

Redundancy Management

Robex-Day 5/12/2023

- Redundant actuation system
 - System that has more actuators than degrees of freedom
 - A system can have a redundant actuation system, while remaining underactuated
 - Only subsets of Dofs can be redundant
 - Opportunities in the control allocation problem

 $\mathbf{F}_{\mathrm{B}} = \mathbf{A} \cdot \mathbf{F}_{\mathrm{m}}$ 'Concentrator'

- The Control Allocation problem :
 - Given the actuation system :

$$\mathbf{F}_{\mathrm{B}} = \mathbf{A} \cdot \mathbf{F}_{\mathrm{m}}$$

'Concentrator'

• Compute the desired actuators' force, \mathbf{F}_m^d , in order to produce a prescribed resulting action \mathbf{F}_B^d on the system.

$$\mathbf{F}_m^d = \mathbf{D} \cdot \mathbf{F}_B^d$$

'Dispatcher'

- If **A** is $(n \times m)$, where m > n, under-determined
- If $\det(\mathbf{A}) \neq 0$, \mathbf{D} is unique and $\mathbf{D} = \mathbf{A}^{-1}$
- If **A** is $(n \times m)$, where m < n, **D** is not unique

- Example : Jack
 - 6 actuators for 6 Dof
 - redundant in the H plane
 - Globally underactuated

 $\mathbf{F}_{\mathrm{m}} = \mathbf{A}^{+} \cdot \mathbf{F}_{\mathrm{B}}^{\mathrm{d}}$

- Example : Jack, Dead-zone effects compensation
 - Use of the Moore-Penrose pseudo inverse : $\mathbf{A}^+ = \mathbf{A}^T \cdot \left(\mathbf{A} \cdot \mathbf{A}^T\right)^{-1}$

 $\mathbf{F}_{\mathrm{m}} = \mathbf{A}^{+} \cdot \mathbf{F}_{\mathrm{R}}^{\mathrm{d}}$

- Example : Jack, Dead-zone effects compensation
 - Use of the Moore-Penrose pseudo inverse : $\mathbf{A}^+ = \mathbf{A}^T \cdot \left(\mathbf{A} \cdot \mathbf{A}^T\right)^{-1}$

• Use null-space projetor

If **A** is $(n \times m)$, where m > n, $\rightarrow \ker \mathbf{A} \neq \{\emptyset\}$, and $\forall \mathbf{M}_m \in \ker \mathbf{A}$, $\mathbf{A} \cdot \mathbf{M}_m = \mathbf{0}$

• Example : Robustness against motors' characteristic uncertainty and disparity

• Example : Robustness against motors' characteristic uncertainty and disparity

 $\mathbf{F}_{B} = \mathbf{A} \cdot \Omega \left(\hat{\Omega}^{-1} \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \right) \equiv \mathbf{A} \cdot \Omega \cdot \hat{\Omega}^{-1} \cdot \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \neq \mathbf{F}_{B}^{d} \quad \Rightarrow \mathsf{DOF} \text{ Coupling effect}$

• Example : Robustness against motors' characteristic uncertainty and disparity

• Example : Robustness against motors' characteristic uncertainty and disparity

 $\mathbf{F}_{B} = \mathbf{A} \cdot \Omega \left(\hat{\Omega}^{-1} \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \right) \equiv \mathbf{A} \cdot \Omega \cdot \hat{\Omega}^{-1} \cdot \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \neq \mathbf{F}_{B}^{d} \quad \Rightarrow \mathsf{DOF} \mathsf{ Coupling effect}$

- Identification of corrective coefficients
 - Consider the following regulation law :

$$\mathbf{F}_{\mathbf{B}}^{d} = \begin{bmatrix} -u - \int_{0}^{t} u \cdot dt \\ -v - \int_{0}^{t} v \cdot dt \\ -\psi - r - 0.1 \cdot \int_{0}^{t} \psi \cdot dt \end{bmatrix}, \begin{bmatrix} \mathbf{c}_{\mathbf{m}} = \hat{\mathbf{\Omega}}^{-1} \cdot \mathbf{A}^{+} \cdot \left(\mathbf{F}_{\mathbf{B}}^{d} + \mathbf{M}_{\mathbf{m}} \cdot r_{m}\right) \\ r_{m} = \mathbf{\Omega} \cdot c_{0} \end{bmatrix}$$

$$\mathbf{F}_{\mathbf{B}} = \mathbf{A} \cdot \mathbf{\Omega} \cdot \mathbf{c}_{\mathbf{m}}^{\infty}(c_0) = \mathbf{0}$$
$$\Rightarrow \mathbf{c}_{\mathbf{m}}^{\infty}(c_0) \in \ker(\mathbf{A} \cdot \mathbf{\Omega})$$

$$\Rightarrow \alpha_i(c_0) = \frac{c_{\mathbf{m},i}^{\infty}}{c_0}$$

• Example : Robustness against motors' characteristic uncertainty and disparity

 $\mathbf{F}_{B} = \mathbf{A} \cdot \Omega \left(\hat{\Omega}^{-1} \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \right) \equiv \mathbf{A} \cdot \Omega \cdot \hat{\Omega}^{-1} \cdot \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \neq \mathbf{F}_{B}^{d} \quad \Rightarrow \mathsf{DOF} \text{ Coupling effect}$

• Example : Robustness against motors' characteristic uncertainty and disparity

 $\mathbf{F}_{B} = \mathbf{A} \cdot \Omega \left(\hat{\Omega}^{-1} \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \right) \equiv \mathbf{A} \cdot \Omega \cdot \hat{\Omega}^{-1} \cdot \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \neq \mathbf{F}_{B}^{d} \quad \Rightarrow \mathsf{DOF} \mathsf{ Coupling effect}$

