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• Redundant actuation system
• System that has more actuators than degrees of freedom
• A system can have a redundant actuation system, while remaining under-

actuated
• Only subsets of Dofs can be redundant

• Opportunities in the control allocation problem

‘Concentrator’

𝐅! = 𝐀 ⋅ 𝐅"



• The Control Allocation problem :

• Given the actuation system :

• Compute the desired actuators’ force, 𝐅!" , in order to produce a 
prescribed resulting action 𝐅#" on the system.

• If 𝐀 is 𝑛×𝑚 , where m > 𝑛, under-determined
• If det 𝐀 ≠ 0, 𝐃 is unique and 𝐃 = 𝐀!𝟏

• If 𝐀 is 𝑛×𝑚 , where m < 𝑛, 𝐃 is not unique 

Redundancy

‘Concentrator’

𝐅! = 𝐀 ⋅ 𝐅"

‘Dispatcher’

𝐅"# = 𝐃 ⋅ 𝐅!#
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• Example : Jack
• 6 actuators for 6 Dof
• redundant in the H plane
• Globally underactuated

Redundancy
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• Example : Jack, Dead-zone effects compensation
• Use of the Moore-Penrose pseudo inverse : 𝐀2 = 𝐀3 ⋅ 𝐀 ⋅ 𝐀3

45

• Test on Jack, yaw regulation

Redundancy

𝐅" = 𝐀$ ⋅ 𝐅!#

  

 

It is clear that if !! ! ! the resulting forces and torque 
produced by the actuation system (!!! will be bigger than !!!, 
thus questioning the operator, or control law, reactivity 
capacity.  Then we just allow !! ! !. 

The following section gives experimental results obtained 
when applying the proposed dispatcher-based approach on the 
Jack robot. 

 

IV. EXPERIMENTATIONS 

 
 The Figure 9 shows the experimentations realized on the 

Jack system in a pool.  

 

 
Figure 9.  !"#$%&'()*(experimentation+(

In order to illustrate the performances of our solution, we 
use a basic PD yaw controller: 

 

!! ! !! ! !! ! ! ! !! ! !( (12)(
 

where !!is the desired heading and !! ! !"!and !! ! !!are 
positive gains. The control output is then sent to the different 
dispatchers (static, compressed or dynamic) during three 
experiments, reported at Figure 11. The desired heading 
reference has been chosen to !! ! !"#$. Initial position has 
been roughly set to 20°. At approximately 28s, the control is 
disengaged and the robot is manually oriented at 200°, thus 
simulating a similar external perturbation. Then the control is 
engaged again. 

The first experiment considers the static dispatcher (eq. 4) 
with the basic motor characteristic reported in 6(1). Results 
are drawn in blue.  

The second experiment considers the same dispatcher, but 
removes the dead-zone (compressed) from the accessible 
motor inputs, as shown in 6(2). Results are in red.  

Lastly, the third experiment considers the use of the 
dynamic dispatcher, which follows the placement algorithm 
described previously. Results are given in black.  

(
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Figure 10.  Experimental results 

A. Analysis of the static dispatcher response 
The blue curves on Figure 11 clearly show the limitations 

of the static dispatcher. Indeed, the control law provides 
control inputs regardless to the presence of the dead-zone. The 
motor characteristic reported on Figure 3 shows a dead-zone 
between !!!!" ! !!"!!" . Considering the control law (12), 
given !! ! !", the expected static error is!!!"#" ! !"

!" !
!!!!!"# ! !"!!"#! This corresponds to a heading error that 
won’t induce any thrusters’ reaction, as one can see on 
experimental results of Figure 11. Note that this static error is 
the result of a default of the actuation system, which is not 
able to produce low thrust. Hence the consideration of an 
integral gain in control 12 will not compensate this static 
error. 

 

B. Analysis of the compressed dispatcher response 
The red curve on Figure 11 shows the performances of the 

compressed dispatcher. This one is similar to the previous 
one, but refers to a motor response where the dead-zone has 
been contracted (Figure 6(2)), bounding the dead-zone with 
admissible values of the motor inputs such that !! !
!!""!!!" ! !"!!"" , covering the real dead-zone 

(!!!!" ! !!"!!" ). The result indicates that the static error is 
compensated but the system oscillates around the desired 
value. These oscillations are induced by the time of reaction 
of the thrusters to produce an inverted thrust. A decrease of 
the gain !! will reduce the amplitude of these oscillations, but 
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• Example : Jack, Dead-zone effects compensation
• Use of the Moore-Penrose pseudo inverse : 𝐀2 = 𝐀3 ⋅ 𝐀 ⋅ 𝐀3

45

• Test on Jack, yaw regulation, folding DZ 

Redundancy

𝐅" = 𝐀$ ⋅ 𝐅!#

  

 

It is clear that if !! ! ! the resulting forces and torque 
produced by the actuation system (!!! will be bigger than !!!, 
thus questioning the operator, or control law, reactivity 
capacity.  Then we just allow !! ! !. 

