Has not been evaluated
with KITTI Dataset, value has been extrapolated based on other dataset benchmark or
is supposed to be better as it is on other benchmark [2].

15 Section 4



Here's a succinct overview of its key attributes :

Feature-Based Visual Odometry: ORB-SLAM3 employs a feature-based
approach for visual odometry, utilizing ORB (Oriented FAST and Rotated BRIEF)
features for robust and efficient feature detection and matching (see Figure 3).

Keyframe-BasedMapping: The system operates on a keyframe-based mapping
paradigm, where selected keyframes are used for map construction and optimiza-
tion. This approach allows for efficient map management and reduces computational
complexity.

Loop Closure Detection: ORB-SLAM3 incorporates loop closure detection
mechanisms to detect and correct drift errors in the estimated trajectory. It utilizes
a combination of feature matching and geometric consistency checks to identify loop
closures.

Global Optimization: To refine the map and trajectory estimates, ORB-
SLAM3 performs global optimization using global Bundle Adjustment (BA). This
step improves the consistency and accuracy of the reconstructed map.

Figure 3. ORB Features matching

4.2.1 Camera Model

ORB-SLAM3 assumes that all cameras are calibrated. It is compatible with monoc-
ular, stereo, and RGB-D cameras. In the case of stereo cameras, ORB-SLAM does
not require image rectification. Instead, it treats the stereo rig as two separate
monocular cameras with a constant relative transformation SE(3) between them.
Optionally, a common image region can be defined, ensuring that both cameras
observe the same portion of the scene.

Fusion Algorithm 16



These constraints enable the accurate estimation of the map's scale by incor-
porating this information during the triangulation of new landmarks and in the
optimization process of bundle adjustment. Building upon this concept, the SLAM
pipeline computes a 6 degrees of freedom (DoF) rigid body pose, with its reference
system potentially located in one of the cameras or the IMU sensor, and represents
the cameras relative to this rigid body pose.

In cases where both cameras possess overlapping areas with stereo observations,
landmarks with true scale can be triangulated the first time they are observed. Sub-
sequently, the remaining portions of both images still contain valuable information
utilized as monocular data within the SLAM pipeline. Features initially detected
in these regions are triangulated from multiple perspectives using a Perspective-n-
Point (PnP) algorithm, similar to the approach used in monocular scenarios.

In the subsequent sections, only the initial version of ORB-SLAM [14] will be
explained, focusing on its core algorithms and functionalities, excluding the initial-
ization process. Although additional details may be provided, for a comprehensive
understanding, please refer to the ORB-SLAM3 paper [2].

4.2.2 Map representation

ORB-SLAM utilizes three levels of graph representation: the covisibility graph, the
essential graph, and the spanning tree.

Covisibility Graph: This represents the complete graph of all keyframes, where
each keyframe is connected to every other keyframe it shares visible landmarks with.
This graph captures the direct covisibility relationships between keyframes.

Essential Graph: The essential graph is derived from the covisibility graph
by selecting a subset of keyframes and edges that capture essential relationships
while reducing redundancy. It focuses on keyframes that are most informative for
localization and mapping.

Spanning Tree: The spanning tree is a connected subset of the essential graph
that ensures global connectivity while minimizing the number of edges. It serves as
a backbone graph.

Depending on the allocated computational resources and the desired level of
precision, optimization can be performed on either the Covisibility Graph, Essential
Graph, or the Spanning Tree.

4.2.3 Tracking

In this section we describe the steps of the tracking thread that are performed with
every frame from the camera. The tracking is in charge of localizing the camera with
every frame and deciding when to insert a new keyframe. The camera pose optimiza-
tions, mentioned in several steps, consist in motion-only BA, which is described in
Appendix C. The motion-only BA can be adapted based on whether a monocular
camera, a stereo camera, or an RGB-D camera is used.

Keyframe

17 Section 4



A frame is considered as a keyframe if it contains a certain number of traceable
features. In ORB-SLAM, it requires at least 50 traceable points. Additionally, a
keyframe is saved if it exhibits a significant level of uniqueness; at least 10% of
its feature points should differ from those of the previous reference keyframe Kref.
To manage the number of keyframes retained, a minimum of 20 frames must have
elapsed since the insertion of the last keyframe.

Pose estimation
FAST corners are extracted at 8 scale levels with a scale factor of 1.2. In order

to ensure a homogeneous distribution we divide each scale level in a grid, trying to
extract at least 5 corners per cell.

If tracking was successful in the last frame, a constant velocity motion model
is employed to predict the camera pose, followed by a guided search, based on the
predicted camera position, for map points observed in the previous frame. In cases
where an insufficient number of matches are found, indicating a violation of the
motion model, a broader search for map points around their positions in the previous
frame is conducted. Subsequently, the pose is optimized using motion-only BA with
the identified correspondences.

If tracking is lost, the frame is transformed into a bag of words, and the recog-
nition database is queried for keyframe candidates to facilitate global relocalization.
Correspondences are computed with ORB features associated with map points in
each keyframe. The Perspective-n-Point (PnP) algorithm is then utilized to find the
camera pose. If a camera pose with sufficient inliers is found, the pose is optimized
using motion-only BA, and a guided search for additional matches with the map
points of the candidate keyframe is conducted. Finally, the camera pose is once again
optimized, and if supported by a sufficient number of inliers, the tracking procedure
resumes.

All of these processes can be augmented by incorporating stereo cameras or RGB-
D cameras, as demonstrated in ORB-SLAM3. These additional sensors provide
complementary information, which can enhance the accuracy and robustness of
the SLAM system.

A final optimization, a local BA, step involves not only the last frame but also all
map points included in the local map. This local map comprises the set of keyframes,
denoted as K1, which share map points with the current frame. Additionally, it
includes a set, denoted as K2, consisting of neighbors to the keyframes in K1 within
the covisibility graph [14]. Within the local map, a reference keyframe, denoted as
Kref2K1 is selected. This reference keyframe shares the most map points with the
current frame and will be used to select keyframe [14].

4.2.4 Local Mapping

Initially, the covisibility graph is updated by adding a new node for the new keyframe
Ki and adjusting the edges related to shared map points with other keyframes.
Subsequently, the spanning tree is updated by connecting Ki with the keyframe
that shares the most points in common. Following this step, the bag of words
representation of the keyframe is computed to facilitate data association for tri-
angulating new points.

