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Outline

1 Simplex algorithm.

2 Bounded version with intervals.
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Simplex algorithm

Linear optimisation

We consider the following presentation of the linear optimisation problem,
with c ∈ Rn, A ∈Mm,n(R) and b ∈ Rm:

S = max cTx
s.t. Ax ≤ b and x ∈ Rn

This problem can be seen as �nding the vertex of a polyhedron maximizing
a linear form. Here n if the dimension of the space, and m the number of
constraints.
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Simplex algorithm

Dual problem

Each vertex of the polyhedron can be characterized by N constraints which
are equalities on it. Hence, the linear optimisation problem can be solved
buy �nding the �correct� N constraints.
More precisely, let AB an (invertible) n × n sub-matrix of A (the basis). By
posing x = A−1B y , we get:

cTx = cTA−1B y

Ax ≤ b ⇒ y ≤ bB

As a consequence:

cTA−1B ≥ 0 ⇒ S ≤ cTA−1B bB

The condition cTA−1B ≥ 0 means that B is dual-feasible. We note by
λB = cTA−1B the solution of the dual problem.

D. Massé (LabSTICC-UBO) Simplex with intervals Réunion Robex 4 / 21



Simplex algorithm

Dual feasibility and optimality

direction of

optimisation

linear combination

R1
R2

R3

of (R1, R2)

A dual-feasible basis bounds
S (but the associated vertex
may not be inside the poly-
hedron).

To prove optimality, we need to check that y = bB satis�es all the
constraints, i.e. x = A−1B bB is a valid vertex of the polyhedron:

AA−1B bB ≤ b
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Simplex algorithm

Dual simplex algorithm

The dual simplex algorithm starts from a dual-feasible basis and changes
the basis (one constraint by one) until reaching an optimal one.

R1
R2

?

?

R3

dual-feasible

new basis

(R2, R3)
not dual-feasible

1 Find a unsatis�ed constraint
RTx ≤ bR such that
RTA−1B bB > bR (will enter
the basis)

2 Find the (one?) direction
which keeps the basis
dual-feasible and enables to
satisfy R .

3 Iterate.

Note: AA−1B (and the associated vectors) can be updated iteratively or
recomputed from AB (more costly).
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Simplex algorithm

Sources of errors
The algorithm uses comparisons to evaluate:

1 If a constraint is satis�ed/unsatis�ed.
2 If a direction enables to satisfy (or not) an unsatis�ed constraint.
3 If a direction keeps the basis dual-feasible.

R1
R2

R3(3)

?

R1

(4)

R2

R3

R1
R2

R3

R1
R2

R3

?

?

(2)(1)

All these choices can
lead to non-optimal
basis (or an empty
answer).
Furthermore, ill-
conditioned basis
can produce an un-
reliable AA−1B which
may propagate (case
4).
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Interval simplex

Requirements

We want overapproximations.

1 We need a dual-feasible basis (which will give a reliable bound for S).

2 With this basis, we need an upper bound of λBbB (→ upper bound for
S).

3 If the algorithm returns �empty� (S = −∞), the polyhedron is empty.

Having a near-optimal basis (all constraints are satis�ed or �almost�
satis�ed) is a preference.
Unfortunaly, cases (2) and (3) may give a non-dual feasible basis. We can
�solve� the problem if the constraints are bounded.
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Interval simplex

Neumaier's approach

We consider that the polyhedron is inside a bounding box:

x ∈ [B]

and we suppose that we have an approximate dual basis and solution
λB = cTA−1B (we denote by λ̂B the approximation of the solution).

Let's compute [r ] ⊆ λ̂BAB − cT . Then

S ≤ ub(λ̂BbB − [r ][B])

Note: no indication is given on the dual-feasibility of the basis.
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Interval simplex

Alternative approach

If the bounds are given for the current basis constraints:

ABx ∈ [bB],

then if AB is invertible, the constraints represent of bounded parallelepiped.
As such, it is always �dual-feasible� (even if cTA−1B has negative
coe�cients, in which case we can use the lower bound).
If we can compute an interval [λB] which includes λB:

1 S ≤ ub([λB][bB]);

2 the signs of [λB] (if unique for each component) gives the dual-feasible
vertex (otherwise, we get a set of potential dual-feasible vertices).
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Interval simplex

Adaptating the simplex algorithm

Let's consider the case where all constraints have interval bounds:

Ax ∈ [b]

Considering potential bases, a constraint RTx ∈ [b] may be:

in the basis positively RTx = b or negatively RTx = b;

or out of the basis, unsatis�ed (on one side) or satis�ed (on both
sides).