The following section gives experimental results obtained 
when applying the proposed dispatcher-based approach on the 
Jack robot. 

 

IV. EXPERIMENTATIONS 

 
 The Figure 9 shows the experimentations realized on the 

Jack system in a pool.  

 

 
Figure 9.  !"#$%&'()*(experimentation+(

In order to illustrate the performances of our solution, we 
use a basic PD yaw controller: 

 

!! ! !! ! !! ! ! ! !! ! !( (12)(
 

where !!is the desired heading and !! ! !"!and !! ! !!are 
positive gains. The control output is then sent to the different 
dispatchers (static, compressed or dynamic) during three 
experiments, reported at Figure 11. The desired heading 
reference has been chosen to !! ! !"#$. Initial position has 
been roughly set to 20°. At approximately 28s, the control is 
disengaged and the robot is manually oriented at 200°, thus 
simulating a similar external perturbation. Then the control is 
engaged again. 

The first experiment considers the static dispatcher (eq. 4) 
with the basic motor characteristic reported in 6(1). Results 
are drawn in blue.  

The second experiment considers the same dispatcher, but 
removes the dead-zone (compressed) from the accessible 
motor inputs, as shown in 6(2). Results are in red.  

Lastly, the third experiment considers the use of the 
dynamic dispatcher, which follows the placement algorithm 
described previously. Results are given in black.  
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Figure 10.  Experimental results 

A. Analysis of the static dispatcher response 
The blue curves on Figure 11 clearly show the limitations 

of the static dispatcher. Indeed, the control law provides 
control inputs regardless to the presence of the dead-zone. The 
motor characteristic reported on Figure 3 shows a dead-zone 
between !!!!" ! !!"!!" . Considering the control law (12), 
given !! ! !", the expected static error is!!!"#" ! !"

!" !
!!!!!"# ! !"!!"#! This corresponds to a heading error that 
won’t induce any thrusters’ reaction, as one can see on 
experimental results of Figure 11. Note that this static error is 
the result of a default of the actuation system, which is not 
able to produce low thrust. Hence the consideration of an 
integral gain in control 12 will not compensate this static 
error. 

 

B. Analysis of the compressed dispatcher response 
The red curve on Figure 11 shows the performances of the 

compressed dispatcher. This one is similar to the previous 
one, but refers to a motor response where the dead-zone has 
been contracted (Figure 6(2)), bounding the dead-zone with 
admissible values of the motor inputs such that !! !
!!""!!!" ! !"!!"" , covering the real dead-zone 

(!!!!" ! !!"!!" ). The result indicates that the static error is 
compensated but the system oscillates around the desired 
value. These oscillations are induced by the time of reaction 
of the thrusters to produce an inverted thrust. A decrease of 
the gain !! will reduce the amplitude of these oscillations, but 
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• Example : Jack, Dead-zone effects compensation
• Use null-space projetor

Redundancy

  

 

It is clear that if !! ! ! the resulting forces and torque 
produced by the actuation system (!!! will be bigger than !!!, 
thus questioning the operator, or control law, reactivity 
capacity.  Then we just allow !! ! !. 

The following section gives experimental results obtained 
when applying the proposed dispatcher-based approach on the 
Jack robot. 

 

IV. EXPERIMENTATIONS 

 
 The Figure 9 shows the experimentations realized on the 

Jack system in a pool.  
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In order to illustrate the performances of our solution, we 
use a basic PD yaw controller: 

 

!! ! !! ! !! ! ! ! !! ! !( (12)(
 

where !!is the desired heading and !! ! !"!and !! ! !!are 
positive gains. The control output is then sent to the different 
dispatchers (static, compressed or dynamic) during three 
experiments, reported at Figure 11. The desired heading 
reference has been chosen to !! ! !"#$. Initial position has 
been roughly set to 20°. At approximately 28s, the control is 
disengaged and the robot is manually oriented at 200°, thus 
simulating a similar external perturbation. Then the control is 
engaged again. 

The first experiment considers the static dispatcher (eq. 4) 
with the basic motor characteristic reported in 6(1). Results 
are drawn in blue.  

The second experiment considers the same dispatcher, but 
removes the dead-zone (compressed) from the accessible 
motor inputs, as shown in 6(2). Results are in red.  

Lastly, the third experiment considers the use of the 
dynamic dispatcher, which follows the placement algorithm 
described previously. Results are given in black.  
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Figure 10.  Experimental results 

A. Analysis of the static dispatcher response 
The blue curves on Figure 11 clearly show the limitations 

of the static dispatcher. Indeed, the control law provides 
control inputs regardless to the presence of the dead-zone. The 
motor characteristic reported on Figure 3 shows a dead-zone 
between !!!!" ! !!"!!" . Considering the control law (12), 
given !! ! !", the expected static error is!!!"#" ! !"

!" !
!!!!!"# ! !"!!"#! This corresponds to a heading error that 
won’t induce any thrusters’ reaction, as one can see on 
experimental results of Figure 11. Note that this static error is 
the result of a default of the actuation system, which is not 
able to produce low thrust. Hence the consideration of an 
integral gain in control 12 will not compensate this static 
error. 