Fusion Algorithm 18



New map points are generated by triangulating ORB features from connected
keyframes, denoted as Kc, in the covisibility graph. For each unassociated ORB
feature in the current keyframe, Ki, a search is conducted for a match with other
unassociated features in other keyframes. This matching process utilizes Bag of
Words (BoW) representations and eliminates matches that do not satisfy the epipolar
constraint. Subsequently, pairs of ORB features are triangulated to create new
map points. Initially, a map point is observed from two keyframes, but it may also
have matches in additional keyframes. Therefore, it is projected onto the remaining
connected keyframes, and correspondences are sought.

Then, to be retained in the map, new map points must pass test during the first
three keyframes after creation. This evaluation ensures that they are trackable and
not erroneously triangulated due to spurious data association [14]. At the end a
local BA is processed.

4.2.5 Loop Closing

Loop closing is a crucial component of SLAM systems, aimed at correcting accumu-
lated drift and closing large loops in the trajectory. With the vehicle's continuous
movement, errors in trajectory estimation can gradually accumulate. However,
during its exploration of an environment, the vehicle may encounter areas it has
visited before. Loop closing endeavors to identify these revisited locations and rectify
the trajectory estimation, thereby enhancing the map's consistency and precision.

Place Recognition
To achieve data association for loop detection, ORB-SLAM 3 uses the DBoW2

bag-of-words place recognition [6, 15]. Upon the introduction of each new active
keyframe, the system queries the DBoW2 database to retrieve several similar
keyframes. Achieving high precision entails subjecting each of these candidates to
multiple stages of geometric verification. The fundamental operation in all geo-
metric verification steps involves verifying the existence of an ORB keypoint within
an image window, whose descriptor matches the ORB descriptor of a map point,
using a threshold for the Hamming distance between them. In cases where mul-
tiple candidates are found within the search window in the graph, a distance ratio
check is employed to discard ambiguous matches, comparing the distance of each
match to that of the second-closest match.

More precisely, let Km denote the candidate keyframes and Ka the current
keyframe. For each candidate keyframe, a local window is defined, encompassing
the best covisible keyframes and all the map points observed by them. Within
each local window, a transformation Tam is computed to better align the map points
in the local window of Km with those of Ka. The local window with the most
matching map points with Ka is selected as the matching window, provided that
the number of matching points exceeds a threshold.

Loop closing
The covisibility and essential graphs are updated by adding necessary edges,

while duplicated map points are removed. Subsequently, a local BA is performed,
followed by a pose-graph optimization using the essential graph of the entire map
to propagate corrections.

The global operation is summarized in Figure 4.

19 Section 4



Figure 4. Block Diagram of ORB-SLAM

4.2.6 Multi-map
An important mechanism that has been added to ORB-SLAM 3 is the multi-map
functionality. The idea behind this feature is to reset the pose to (0,0,0) and start
creating a new map whenever ORB-SLAM 3 detects that it has lost track. When
a loop closure is identified, ORB-SLAM 3 will attempt to merge all the maps that
have been created.

4.3 LiDAR SLAM: LOAM
The LiDAR Odometry and Mapping algorithm (LOAM) [23], is a widely used
method for real-time odometry estimation and mapping using 3D LiDAR scans. As
the latest version of LOAM is not available, its best open-source alternative, FLOAM
(Fast-LOAM) [20], will be used instead. Although some algorithms are better such as
CT-ICP [3], FLOAM will be chosen as fusion algorithms use it [17]. It's worth noting
that a notable drawback of FLOAM and LOAM is its lack of a loop closing module.
In the following sections, since FLOAM and LOAM function similarly, we will use
the term LOAM to refer to both LOAM and FLOAM interchangeably.

LOAM(�) [23] CT-ICP2 [3] KISS-ICP [19]
Translation (%) 0.72 0.58 0.61
Rotation (deg/m) 0.0022 0.0012 0.0017

Iteration Runtime (s) 0.1 0.06 0.05
Loop Closure No Yes No

Code Availability Yes Yes Yes

Table 3. Comparison of accuracy on the KITTI Dataset [8]. (*) Performance of the Open-
Source version of LOAM.

Similar to ORB-SLAM but tailored for LiDAR data, LOAM matches LiDAR
scans to estimate the poses of a vehicle while simultaneously constructing a 3D map
of the environment. Here is an overview of how LOAM operates:

Feature Extraction: LOAM starts by extracting distinctive features from the
3D LiDAR point cloud data. These features are defined based on characteristics
such as surface normal vector and curvature. By extracting features, LOAM reduces

Fusion Algorithm 20



the computational load and focuses on informative points for motion estimation and
mapping.

Scan Registration: LOAM aligns consecutive LiDAR scans to compensate for
the distortion of the point cloud caused by vehicle motion. This alignment provides
an initial estimation of the vehicle's motion, crucial for subsequent odometry esti-
mation.

Odometry Estimation: With aligned scans, LOAM refines the estimation of
the robot's motion by analyzing the transformation between two point clouds, using
the Iterative Closest Point (ICP) algorithm only on the extracted features.

Mapping: While estimating odometry, LOAM simultaneously constructs a 3D
map of the environment using the aligned LiDAR scans. It integrates the corrected
LiDAR points into a global coordinate system, creating a detailed representation of
the surrounding surfaces and objects.

4.3.1 LiDAR operation
LiDAR operates by emitting laser pulses and measuring the time it takes for these
pulses to return after reflecting off objects in the environment. This principle allows
LiDAR to calculate distances accurately, providing valuable spatial information.
However, LiDAR sensors typically cannot capture all surrounding data simultane-
ously. Instead, they function more like rotating laser scanners, collecting data along
a vertical line, referred to as a laser scan P̂ . These scans are registered in the LiDAR
frame L.

As the LiDAR sensor rotates, it captures data from different angles over time,
gradually covering a wide area. However, when mounted on a robot, the delay in
collecting successive lines of data can result in distortions in the final 3D point cloud
due to the robot motion. To mitigate this issue the scan registration mentioned
before is used.

The complete 3D point cloud collected after the sweep k is denoted Pk.

4.3.2 Feature extraction
Due to the resolution limitations of the LiDAR employed in the development of
the LOAM algorithm [23], feature points are extracted using only information from
individual scans. The features considered are sharp edges and planar patches. Let
i be a point in Pk, and S be the set of consecutive points of i returned by the laser
scanner in the same scan. The coordinates of a point i2Pk in the LiDAR frame L
is denoted as X(k;i)

L . The smoothness of the local surface is defined by

c=
1

jS jkX(k;i)
L k

 X
j2S;j=/ i

X(k;i)
L ¡X(k;j)

L

 (16)

The points within a scan are sorted on their c values. Feature points are then chosen
based on the maximum and minimum c values, representing edge points and planar
points, respectively. To ensure an even distribution of feature points throughout the
environment, the scan is divided into four identical subregions. Each subregion can
yield up to 2 edge points and 4 planar points. A point i may be selected as either an
edge or a planar point only if its c value exceeds or falls below a certain threshold,
if none of its surrounding point is already selected and if the number of selected
points does not surpass the maximum allowed.