 Identification of corrective coefficients system trajectory Consider the following regulation law $\mathbf{F}_{B}^{d} = [0, 1, 0]^{\mathrm{T}} (\mathrm{red}, \mathrm{N})$ 20 • Iterate for $c_{\rm m}^{\rm min} < c_{\rm m} < c_{\rm m}^{\rm max}$ and build $\mathbf{Q}(\mathbf{c}_{\rm m})$ $\mathbf{F}_{P}^{\tilde{d}} = [1,0,0]^{\mathrm{T}}$ (blue, N) 10 <u>m</u> Implement the follwing open loop control $\mathbf{c}_{\mathbf{m}} = \mathbf{Q} \left(\cdot \hat{\mathbf{\Omega}}^{-1} \cdot \mathbf{A}^{+} \cdot \left(\mathbf{F}_{\mathbf{B}}^{\mathbf{d}} + \mathbf{M}_{\mathbf{m}} \cdot r_{m} \right) \right)$ 0 → DOF decoupled $\mathbf{F}_{\mathbf{B}} \equiv \mathbf{A} \cdot \mathbf{\Omega} \cdot \mathbf{Q} \cdot \hat{\mathbf{\Omega}}^{-1} \cdot \begin{bmatrix} \mathbf{A}^{+} & \boldsymbol{M}_{m} \end{bmatrix} \cdot \begin{vmatrix} \mathbf{F}_{\mathbf{B}}^{\mathbf{d}} \\ \boldsymbol{r}_{m} \end{vmatrix} = k_{Q} \cdot \mathbf{F}_{\mathbf{B}}^{\mathbf{d}}$ -10 -10 0 10 20 x[m]

• Example : Robustness against motors' characteristic uncertainty and disparity

 $\mathbf{F}_{B} = \mathbf{A} \cdot \Omega \left(\hat{\Omega}^{-1} \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \right) \equiv \mathbf{A} \cdot \Omega \cdot \hat{\Omega}^{-1} \cdot \left(\mathbf{A}^{+} \cdot \mathbf{F}_{B}^{d} + \mathbf{M}_{m} \cdot r_{m} \right) \neq \mathbf{F}_{B}^{d} \quad \Rightarrow \mathsf{DOF} \mathsf{ Coupling effect}$

Identification of corrective coefficients

- Dead-zone effects compensation
- Robustness against motors' characteristic uncertainty and disparity
- Robustness against actuators failure : \mathbf{r}_m ? / $F_{l=1,...,k} = 0 \& \mathbf{F}_B = [F_1, ..., F_m]^T = \mathbf{F}_B^d$

- Dead-zone effects compensation
- Robustness against motors' characteristic uncertainty and disparity
- Robustness against actuators failure : \mathbf{r}_m ? / $F_{l=1,...,k} = 0 \& \mathbf{F}_B = [F_1, ..., F_m]^T = \mathbf{F}_B^d$
 - Maximum failure ?
 - If omni-directionality preserved :
 - rank $(\mathbf{A}_*) = 6, \mathbf{A}_* = \mathbf{A} \{\mathbf{a}_{l=1,\dots,k}\}$

- Dead-zone effects compensation
- Robustness against motors' characteristic uncertainty and disparity
- Robustness against actuators failure : \mathbf{r}_m ? / $F_{l=1,...,k} = 0 \& \mathbf{F}_B = [F_1, ..., F_m]^T = \mathbf{F}_B^d$
 - Maximum failure ?
 - If omni-directionality preserved :
 - rank $(\mathbf{A}_*) = 6, \mathbf{A}_* = \mathbf{A} \{\mathbf{a}_{l=1,\dots,k}\}$
 - If displacement capability preserved :
 - rank $(\mathbf{A}_*) = 3, \mathbf{A}_* = \mathbf{A} \{\mathbf{a}_{l=1,\dots,k}\}$
 - Guidance & Control adaptation

- Dead-zone effects compensation
- Robustness against motors' characteristic uncertainty and disparity
- Robustness against actuators failure : \mathbf{r}_m ? / $F_{l=1,...,k} = 0 \& \mathbf{F}_B = [F_1, ..., F_m]^T = \mathbf{F}_B^d$
 - Maximum failure ?
 - If omni-directionality preserved :
 - rank $(\mathbf{A}_*) = 6, \mathbf{A}_* = \mathbf{A} \{\mathbf{a}_{l=1,\dots,k}\}$
 - If displacement capability preserved :
 - rank $(\mathbf{A}_*) = 3$, $\mathbf{A}_* = \mathbf{A} \{\mathbf{a}_{l=1,\dots,k}\}$
 - Guidance & Control adaptation
- Reducing actuation activity
 - Saturation avoidance

- Next time :
 - Optimimal redundant design (properties of A)
 - Manipulability
 - Energy
 - Workspace
 - Reactivity
 - Robusness

(a) Cube robot in C¹ configuration

(b) Cube robot in C^2 configuration

Figure 19: Cube robot in two configurations $\mathbf{C^1}$ and $\mathbf{C^2}$

- Next time :
 - Optimimal redundant design (properties of A)
 - Manipulability
 - Energy
 - Workspace
 - Reactivity
 - Robusness
 - Dynamic management of variable actuation system

(a) Umbrella robot in open-forward

(b) Umbrella robot in *close*

Figure 36: The principle diagram of UmRobot

- Next time :
 - Optimimal redundant design (properties of A)
 - Manipulability
 - Energy
 - Workspace
 - Reactivity
 - Robusness
 - Dynamic management of variable actuation system
 - Final hybrid proposal