 

B. Analysis of the compressed dispatcher response 
The red curve on Figure 11 shows the performances of the 

compressed dispatcher. This one is similar to the previous 
one, but refers to a motor response where the dead-zone has 
been contracted (Figure 6(2)), bounding the dead-zone with 
admissible values of the motor inputs such that !! !
!!""!!!" ! !"!!"" , covering the real dead-zone 

(!!!!" ! !!"!!" ). The result indicates that the static error is 
compensated but the system oscillates around the desired 
value. These oscillations are induced by the time of reaction 
of the thrusters to produce an inverted thrust. A decrease of 
the gain !! will reduce the amplitude of these oscillations, but 
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• Example : Robustness against motors’ characteristic uncertainty and disparity

Redundancy

Fm =Ω(cm )

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd

cm = Ω̂−1(Fm )

èDOF Coupling effect
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• Example : Robustness against motors’ characteristic uncertainty and disparity

Redundancy

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd èDOF Coupling effect
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• Example : Robustness against motors’ characteristic uncertainty and disparity

Redundancy

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd èDOF Coupling effect
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• Example : Robustness against motors’ characteristic uncertainty and disparity

• Identification of corrective coefficients
• Consider the following regulation law :

Redundancy

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd èDOF Coupling effect
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• Example : Robustness against motors’ characteristic uncertainty and disparity

• Identification of corrective coefficients
• Consider the following regulation law

• Iterate for 𝑐((*+ < 𝑐( < 𝑐((,- and build 𝐐 𝐜(

Redundancy

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd èDOF Coupling effect

FB = A ⋅Ω ⋅c∞m(c0 ) = 0
⇒ c∞m(c0 )∈ker(A ⋅Ω)

⇒α i c0( ) = c
∞
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c0
⇒Q(cm ) = diag(α1,α2,α3,α 4 )



• Example : Robustness against motors’ characteristic uncertainty and disparity

• Identification of corrective coefficients
• Consider the following regulation law

• Iterate for 𝑐((*+ < 𝑐( < 𝑐((,- and build 𝐐 𝐜(

• Implement the follwing open loop control

Redundancy
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• Example : Robustness against motors’ characteristic uncertainty and disparity

• Identification of corrective coefficients
• Experimentations

Redundancy

FB = A ⋅Ω Ω̂−1 A+ ⋅FB
d +Mm ⋅rm( )( ) ≡ A ⋅Ω ⋅ Ω̂−1 ⋅ A+ ⋅FB

d +Mm ⋅rm( ) ≠ FBd èDOF Coupling effect
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• Dead-zone effects compensation
• Robustness against motors’ characteristic uncertainty and disparity
• Robustness against actuators failure : 

Redundancy
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• Dead-zone effects compensation
• Robustness against motors’ characteristic uncertainty and disparity
• Robustness against actuators failure : 

• Maximum failure ?
• If omni-directionality preserved :  

• rank 𝐀∗ = 6, 𝐀∗ = 𝐀 − 𝐚()*,…,-

Redundancy
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• Dead-zone effects compensation
• Robustness against motors’ characteristic uncertainty and disparity
• Robustness against actuators failure : 

• Maximum failure ?
• If omni-directionality preserved :  

• rank 𝐀∗ = 6, 𝐀∗ = 𝐀 − 𝐚()*,…,-

• If displacement capability preserved : 
• rank 𝐀∗ = 3, 𝐀∗ = 𝐀 − 𝐚()*,…,-
• Guidance & Control adaptation 

Redundancy

𝐫!? / 𝐹FG5,…,I= 0 & 𝐅# = 𝐹5, … , 𝐹J 3 = 𝐅#"
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• Dead-zone effects compensation
• Robustness against motors’ characteristic uncertainty and disparity
• Robustness against actuators failure : 

• Maximum failure ?
• If omni-directionality preserved :  

• rank 𝐀∗ = 6, 𝐀∗ = 𝐀 − 𝐚()*,…,-

• If displacement capability preserved : 
• rank 𝐀∗ = 3, 𝐀∗ = 𝐀 − 𝐚()*,…,-
• Guidance & Control adaptation 

• Reducing actuation activity
• Saturation avoidance

Redundancy

𝐫!? / 𝐹FG5,…,I= 0 & 𝐅# = 𝐹5, … , 𝐹J 3 = 𝐅#"



• Next time :
• Optimimal redundant design (properties of A)

• Manipulability
• Energy
• Workspace
• Reactivity
• Robusness

Redundancy



• Next time :
• Optimimal redundant design (properties of A)

• Manipulability
• Energy
• Workspace
• Reactivity
• Robusness

• Dynamic management 
of variable actuation system

Redundancy



• Next time :
• Optimimal redundant design (properties of A)

• Manipulability
• Energy
• Workspace
• Reactivity
• Robusness

• Dynamic management 
of variable actuation system

• Final hybrid proposal

Redundancy


