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Definition Underactuated AUV

Underactuated System:
Fewer actuators (inputs) than DOFs

system
Underactuated AUV (w.r.t. a task): E%ngz\éigaft: 2 actuated DOFs, 3
Fewer actuators (inputs) than DOFs required

in the task

lll-actuated AUV (w.r.t. a task):
Same number of actuators as DOFs required in the task

but they don’t match

1T 1 REMUS it Guidance Principle
_ o Required

Figure 4: Remus100 : Actuated in surge, pitch and
yaw, used on task requiring 3 translations (Credit:




Kinematic Guidance Principle ROL EN'B
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Figure 6: RSM with a Virtual
Tracking Point E

Video 1: Expected behavior on the

seabed scanning task [Alonge, 2001]
[Slotine et Li, 1991]




Kinematic Guidance: Virtual Reference

Introduce new kinematic
coupling terms

Enhance natural stability in I g
attitude T—=1| "3 ]

. . _ O3x3 I3
Kinematic Model Update: g )
n:J(n)y ey 1)E :J('I})TV o ()Z . 6’
New linear speed relations New angular speed relations:

in the mobile frame:

vg =Tv Roll:

— )
= — (Vg — UV — €,

UE = U+ £,q9 b o B

VE = UV — E,P + E4T [

WE = W — £, Yaw: |

r=—(vg —v+e,p)
ca [Berge, 1999]



Kinematic Guidance: Handy{/Matrix DL EN'B

Introduction of the Handy Matrix to reproduce the model
manipulations
v, = 0
'f]E :J(n)TV e——————— U, :HT_l,](’q)_lA(n*}en)

Roll compensation: ,
Yaw compensation:

-1, . 1 .

De = 5—(1)E — E,T) P = E—(’UE + e.p)

1 0 0 0 0 0O 1 0 0 0 0 O]

0 0 0O 0 0 O 0 0 0O 0 0 O

0 0 1 0 0 O 0 0 1 0 0 O
Hy = 0 —1/e. 0 1 0 O Hr = 0 0 0O 1 0 0

0 0 0O 0 1 0 0 0 0O 0 1 0

_0 0 0O 0 O 1_ _0 1/63; 0O 0 O 1_

The Handy Matrix creates the expected Guidance
[Degorre et al., 2022]
[Degorre et al., 2023a]

mechanism




Kinematic Guidance: Handy{Matrix DL EN'B

Construction of the Handy Matrix for roll

compensatrd

p. ooVt — er) ho, —[1,6,1,1,0.1]7
g

: heg =[1,1,1,6,0,1]"
Algerifilon RCHledation of the Handy matrix #H - =
le “FHramist be diffdrent from O - =2 i/
e« [000]T b 0 1/ex O
ZorEarl only compensate translations
%Rgﬁ;ﬁ%it.t(io)ns. 1 0 ® 00000]0 O]
elk)+ 1/e(k
0O 1 & 000000 O
F C&ehot compersate a translation 0 0a 01000l o
fordx 1% axis with a rotation around Hy =
fh 5}_1311(1},'}3 =) & 0 glszl 00 10(0 O
¢ Same axis. 0 0®M 00100/1 0
if hg(j)=1and ho,(j)=0and j #i—3 0 0 ®W 0000110 1
H(i,j) « X(i—3,j)

H(j,:) « 0




Kinematic Guidance: Handy{/Matrix ROL EN'B

Consequences on the closed-loop system - Roll

compensation Ji(n) 0Os3x3
nNe = J(n)TVc J(n) - [03><3 J2(77)
ve =H,T "I ()" A(n", ey)
\ "% + Pl(es)]
§*+Pl(ey)
i = J)TH,T I () " A ) A ey) = | F TP
| "
" + Pl(etl;))_
10 0 0 0 0
R N
. | 1 . . "
THy " =100 Fijes] 0 0 o === jr =y +Pl(c,)
0 0 0 0 1 0 ¢p = 2" + Pl(e;)
_0 0 0 0O 0 1 ”(/;:?L*—FPI(BZL,)

¢ = f(PI(es), PI(ey), PI(e.))