Notes

1 AB does not depend on the �sign� of the appartenance in the basis.
This �sign� depends on the value of λ and changes the selection of the
bound (b or b) when computing the �current� vertex.

2 �Switching� the side of a constraint never appears in the usual dual
simplex algorithm, but is easy computationnally and could be useful...
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Interval simplex

Skipping steps

R+
1R−1

R3

R2

Successive bases for usual algorithm:

(R+
1 ,R2)→ (R3,R2)→ (R3,R

−
1 )

Problem: (R3,R2) is ill-conditioned.
Using another �path� to reach (R3,R

−
1 ) is problematic as (R−1 ,R2) and

(R+
1 ,R3) are not dual-feasible.

Can we go directly from (R+
1 ,R2) to (R3,R

−
1 )? Considering the basis as a

set of �active� constraints (positively or negatively), yes.
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Interval simplex

Simplex revisited

At each iteration, we keep:

the current basis B, which represents a parallelepiped which includes
the polyhedron; along with B, we keep a approximation [A−1B ] of A−1B ;

the �active� bound b or b for each constraint in the basis (needed to
check the optimality). We denote by b̂B the vector of active bounds.

The choice of the active bounds must follow the signs of the components
of cT [A−1B ]. If both signs appear on a component, we may consider the
sign of the midpoint.
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Interval simplex

Optimality and emptiness checking

Optimality is reached when each non-basic constraint Rx ∈ [r ] is satis�ed.
Here:

[R[A−1B ]b̂B] ∩ [r ] 6= ∅

Emptiness is reached with a non-basis constraint is not satis�ed over the
paralleliped, i.e.:

[R[A−1B ][bB]] ∩ [r ] = ∅

In the following, we consider that Rx ≤ r is not satis�ed, but the
emptiness condition is not satis�ed.
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Interval simplex

Changing the basis

Lemma

Let P a parallelepiped, H an half-space and cT a linear form to maximize.
Let x be an optimal vertex for cT in P . Then if x 6∈ H and P ∩ H 6= ∅,
there exists an optimal vertex for c in P ∩ H which belongs to the
boundary of H.

Hence, when a constraint is not satis�ed, we look for a point intersecting
the boundary of the constraint with an edge of the parallelepiped. This is
given by:

a new basis (the new constraint enters, another leaves);

the elements of the current basis which �switch� side.

Like the classical simplex algorithm, each potentially leaving constraint is
checked one by one.
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Interval simplex

Leaving constraint (exact)

We note RB = RA−1B , cTB = cTA−1B and y = ABx .
The new vertex y must satisfy RBy = r (initially RBŷ > r). We consider
an index i such that: ŷ i = bi :
If R i

B ≤ 0, either there is no solution or a �better� index can be found.

No solution (i = 1) Solution with (i = 1)

(�better� with i = 2)

i = 1

i = 2

No solution (i = 1)

Empty polyhedronSolution with i = 2

ŷ ŷ ŷ
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Interval simplex

Leaving contraint (exact) (2)

If R i
B ≥ 0:

y i =
r −

∑
j 6=i R

j
By

j

R i
B

We look for �new� values for y j such that:

the objective is maximal;

the new vertex is still in the paralleliped.

All vertices

�out� for i = 1

Some in,

some out.

Some in,

some out,

need to switch

All in.

ŷŷŷŷ
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Interval simplex

Leaving contraint (exact) (3)
The expression of cTB y is:

cTB y =
c iB
R i
B
r +

∑
j 6=i

(
c
j
B −

c iBR
j
B

R i
B

)
y j

The sign of c jB −
c
i
BR

j
B

R i
B

gives us the new bound for y j (either bj or bj).

If there is only one optimal (strict signs), ok if y i is still in [b]i , otherwise
check another indice. If several possibilities and y i outside [b]i , we can try
to change it (case 3).

All vertices

�out� for i = 1

Some in,

some out.

Some in,

some out,

need to switch

All in.

ŷŷŷŷ
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Interval simplex

Leaving constraint (interval)

The computation is similar, with some compromises:

1 we consider i such that [R i
B] > 0 ; if no such i exists, the constraint

cannot enter the basis (if no constraint can enter the basis, we stop
there);

2 if the sign of c jB −
c
i
BR

j
B

R i
B

is ambiguous, we treat it as 0, but use the

interval [bj ] to bound cTB y .
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Interval simplex

Cycling

Known results:

Simplex algorithm can cycle.

(Ine�cient but) simple rules (like Bland's rule) can avoir cycling.

We can adapt Bland's rule to our modi�ed simplex algorithm. Until now,
the proof that it cannot cycle is not found.
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Interval simplex

Conclusion

Not implemented(!).
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