21 Section 4



Additional constraints are necessary to filter out pathological points. For instance,
a point cannot belong to a surface patch that is approximately parallel to the laser
beam. Additionally, it cannot lie on the boundary of an occluded region, as it
may have a high c value but does not represent a true edge. These constraints
help ensure the accuracy and reliability of the extracted feature points.

4.3.3 Finding Feature Point Correspondence

The complete procedure is explained in [23]. The process described here is a sim-
plified overview of the LOAM algorithm, focusing on the key concepts involved in
correcting the distortion in consecutive LiDAR scans:

1. Initialization: At the start of each sweep k + 1 at time tk+1, the initial
distorted 3D point cloud Pk from the previous sweep is received. Let be Ek+1

and Hk+1 be the sets of edge points and planar points respectively detected
during sweep k + 1. Note that at the beginning of the sweep k + 1, Pk+1;
Ek+1;Hk+1 are empty set as LiDAR did not start his k+1 scan yet and Pk;
Ek; Hk just get completed.

2. Iterative Correction: In each iteration, the edge and planar points detected
in the current sweep k+1 are roughly corrected using the currently estimated
transformation (see Section 4.3.4) For the first iteration i.e. laser scan, when
no transformation has been processed yet, the transformation from the pre-
vious sweep can be used. We denote �� the corrected set.

3. Edge Point Correspondences: For each edge point i2Ek+1, the algorithm
finds its closest point j in Pk, and the closest point l in the two consecutive
scans to the scan of j. If both j and l are identified as edge points based on
their c values, the correspondence edge of i is formed by the pair (j ; l).

4. Planar Point Correspondences: The same procedure is applied to planar
points, where three points (j ; l;m) are needed to define a plane.

5. Distance Calculation: With the correspondences of the feature points
found, the distance from a feature point to its correspondence is computed.
For an edge, the point-to-line distance dE is computed, while for a plane,
the point-to-plane distance dH is calculated. More details can be found in
Appendix B.

dE=
k(X�(k+1;i)¡X�(k;j))� (X�(k+1;i)¡X�(k;l))k

kX�(k;j)¡X�(k;l)k

dH=
k(X�(k+1;i)¡X�(k;j)) � ((X�(k;j)¡X�(k;l))� (X�(k;j)¡X�(k;m)))k

k(X�(k;j)¡X�(k;l))� (X�(k;j)¡X�(k;m))k

(17)

where X(k;j) denotes the coordinate of the point j in the sweep k.

4.3.4 Motion Estimation

LiDAR motion is modeled with constant angular and linear velocities during the
same sweep. Let t be within the interval [tk+1; tk+2] and Tk+12 SE(3) be the lidar
pose transform between [tk+1; t]. The translations and rotations along the x, y, and
z axes of the LiDAR are denoted as (tx; ty; tz; �x; �y; �z). All variables are expressed

Fusion Algorithm 22



in LiDAR frame L For a point i2Ek+1[Hk+1, let ti be its time stamp, the pose
transform T(k+1;i) between [tk+1; ti] can be interpolate as :

T(k+1;i)=
ti¡ tk+1
t¡ tk+1

Tk+1 (18)

Therefore we have the formula :

X(k+1;i)=RX�(k+1;i)+ t(k+1;i)

where R is the rotation matrix and t(k+1;i) is the translation vector associated with
T(k+1;i). Combined with (17) a geometric relationship between an edge or plan point
and the corresponding edge line or planar patch can be deduced

8i2Ek+1 fE(X(k+1;i); Tk+1)= dE
8i2Hk+1 fH(X(k+1;i); Tk+1)= dH

(19)

By stacking these equations a nonlinear function is obtained

f(Tk+1)=d (20)

and the objective is to find Tk+1 such that d is minimum. This optimization task can
be accomplished using the Levenberg-Marquardt Algorithm (refer to Appendix A.2)

Tk+1 Tk+1¡ (JTJ +�diag(JTJ))¡1JTd (21)
where J = @f

@Tk+1
.

4.3.5 LiDAR Mapping
The mapping algorithm operates at a lower frequency compared to the odometry
algorithm. While the mapping algorithm runs once per sweep, the odometry algo-
rithm runs ten times per sweep. Thanks to the previous step, an initial estimation
of the robot's pose Tk+1W is available. The idea here is to consider the entire map
to enhance mapping rather than relying only on the last sweep k. Let Mk be the
map generated before sweep k+1. Considering the dense nature of the map cloud,
correspondences of the feature points are determined by examining distributions of
local point clusters in Mk, called voxels, through computation of eigenvalues and
eigenvectors. Specifically, one large and two small eigenvalues indicate an edge line
segment, and two large and one small eigenvalues indicate a local planar patch.
Once the matching is completed, equation (17) is used to compute distances, and the
same procedure as motion estimation can be employed to construct the map, with
the exception that no transformation is necessary as the point cloud and the map
are already corrected. As a result, precise motion and a better map are obtained.

4.4 Fusion Algorithm: TVLO
While ORB-SLAM3 and LOAM algorithms both achieve good accuracy, they are
constrained by the inherent limitations of their respective sensors, as well as by their
own algorithmic limitations. Cameras offer a wealth of visual information, enriching
scene understanding with color, texture, and object details but are sensitive to
lighting changes. Additionally, depth estimation from triangulation or stereo vision
may lack precision. In contrast, LiDAR sensors provide accurate 3D point cloud
data and are robust to lighting variations, but they may encounter challenges in low
reflectivity areas.

23 Section 4



By combining data from both sensors, SLAM systems can capitalize on the
strengths of each while mitigating their weaknesses. This fusion enhances the overall
robustness, accuracy, and completeness of the environment model, thereby improving
localization, mapping, and navigation performance across various scenarios and envi-
ronments.

In this study TVLO (Tightly Coupled Visual-LiDAR Odometry) [17] was selected
as it is the basis for the TVL-SLAM algorithm, which offers one of the best odometry
performance on the KITTI dataset according to the official benchmark2. TVLO is a
tightly coupled fusion approach that integrates ORB-SLAM 3 and LOAM processes.
It jointly optimizes data from different sensors and involve their synchronization
throughout the process.