[Degorre et al., 2023b]




Kinematic Guidance: Handy{Matrix DL EN'B
Application 1: Seabed Scanning with the

E =[e,,0,&,]" ex = ¢,

EAUVEVE 1.0 ENTB 003- T = 450/ 100 5

Blue vehicle
= Roll compensation
Yaw is controlled

- Red vehicle
Yaw compensation
(Roll is controlled)

Lo Both solutions have a
perfect position tracking

The red vehicle cannot
meet the heading

[ -

CONST aiiic

Video 2: Comparison of the two compensation
solutions



Kinematic Guidance Principle ROL EN'B
Partial Conclusion

 Easily generalizable thanks to the
algorithm

* Allows mixing several types of actuators

 Can give several compensation solutions

 The behaviour of the VRP can be tailored

* Good robustness to external disturbance

« The DOF used for compensation is not
Associated Communications

. DegbRtOllefocron 0. and Delaleau E. - A new general approach for
model-based control of underactuated AUV based on kinematic coupling.

- IROS 2022

 Degorre L., Fossen T.l., Chocron O., Delaleau E. - A Model-Based
Kinematic Guidance Method for Control of Underactuated Autonomous
Underwater Vehicles. - CEP - Under Review

 Degorre L., Fossen T.l., Chocron O., Delaleau E. - A Virtual Reference
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Flatness-based control DL EN'B

Introduction to flatness - The Fully-Actuated

AUV B
n=Jmv ]
T=Mv+Cv)v+ DWw)v+g(n)
v=2J (?7)_1’]’] \\ -
T = M(n)ij + C(n, 00 + D(n, )0 + g(n)
Video 3: Fully Actuated
I Flatness-based controller

— ~~ ~~

= M(n")(7i* + PID(ey,)) + C(n*, 0" )n* + D(n*, 7" )n"* +g(n*)

[Fliess et al., 1992]
[Rigatos et al., 2017]

IIl. Flatness-based control 10



Flatness-based control ROL EN'B

The underactuated Surface Vessel
Control the position in the horizontal plane with the surge force
and yaw moment

Not Flat - At least 1 defect: Flat - Simplified model,
o circular shape, homogeneous
F(y,,9,...) =0 massrdistribution T
z=lr,y]"

Figure 13: Generic Surface Figure 14: Simplified
Vessel with vector thruster Hovercraft with two rear
propellers
[Sira-Ramirez and Agrawal,

IIl. Flatness-based control il




Flathess-based control ROL EN'B

The underactuated Surface Vessel: Special case of the
Hovercraft z=[x,y]"
Simplified model is flat with the flat output

T = ucosy — vsiny

Uy = usiny + vcos Y
b =r

=T, +ovr—+ Pu

U = —ur + pv

T =T, +r

Equations of Flatness:

1 = atan (y_ﬁy>
T — Bz

Tu = V(& — B2)% + (i — By)?
7_7' — f(flj?y7 "‘3:(4)7:‘}(4))

[Sira-Ramirez and Agrawal,
2004]

IlIl. Flatness-based control 12



Flatness-based control ROL EN'B

Control of the Hovercraft
Change of input

|
T = ucosy — vsiny | T =ucosy —uvsiny |
. . I . . '
- Y = usiny + v cos Y : U = usiny + vcos|!
U Tu | ‘ L, Y
o - . "M . g —
Y=r T,y ! w="Ty +v+Bu |
Y -
U = T, + vr + fu ; O = —u) + [u !
TT' . I J I
f o = —ur + o = u i
. T‘r' . U) =T I
r="T, + T —> I
| T=Tr | Y :

