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 Definition Underactuated AUV
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Underactuated System: 
Fewer actuators (inputs) than DOFs

Figure 3: Example of underactuated 
system
The hovercraft: 2 actuated DOFs, 3 
DOFs spaceUnderactuated AUV (w.r.t. a task): 

Fewer actuators (inputs) than DOFs required 
in the task

Ill-actuated AUV (w.r.t. a task): 
Same number of actuators as DOFs required in the task 

but they don’t match

Figure 4: Remus100 : Actuated in surge, pitch and 
yaw, used on task requiring 3 translations  (Credit: 
WOI)

Guidance Principle 
Required

I. Introduction and State 



Kinematic Guidance Principle
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[Alonge, 2001]
[Slotine et Li, 1991]

II. Kinematic Guidance 

Figure 6: RSM with a Virtual 
Tracking Point E

Video 1: Expected behavior on the 
seabed scanning task



Kinematic Guidance: Virtual Reference Point
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New linear speed relations
 in the mobile frame: 

New angular speed relations: 

Roll: 

Yaw: 

II. Kinematic Guidance 

Introduce new kinematic 
coupling terms

Enhance natural stability in 
attitude

Kinematic Model Update: 

[Berge, 1999]



Kinematic Guidance: Handy Matrix 
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Introduction of the Handy Matrix to reproduce the model 
manipulations

Roll compensation: 
Yaw compensation: 

II. Kinematic Guidance 

The Handy Matrix creates the expected Guidance 
mechanism [Degorre et al., 2022]

[Degorre et al., 2023a]



Kinematic Guidance: Handy Matrix 
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Construction of the Handy Matrix for roll 
compensation: 

Design Rules: 

II. Kinematic Guidance 



Kinematic Guidance: Handy Matrix 
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Consequences on the closed-loop system – Roll 
compensation  

II. Kinematic Guidance 

[Degorre et al., 2023b]



Kinematic Guidance: Handy Matrix 
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Application 1: Seabed Scanning with the 
RSM vehicle

Blue vehicle
Roll compensation
Yaw is controlled

Red vehicle
Yaw compensation
(Roll is controlled)

Both solutions have a 
perfect position tracking

The red vehicle cannot 
meet the heading 
constraint

II. Kinematic Guidance 

Video 2: Comparison of the two compensation 
solutions



Kinematic Guidance Principle
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Partial Conclusion 

• Easily generalizable thanks to the 

algorithm

• Allows mixing several types of actuators 

• Can give several compensation solutions

• The behaviour of the VRP can be tailored

• Good robustness to external disturbance

• The DOF used for compensation is not 

controlled
Associated Communications
• Degorre L., Chocron O. and Delaleau E. – A new general approach for 

model-based control of underactuated AUV based on kinematic coupling. 
– IROS 2022

• Degorre L., Fossen T.I., Chocron O., Delaleau E. – A Model-Based 
Kinematic Guidance Method for Control of Underactuated Autonomous 
Underwater Vehicles. – CEP – Under Review

• Degorre L., Fossen T.I., Chocron O., Delaleau E. – A Virtual Reference 
Point Kinematic Guidance Law for 3-D Path-Following of Autonomous 
Underwater Vehicles. – JOE – Under Review II. Kinematic Guidance 



Flatness-based control

10

Introduction to flatness – The Fully-Actuated 
AUV

Figure 12: Fully actuated 
propulsive configuration

[Fliess et al., 1992]
[Rigatos et al., 2017]

III. Flatness-based control

Video 3: Fully Actuated 
Flatness-based controller 



Flatness-based control
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The underactuated Surface Vessel
Control the position in the horizontal plane with the surge force 

and yaw moment

Flat – Simplified model, 
circular shape, homogeneous 
mass distribution

Not Flat – At least 1 defect:

[Sira-Ramirez and Agrawal, 
2004] 

Figure 13: Generic Surface 
Vessel with vector thruster

Figure 14: Simplified 
Hovercraft with two rear 

propellers

III. Flatness-based control



Flatness-based control
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The underactuated Surface Vessel: Special case of the 
Hovercraft

Simplified model is flat with the flat output 

[Sira-Ramirez and Agrawal, 
2004]

[Rigatos, 2015] 

Equations of Flatness: 

III. Flatness-based control



Flatness-based control
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Control of the Hovercraft
Change of input

Simplified model of the 
Hovercraft Two subsystems – 

Unidirectional coupling

III. Flatness-based control



Flatness-based control
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Control of the Hovercraft
Complete controller

III. Flatness-based control



Flatness-based control
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Application 1 : Trajectory tracking of the Hovercraft

III. Flatness-based control

Figure 16: Trajectory Tracking of the Hovercraft using the Flatness-
based controller with measurement noise and a -0,75 m/s current on 



Flatness-based control
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Association with iPD
Increases robustness of the controller
Facilitates application to the Surface Vessel

Ultra-local model second 
order: 

Integration to the Flatnes-based 
controller: 

III. Flatness-based control

[Fliess and Join, 2009] 



Flatness-based control
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Application 2: Trajectory Tracking of the Surface Vessel with 
Flatness and iPID

III. Flatness-based control

Figure 17: Tracking error comparison, Flatness based controller and 
iPD applied to a generic surface vessel with 15m initial error on 



Flatness-based control
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Partial Conclusion

• Flatness-based controller developed for the hovercraft with 

great results

• Controller includes a guidance principle

• Can be applied to surface vessels

• Robustness can be increased with iPD

Work In Progress
• Degorre L., Chocron O. and Delaleau E. – Flatness-based control of the 

Hovercraft –Transaction on Automatic Control

• Degorre L., Fliess M., Join C., Chocron O., Delaleau E. – Association of 
Flatness-based control and iPID for control of surface vessels – Journal 
to be determined

III. Flatness-based control



Reconfiguration ring
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Novel vectoring thrust concept without coupling

Figure 21: PlaSMAR Configuration 1 - 
Force 

Actuated DOFs : Surge, Sway, Heave, 
Roll, Yaw

Figure 22: PlaSMAR Configuration 2 - 
Moment 

Actuated DOFs : Surge, Heave, Roll,  
Pitch, Yaw

IV. Vectoring Thrust 



PlaSMAR
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Application 1: Seabed Scanning with heading constraint – PlaSMAR 
Force configuration

IV. Vectoring Thrust 

Video 5: PlaSMAR in reconfigurable force configuration compared with 
RSM-     on the seabed scanning task with 0° heading angle constraint

RSM - PlaSMAR – Force 
configuration



PlaSMAR
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Application 2: Seabed Scanning with roll constraint  – PlaSMAR Moment 
configuration

Video PlaSMAR3 vs 
RSM +Hp

IV. Vectoring Thrust 

Video 5: PlaSMAR in reconfigurable moment configuration compared 
with RSM on the seabed scanning task with 45° roll angle constraint
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Appendix 1: Hovercraft, Brunovský 
representation
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Equivalent state candidate for standard representation of the generalized 
hovercraft subsystem
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