TVLO is not an open-source algorithm; therefore, its implementation was
developed from scratch. Additionally, several modifications were made, as the
method described in the original article did not perform as expected.

4.4.1 General principle

The algorithm presented here is the TVLO proposed in [17]. We assume that we
know the relative positions between camera and LiDAR. The method integrates
measurements from images and lidar points by employing two separate mapping
pipelines: LOAM for constructing a LiDAR voxel map and ORB-SLAM2 for gen-
erating a 3D map based on visual data. These maps are then combined to address
odometry residuals. Features are extracted individually from the input lidar points
and images. LiDAR points are matched against the lidar voxel map to generate lidar
geometric residuals, while visual features are matched to the visual map points to
establish stereo projection residuals.

The pose of a mobile robot is estimated by minimizing the lidar and visual
residuals together, using an iterative nonlinear optimization method like Levenberg-
Marquardt. After pose tracking, updates are applied to the LiDAR voxel map based
on the tracking results, while the visual map is adjusted using local bundle adjust-
ment (BA).

In the initial article, ORB-SLAM2 is used but in this study we will use instead
ORB-SLAM3.

4.4.2 Fusion of Visual-LiDAR Measurements

Assuming synchronization between camera and LiDAR data, the fusion is decom-
posed as the following steps:

1. The initial guess of the pose is computed by the frame-to-frame LiDAR
odometry

2. The last LiDAR cloud is matched to the LiDAR map

3. The pose obtained from LOAM is used as initial guess for the ORB-SLAM
BA

2. https://www.cvlibs.net/datasets/kitti/eval_odometry.php

Fusion Algorithm 24



4. The final pose optimization is done by minimizing the sum of Visual and
LiDAR residuals

Considering the LiDAR frame and using equation (20), the total residuals is defined
as:

Tk= argminTk

 
f(Tk)+

X
j

�h(ek;j
T 
k;j

¡1ek;j)

!
(22)

Here ek;j=xk;j¡�k(TkTLC ;Xw;j) corresponds to the reprojection error of the map
point j in keyframe k, which appears in motion-only BA (see Appendix C). As
Tk=TWL(k) is the position of the LiDAR in the world coordinate frame, and what is
needed in the motion-only BA is the position of the camera in the world coordinate
frame TWC(k), we decompose the latter into TWC(k) = TWL(k)TLC = Tk TLC where
TLC is the relative transformation between the camera pose of LiDAR pose which is
known.

To overcome the constraint of data synchronization, it can be assumed that the
motion between camera data acquisition and LiDAR acquisition follows a constant-
velocity model. By making this assumption, the data can be synchronized using a
similar formula as (18). If inertial measurements are available a better synchroniza-
tion can be achieved.

Figure 5. Data synchronization : The transformation T links the camera frame at time
k+1 to the LiDAR frame at time k

4.4.3 Limits of the TVLO method

As mentioned earlier, TVLO did not perform as expected. When the data are not
compatible, applying joint optimization (22) LiDAR points can excessively modify
the camera pose.

Let consider the figure 6. The triangle represents the camera pose estimated by
the algorithm, which can be approximated as the vehicle's pose here. Unfilled circles
represent visual points, while circles with dotted fill represent LiDAR points. On
the left, only visual data are considered, while on the right, all data are considered.

As shown in figure 6 when only visual points are considered, the algorithm can
detect a sufficient number of matches, represented by filled circles. However, due to
joint optimization, the camera pose is excessively altered, resulting in ORB-SLAM 3
being unable to detect the minimum number of visual matches required for successful
tracking.

25 Section 4



Figure 6. On the left, only visual points are considered, and the ORB-SLAM tracking
process is successful because a sufficient number of matching visual points have been
found. On the right, both visual and LiDAR points are considered, leading to an excessive
modification in the vehicle pose. The ORB-SLAM tracking process cannot find enough
matches and therefore considers itself lost.

This leads to a loss of tracking and triggers its multi-map process. During this
process, the camera pose is reset to (0; 0; 0), and a new map is created from that
position. However, LOAM maintains its original pose3. As a result, merging these
two poses becomes impossible due to their significant disparity.

To address this issue, two weights, wp and we, were introduced into the algorithm.
The weight wp evaluates the confidence in data synchronization, while we manages
the relative importance of camera and LiDAR data. Increasing the importance of
camera data reduces the likelihood of ORB-SLAM losing tracking but decreases the
accuracy of the results, as LiDAR data are generally more accurate. Conversely,
prioritizing LiDAR data may enhance accuracy but reduce ORB-SLAM's stability.

Rather than trying to find the optimal weights to make the fusion algorithm as
stable as ORB-SLAM and LOAM, the multi-map process has been modified. ORB-
SLAM no longer resets its pose to (0; 0; 0). Instead, it starts a new visual map from
the camera pose, which is derived from the LiDAR pose using the transformation TCL
provided by the LOAM algorithm. The weights we and wp are then used to further
increase accuracy.

A final major modification was to relax the tracking conditions, meaning that
fewer matching points are required to consider the tracking successful. This reduces
the likelihood of losing track. This approach is justified since ORB no longer relies
only on its cameras but also on the more precise LiDAR.

5 Implementation

5.1 Data Conversion
The code is primarily designed to be used with ROS; however, the KITTI dataset
provides raw data. Therefore, a conversion was necessary, and it was accomplished
using kitti2bag, a Python project that converts KITTI raw data into ROS bag

3. LOAM does not have a multi-map process therefore it never considers itself lost

Implementation 26



format. Despite this, the converted data were not immediately compatible with
LOAM and ORB-SLAM 3. Several modifications were required, including renaming
topic names and adjusting the transform topic tree.

5.2 ORB-SLAM 3 initial guess
To simplify the notation, a transformation T can correspond either to the transfor-
mation matrix in SE(3) or in se(3). As mentioned in the theoretical section, LOAM's
pose estimation is used as the initial guess for the ORB-SLAM 3 algorithm. However,
since LiDAR and camera data are not synchronized, the following transformation is
applied for synchronization:

TCW(k+1)= v(k)TCL (TWL(k))¡1 (23)

where

v=
tC(k)¡ tL(k)

�tC
TCW(k)TCW(k¡ 1)¡1

Here, tC is the camera data reception timestamp, tL is the LiDAR timestamp and
�tC is the period between two successive camera data receptions.