Simplified model of the

Hovercraft Two subsystems -

Unidirectional coupling

Ill. Flatness-based control 13



Flatness-based control ROL EN'B

Control of the Hovercraft
Complete controller

e
l
| (@ +PID(e,) — i)

YT | (T + PID(ey) — By*)?)
| T
1, i*+PID(e,)—py" ) -
: atan (:.E*JFPID(GI)—M:* (p ::_’ %
: T I
_____________ Ji

PID(G;L-) — k(L:}:é.’f: —l_ kp,.’ljeflj + ki,.’L‘ f(j 8.“13‘ (O’)d(f

Ill. Flatness-based control 14



Flatness-based control DL EN'B

Application 1 : Trajectory tracking of the Hovercraft
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Figure 16: Trajectory Tracking of the Hovercraft using the Flatness-
based controller with measurement noise and a -0,75aw/s current on

Il1l. Flatness-based control 15



Flathess-based control ROL EN'B

Association with iPD
Increases robustness of the controller
Facilitates application to the Surface Vessel

Ultra-local model second Integration to the Flatnes-based
order;i —qut F controller:

7o = [(i* 4+ iPD(e,, F,) — Bi*)?

{Algebraic | +(5" +iPD(ey, Fy) — By")*]"/2
Estimator
ﬁ L jj*+iPD(fz..y,ﬁy)—ﬁgj* )
| V. = atan (WHPD(%,E)_M*
x R iPD

L(PD(e,) — F) =

[Fliess and Join, 2009]

I1l. Flatness-based control 16



Flathess-based control

It 8 Rechercha Daa 4 Lame O0LT AT ALE DM NELRS S

Application 2: Trajectory Tracking of the Surface Vessel with

Flatne
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Figure 17: Tracking error comparison, Flatness based controller and
iPD applied to a generic surface vessel with 15m initdal error on

I1l. Flatness-based control 17



Flathess-based control iRDL EN'®
Partial Conclusion

* Flatness-based controller developed for the hovercraft with
great results

* Controller includes a guidance principle

« Can be applied to surface vessels

e Robustness can be increased with iPD

Work In Progress
 Degorre L., Chocron O. and Delaleau E. - Flatness-based control of the

Hovercraft -Transaction on Automatic Control

 Degorre L., Fliess M., Join C., Chocron O., Delaleau E. - Association of
Flatness-based control and iPID for control of surface vessels - Journal
to be determined

lll. Flatness-based control 18




Reconfiguration ring ROL ENIB

Novel vectoring thrust concept without coupling

Figure 21: PlaSMAR Configuration 1 - Figure 22: PlaSMAR Configuration 2 -
Force Moment
Actuated DOFs : Surge, Sway, Heave, Actuated DOFs : Surge, Heave, Roll,
Roll, Yaw Pitch, Yaw

IV. Vectoring Thrust



PlaSMAR DL EN'B

et &

Application 1: Seabed Scanning with heading constraint - PlaSMAR
Force configuration

RSM -H,, PlaSMAR - Force
configuration

Video 5: PlaSMAR in reconfigurable force configuration compa#tgd with
RSM-  on the seabed scanning task with 0° heading angle constraint

IV. Vectoring Thrust



PlaSMAR DL EN'B

Application 2: Seabed Scanning with roll constraint - PlaSMAR Moment
configuration

EAUVIVE 30 ENIB 308 T = 450,30

— A

Video 5: PlaSMAR in reconfigurable moment configuration compared
with RSM on the seabed scanning task with 45° roll angle constraint
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Appendix 1: Hovercraft, Brunovsky ROL EN'B
representation

{11 = 51,1 =12

{12 =1 51’2 = v + B0 Ul = Ty COS 7)'/)
E21 =Y 5'2?1 = &0 Vg = Ty SIN Y
22 =1 €32 = v + P2

Equivalent state candidate for standard representation of the generalized
hovercraft subsystem

1=
C2=1Y

1 2 2
G = 5 (u +v7)

(4 = ¢ + atan (;—))
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