It's worth noting that instead of using the camera pose for motion prediction,
we could use the LiDAR pose to predict TWL(k+1). This would yield

TCW(k+1)=TCL (TWL(k+1))¡1

However, the results are quite similar.

5.3 Graph fusion
Before implementing the fusion method, both ORB-SLAM 3 and LOAM algorithms
must be compatible, particularly their optimizer libraries, so that their graphs can be
merged. While LOAM uses the Ceres Solver [1], ORB-SLAM 3 utilizes g2o library
[10]. Since the g2o library is better suited for SLAM algorithms, as demonstrated
in [12], and LOAM's library is easier to understand and more concise, the g2o
library was selected to achieve better performance while limiting the number of
modifications. This adaptation has already been done4 but it must be updated to
the latest version of LOAM.

Once this is done, the two graphs can be merged using the relative transformation
between TWL and TCW . Note that in ORB-SLAM 3, the authors use the inverse of
TWC instead of TWC itself, which is unconventional and requires creating a custom
g2o edge to connect the two graphs as the formula relating TWL and TCW is of the
form p1=T p2

¡1 instead of p1=Tp2.
The error for this edge is given by

ep= v(k)TCL (TWL)
¡1TCW(k+1)¡1

During testing, we observed that small rotational drifts can occur in the camera's
position, but not in the LiDAR's. To account for this, the coefficients corresponding
to rotational errors are multiplied by a factor of �= 1.8.

4. https://github.com/chengwei0427/floam_g2o

27 Section 5



The two graphs are now merged, and the total error of the graph is given by the
expression

L=wef(Tk)+wp ep+
X
j

�h(ek;j
T 
k;j

¡1ek;j)

However, since ORB-SLAM 3 may be particularly sensitive to fusion at the begin-
ning, pose optimization in ORB-SLAM 3 is not activated during the first ten visual
data reception. Instead, during this period, the camera position is deduced only
from the LOAM algorithm using equation (23), the joint pose optimization resumes
by minimizing

L= f(Tk)

This mechanism also appears when multi-map process occurs. Other optimization
processes in ORB-SLAM, such as local bundle adjustment (BA) or global BA,
remain unchanged.

5.4 Fusion Algorithm

Here are more details on the fusion algorithm. The ORB-SLAM3 algorithm starts
only after the first LiDAR data is received, meaning LOAM must be initialized
before ORB-SLAM3 is activated. Let �t represent the time difference between the
reception of visual data and the reception of the LiDAR point cloud. To prevent any
issues with LiDAR data reception, joint optimization is applied only if �t is below
a threshold value tth. As mentioned in the theoretical section, the initial guess for
the camera pose is deduced from LOAM results.

Let's refer to the �active graph� as the graph representing the sensor pose along
with its most recent data points. During ORB-SLAM3 pose optimization, the active
LOAM graph and the active ORB-SLAM 3 graph are merged for joint optimization.

After pose optimization, the updated value from the vertex representing the
LiDAR pose is sent to the LOAM algorithm to update the LiDAR pose. Both
LOAM and ORB-SLAM then build their respective maps based on the updated
sensor poses. Even though the process does not involve explicit map fusion, the
resulting maps are of higher quality due to the improved pose accuracy. This process
is summarized in Figure 7. Only additional information bring by the fusion process
appear on the figure.

Figure 7. TVLO algorithm

Implementation 28



Since both LOAM and ORB-SLAM3 use multi-threading, new mutexes have
been implemented to resolve memory access issues.

6 Experiments

6.1 Setup

The experiments were conducted on a laptop equipped with a 2.50 GHz quad-core
processor and 16 GB of RAM, running the Robot Operating System (ROS) Noetic
on Ubuntu 20.04.6 LTS.

Performance was evaluated using the KITTI dataset [7], which is one of the most
widely used datasets for SLAM evaluation. The dataset includes two Point Grey Flea
2 FL2-14S3C-C cameras and a Velodyne HDL-64E LiDAR. The LiDAR operates
at 10 frames per second, capturing approximately 100,000 points per cycle with a
vertical resolution of 64. The camera images are cropped to 1382 x 512 pixels using
libdc's format 7 mode and become slightly smaller after rectification. The cameras
are triggered by the LiDAR (when facing forward) at 10 frames per second, with a
maximum shutter time of 2 ms, adjusted dynamically. The relative transformation
between the cameras and LiDAR varies slightly across specific datasets and has
therefore not been specified here.

The simulation is run at a rate of 0.4. The execution time is not treated during
this internship, the focus is on performance. During the tests, the coefficients of
TVLO mentioned before were set according to Table 4. These coefficients were
determined through testing and should be refined in future experiments.

Name Value
we 1
wp 1
� 1.8

Table 4. Value of different coefficients

6.2 Evaluation

For the evaluation, each algorithm (FLOAM, ORB-SLAM3, and TVLO) was run five
times for each sequence, and the mean of their accuracy will be presented. The evo
project [11] was used to evaluate the algorithms, with a specific focus on the root
mean square error (RMSE) of the Absolute Pose Error (APE), which is the standard
metric for assessing SLAM odometry performance. The APE is calculated as

eAPE=
1
N

X
k=1

N

kTWL(k)Tref(k)
¡1k2

s

29 Section 6



where Tref is the ground truth pose, and N is the total number of poses in the
trajectory. If TWL and Tref are not temporally synchronized, a linear interpolation
is performed.

Before this calculation, Umeyama alignment is applied, as only the shape of the
trajectory is of importance.

The result on KITTI dataset 7 is shown in Figure 8. The FLOAM trajectory,
shown in green, and the TVLO trajectory, shown in red, are both very close to the
ground truth (dotted curve), indicating strong performance for both algorithms.
However, the ORB-SLAM3 trajectory deviates significantly from the ground truth,
particularly at the beginning and in the corners.

It is important to note that FLOAM lacks a loop closure process, whereas ORB-
SLAM3 incorporates one. This difference can lead to challenges during fusion, as the
loop closure in ORB-SLAM3 might cause important modifications to the camera's
estimated position, potentially resulting in fusion failure. To mitigate this issue, the
fusion algorithm is stopped before the end of the sequence, as a loop closure occurs
near the end.

Figure 8. Trajectories generated by FLOAM, ORB-SLAM 3 and TVLO on KITTI dataset
7. The dotted curve represents the ground truth, the blue curve represents the ORB-
SLAM3 results, the green curve shows the trajectory given by FLOAM, and the red
curve corresponds to the trajectory provided by TVLO

Figure 9 provides a close-up of specific areas from the previous figure. It shows
that the fusion improves the precision of the trajectory, as the TVLO trajectory

Experiments 30



is, on average, closer to the ground truth. However, although the TVLO trajectory
is the most accurate, it is not as smooth as those produced by FLOAM and ORB-
SLAM 3, especially during corners. This lack of smoothness may be due to the
variable number of ORB-SLAM3 matching points per frame, which influences the
magnitude of the visual error in the joint optimization, whereas the number of
LiDAR points used in the optimization remains relatively stable. Additionally, the
parameter wp is set to 1, which weakens the constraint TCW(k)=TCLTWL

¡1(k). As a
result, after joint optimization, TCW(k) may differ significantly from TCLTWL

¡1(k).

In the subsequent iteration, the initial guess for ORB-SLAM3 feature extraction
is still based on TCL TWL

¡1(k+ 1), where TWL
¡1(k+ 1) is the LiDAR pose before joint

optimization. This difference in how the initial guess is calculated�being estimated
only using FLOAM without the influence of ORB-SLAM3�may lead to abrupt
variations in the trajectory. Despite this, the primary focus is on the vehicle's pose,
which is better represented in the TVLO results.

Figure 9. Trajectories generated by FLOAM, ORB-SLAM 3, and TVLO on KITTI
dataset 7. On the left, the graph displays the different trajectories along a straight line,
demonstrating how the fusion improves the trajectory. On the right, although the trajec-
tory after fusion may be closer to the ground truth, it appears less smooth compared to
other algorithms

Table 5 shows the results obtained on four different KITTI datasets.
Datasets 05 and 07 are the usual datasets used for the odometry benchmark,
while datasets 34 and 61 are raw data. Specifically, 09 corresponds to
�2011_09_26_drive_0009�, 34 corresponds to �2011_09_30_drive_0034,� and 61

31 Section 6



corresponds to �2011_09_26_drive_0061� on the KITTI raw dataset web page5.
As shown in Table 5, the fusion improves trajectory accuracy in 4 out of 5 datasets.
However, for dataset 34, the result falls between the performance of the FLOAM
and ORB-SLAM3 algorithms. This may be due to the fact that in the fusion process,
FLOAM results are used for ORB-SLAM3 visual feature extraction. Since FLOAM
performs poorly on this dataset, ORB-SLAM3 may have been misled by FLOAM,
resulting in decreased fusion performance (see Figure 10 and 11).

KITTI 05 KITTI 07 KITTI 09 KITTI 34 KITTI 61
FLOAM 1.286 0.786 1.902 2.415 1.454

ORBSLAM 3 1.925 1.433 2.094 1.571 2.08
TVLO 1.206 0.688 1.877 2.24 1.202

Table 5. APE (RMSE) in meters, averaged over 5 trials with wp= 1 and we= 1. Best
performance is highlighted in bold.

Figure 10. Trajectories generated by FLOAM, ORB-SLAM 3, and TVLO on the KITTI
dataset 2011_09_30_drive_0034. Left : the entire trajectory; right : a zoomed-in view of
the trajectory

Table 5 shows results obtained with fixed weights. However, by manually adjusting
the weights for specific datasets, TVLO achieves even better performance, as demon-
strated in Table 6. The gain in accuracy with these adjusted weights ranges between
20% and 30%. If an automatic method for determining the optimal weights could
be developed, the results could consistently improve. This upgrade in the underlying

5. https://www.cvlibs.net/datasets/kitti/raw_data.php

Experiments 32



algorithms contributes to the improved accuracy and overall performance observed
in our experiments.

Figure 11. The end sections of the trajectories generated by FLOAM, ORB-SLAM 3,
and TVLO on the KITTI dataset 2011_09_30_drive_0034. The TVLO trajectory is
significantly misled by the FLOAM algorithm

KITTI 07 KITTI 61
FLOAM 0.786 1.454

ORBSLAM 3 1.433 2.08
TVLO 0.630 1.009

Table 6. APE (RMSE) in meters, averaged over 5 trials with wp= 100 we= 10. Best
performance is highlighted in bold.

Compared to the results from the previous trainee (see Table 7), who developed a
loosely coupled method using a Kalman Filter, this represents a significant improve-
ment. Unfortunately, only one dataset was tested with both the Kalman Filter and
the TVLO method. It's worth noting that the previous trainee used Cartographer
instead of LOAM, which is less accurate, and ORB-SLAM 2 instead of ORB-SLAM
3. Therefore, it might be more meaningful to compare the relative improvement
in accuracy rather than the absolute values, as shown in Table 8. The difference
in accuracy is less striking when considering the relative improvement, but the
advantage of TVLO lies in its ability to also enhance the map quality. Since the map
is constructed with the pose determined after joint optimization, this improvement
is significant and should not be overlooked.

33 Section 6



KITTI 07
Kalman 1.454
TVLO 0.630

Table 7. APE (RMSE) in meters, comparison between Kalman Filter Fusion method and
TVLO. Best performance is highlighted in bold.

KITTI 07
Kalman 22%
TVLO 20%

Table 8. Percent of gain in accuracy after fusion. Best performance is highlighted in bold.

Experiments 34



Conclusion

In this study, we explored the enhancement of Simultaneous Localization and Map-
ping (SLAM) through the tightly coupled fusion of visual and LiDAR data, focusing
specifically on the integration of FLOAM and ORB-SLAM 3. The fusion method
developed, referred to as TVLO (Tightly Coupled Visual-LiDAR Odometry), highly
inspired from the original TVLO method [17] demonstrated significant improve-
ments in trajectory accuracy across various datasets from the KITTI benchmark,
outperforming both individual sensor-based SLAM methods and a previously devel-
oped loosely coupled approach in most of the case.

The results underscore the effectiveness of tightly coupling sensor data to leverage
the strengths of both LiDAR and cameras, yielding more reliable and precise vehicle
pose estimations. Although challenges remain, particularly in ensuring smooth tra-
jectories during corners, the overall gain in accuracy, especially with manually
tuned parameters, highlights the potential of this approach. Furthermore, the fusion
method not only enhances pose accuracy but also improves map quality.

Our findings suggest that further optimization, such as automating the weight
adjustment process, could lead to even more substantial gains, potentially posi-
tioning this method among the top-performing SLAM solutions. The use of advanced
algorithms like ORB-SLAM 3 and FLOAM instead of their predecessors has also
contributed to these improved outcomes, emphasizing the importance of utilizing
state-of-the-art tools in SLAM research.

Looking ahead, integrating CT-ICP2 [3], one of the best open-source LiDAR
SLAM algorithms, could further enhance performance, especially since CT-ICP2
includes a loop closure process, which FLOAM lacks. This integration could address
fusion failures when loop closures are detected. As most modifications were made
in ORB-SLAM 3 code, making the replacement of the LiDAR SLAM algorithm is
relatively simple. The main challenge would be adapting the code to utilize the g2o
library if it's not already in use.

Future work could also involve incorporating additional sensors such as IMU and
GNSS to improve initial guess estimation, potentially solving issues where ORB-
SLAM 3 feature extraction is misled by FLOAM results. This multi-sensor approach
could further enhance the robustness and accuracy of SLAM, making it even more
effective for real-world autonomous driving applications.

35 Conclusion



Appendix A Non-linear least square problem

Let E and F be two sets. Let (xi; yi)16i6m2 (E �F )m be a sequence of pairs. Let
B denote the set of parameters. We define a function f : (x; �)2E �B 7! f(x; �).
The objective is to find the value of � that minimizes the sum L given by

L(�)=
X
i=1

m

(yi¡ f(xi; �))2 (24)

A.1 Gauss-Newton Algorithm
The Gauss-Newton algorithm (GNA) is employed to solve a least squares problem. It
is an iterative algorithm. A good initial estimate of �0 significantly aids convergence
towards the global minimum, especially if there exist local minima different from
the global minima. Consider the approximation

f(xi; �+ �)' f(xi; �)+ Ji�

where Ji=
@f(xi; �)

@�
.

By applying this equality to equation (24) we obtain

L(�+ �) '
X
i=1

m

(yi¡ f(xi; �)¡Ji�)2

= ky¡ f(�)¡ J�k2

= (y¡ f(�)¡J�)T(y¡ f(�)¡J�)
L(�+ �) = (y¡ f(�))T(y¡ f(�))¡ 2(y¡ f(�))TJ�+ �TJTJ� (25)

Thus, by differentiating L(�+�) with respect to � and setting the result to zero we
obtain

(JTJ)�= JT(y¡ f(�)) (26)

Definition 1. If J is full rank, then JTJ is invertible. Consequently, we have
�=(JTJ)¡1JT(y¡ f(�)), and the Gauss-Newton algorithm is defined by

� �+ �

A.2 Levenberg-Marquardt Algorithm
The Levenberg-Marquardt algorithm (LMA) is a method that lies halfway between
the Gauss-Newton algorithm and gradient descent. Similar to these methods, the
LMA operates on an iterative basis. An initial value, �0 can be selected randomly.
�0=(1;:::;1)T is a good choice if there aren't multiple local minima. However, if there
are multiple local minima, a more accurate initial estimate of �0 can significantly
aid in converging to the global minimum. The key concept of Levenberg's approach
is to adjust equation (26)

(JTJ +�I)�=JT(y¡ f(�)) (27)

Non-linear least square problem 36



where �2R.
If L converges quickly, � can be reduced. This causes equation (27) to be closer

to equation (26). Conversely, if L converges slowly, � is increased. This leads to the
gradient descent method, as in this case, ¡@L(�)

@�
=2(JT(y¡ f(�)))/ �.

Proposition 1. Let A 2GLn(K) and � 2R. A+ �I is invertible if and only if
¡�2/ sp(A).

Proof. Assume that A+�I is invertible. For the sake of contra-
diction, suppose that ¡� is an eigenvalue of A. Then there exists
a non-zero x2Kn such that

Ax=¡�x

This implies (A+�I)x=0. Therefore x=0 since A+�I is invert-
ible. This is a contradiction.

Now, assume that ¡�2/ sp(A). Let's show that Ker(A+�I)=0
i.e. A+�I is invertible.

(A+�I)x=0 , Ax=¡�x
, x=0

because ¡�2/ sp(A). Therefore A+�I is invertible. �

Definition 2. Assume that J is full rank and let l be in R such that -l is not
in the spectrum of J. We define � as �= (JTJ + �I)¡1JT(y ¡ f(�)). Then, the
Levenberg-Marquardt algorithm is defined by the update rule

� �+ �

One variant of this algorithm is given by

(JTJ +�diag(JTJ))�= JT(y¡ f(�)) (28)

The algorithm can be extended by introducing covariance matrices. Let's consider

L(�)= (y¡ f(�;x))T
(y¡ f(�;x)) (29)

As done above, we have

L(�+ �) = (y¡ f(�)¡J�)T
(y¡ f(�)¡J�)
= (y¡ f(�))T
(y¡ f(�))¡ 2(y¡ f(�))T
J�+ �TJT
J�

By differentiating L(�+�) with respect to � and setting the result to zero, we obtain

(JT
J)�= JT
(y¡ f(�))

Definition 3. Let 𝜆 be a real. The generalized equation of Levenberg-Marquardt
Algorithm is given by

(JT
J +�I)�=JT
(y¡ f(�))

37 Appendix A



H =(JT
J + �I) can be likened to the information matrix of the graph, while
�=JT
(y¡ f(�)) can be likened to the information vector.

Appendix B Distance from a point to a set

Let (E;d) be an n-dimensional metric space and x an element of E. We denote the
ith component of x as xi. The distance d is defined as the Euclidean distance defined
as:

8(x; y)2E2 d(x; y)=
X
i=1

n

(xi¡ yi)2
s

If x is a point in E, and A is a subset of E, the distance from x to A is the infimum
of the distances from x to any point y in A:

d(x;A)= inf fd(x; y); y 2Ag

When A is a line, the distance is called point-to-line distance. Let a and b be two
distinct points of A. The distance from a point x to the line A can be calculated as:

d(x;A)=
k(x¡ a)� (x¡ b)k

ka¡ bk

When A is a plane, the distance is called point-to-plane distance. If a, b and c are
three linearly independant points on the plane A, the distance from a point x to the
plane A is given by:

d(x;A)=
k(x¡ a) � ((a¡ b)� (a¡ c))k

k(a¡ b)� (a¡ c)k

� denotes the cross product and � represents the dot product.

Appendix C Bundle-Adjustment

Let (Xw;j)16j6J2(R3)J be the locations of map points, with w denoting the world ref-
erence frame and j denoting the number of the map point. Similarly, let (Ti;w)16i6I2
(SE(3))I denote the keyframe poses, which can be considered as the vehicle pose
at the time the frame was captured, with i representing the number of the keyframe.

The map point locations and keyframe poses are optimized by minimizing the
reprojection error ei;j of the map point j with respect to the matched keypoints
xi;j 2R2 in the frame i

ei;j=xi;j¡�i(Ti;w;Xw;j) (30)

where �i is the projection function.
The loss function is

L(Ti;w;Xw;j)=
X
i;j

�h(ei;j
T 
i;j

¡1ei;j) (31)

Bundle-Adjustment 38



where �h is the Huber robust cost function which serves to filter outliers in the
optimization process and 
i;j is the covariance matrix of the measurements.

Equations (29) and (31) are two formulations of the same function. Therefore,
LMA can be employed to minimize this loss function.

In the case of full BA, the optimization process involves refining the positions of
all points and keyframes, with the exception of the initial keyframe, which remains
fixed as the origin.

In local Bundle Adjustment, optimization is focused on a specific local area, with
only the points and keyframes within that area being optimized, while a subset of
keyframes outside the local area is fixed.

On the other hand, in pose optimization, also known as motion-only BA, all
points are kept fixed, and only the camera pose is optimized.

Appendix D Task Reporting

Figure 12. Gantt Chart

39 Appendix D



Bibliography

[1] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver. 10 2023.
[2] Carlos Campos, Richard Elvira, Juan J Gómez Rodrguez, José MM Montiel, and Juan D

Tardós. Orb-slam3: an accurate open-source library for visual, visual�inertial, and multimap
slam. IEEE Transactions on Robotics, 37(6):1874�1890, 2021.

[3] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien Jacquet, and François Goulette. Ct-
icp: real-time elastic lidar odometry with loop closure. In 2022 International Conference on
Robotics and Automation (ICRA), pages 5580�5586. IEEE, 2022.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i.
IEEE Robotics Automation Magazine , 13(2):99�110, 2006.

[5] Maxime Ferrera, Alexandre Eudes, Julien Moras, Martial Sanfourche, and Guy Le Besnerais.
Ov ^{2} slam: a fully online and versatile visual slam for real-time applications. IEEE
robotics and automation letters, 6(2):1399�1406, 2021.

[6] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place recognition
in image sequences. IEEE Transactions on robotics, 28(5):1188�1197, 2012.

[7] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
the kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR). 2012.

[9] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31�43, 2010.

[10] Giorgio Grisetti, H Strasdat, K Konolige, and W Burgard. G2o: a general framework
for graph optimization. In IEEE International Conference on Robotics and Automation,
volume 2, page 1. 2011.

[11] Michael Grupp. Evo: python package for the evaluation of odometry and slam. https://
github.com/MichaelGrupp/evo, 2017.

[12] An�ela Juri¢, Filip Kende², Ivan Markovi¢, and Ivan Petrovi¢. A comparison of graph
optimization approaches for pose estimation in slam. In 2021 44th International Convention
on Information, Communication and Electronic Technology (MIPRO), pages 1113�1118.
IEEE, 2021.

[13] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit et al. Fastslam: a
factored solution to the simultaneous localization and mapping problem. Aaai/iaai , 593598,
2002.

[14] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147�1163, 2015.

[15] Raúl Mur-Artal and Juan D Tardós. Fast relocalisation and loop closing in keyframe-based
slam. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
846�853. IEEE, 2014.

[16] Raul Mur-Artal and Juan D Tardós. Orb-slam2: an open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255�1262, 2017.

[17] Youngwoo Seo and Chih-Chung Chou. A tight coupling of vision-lidar measurements for an
effective odometry. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1118�1123.
IEEE, 2019.

[18] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications to
large-scale mapping of urban structures. The International Journal of Robotics Research,
25(5-6):403�429, 2006.

[19] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann, Jens Behley, and
Cyrill Stachniss. Kiss-icp: in defense of point-to-point icp�simple, accurate, and robust
registration if done the right way. IEEE Robotics and Automation Letters, 8(2):1029�1036,
2023.

[20] H. Wang, C. Wang, C. Chen, and L. Xie. F-loam : fast lidar odometry and mapping. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020.

Bibliography 40

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo


[21] Rui Wang, Martin Schworer, and Daniel Cremers. Stereo dso: large-scale direct sparse visual
odometry with stereo cameras. In Proceedings of the IEEE international conference on
computer vision, pages 3903�3911. 2017.

[22] Xiaobin Xu, Lei Zhang, Jian Yang, Chenfei Cao, Wen Wang, Yingying Ran, Zhiying Tan,
and Minzhou Luo. A review of multi-sensor fusion slam systems based on 3d lidar. Remote
Sensing, 14(12):2835, 2022.

[23] Ji Zhang and Sanjiv Singh. Loam: lidar odometry and mapping in real-time. In Robotics:
Science and systems, volume 2, pages 1�9. Berkeley, CA, 2014.

41 Bibliography


	Introduction
	1 Compagny
	2 Formulation of the SLAM problem
	2.1 Variable Notation
	2.2 SLAM formulation

	3 Solutions to the SLAM problem
	3.1 EKF-SLAM
	3.2 FastSLAM
	3.3 GraphSLAM
	3.3.1 GraphSLAM Basic Idea
	3.3.2 Theoretical Aspects of the Graph SLAM Problem

	3.4 Solutions comparison

	4 Fusion Algorithm
	4.1 Types of Fusion Algorithms
	4.2 Visual SLAM: ORB-SLAM 3
	4.2.1 Camera Model
	4.2.2 Map representation
	4.2.3 Tracking
	4.2.4 Local Mapping
	4.2.5 Loop Closing
	4.2.6 Multi-map

	4.3 LiDAR SLAM: LOAM
	4.3.1 LiDAR operation
	4.3.2 Feature extraction
	4.3.3 Finding Feature Point Correspondence
	4.3.4 Motion Estimation
	4.3.5 LiDAR Mapping

	4.4 Fusion Algorithm: TVLO
	4.4.1 General principle
	4.4.2 Fusion of Visual-LiDAR Measurements
	4.4.3 Limits of the TVLO method


	5 Implementation
	5.1 Data Conversion
	5.2 ORB-SLAM 3 initial guess
	5.3 Graph fusion
	5.4 Fusion Algorithm

	6 Experiments
	6.1 Setup
	6.2 Evaluation

	Conclusion
	Appendix A Non-linear least square problem
	A.1 Gauss-Newton Algorithm
	A.2 Levenberg-Marquardt Algorithm

	Appendix B Distance from a point to a set
	Appendix C Bundle-Adjustment
	Appendix D Task Reporting
	Bibliography

