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Goal

Goal of this work

Well-known linear algebra algorithms:

Matrix inversion (A−1);

LU decomposition (A = LU);

Cholesky decomposition (A = LLT );

QR decomposition (A = QR);

(others ?)

The precision and stability of these algorithms have been widely studied.
Nevertheless, the design of interval guaranteed results is not so clear.
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Goal

Example

Let's consider:

A =


1 1 1 1
1.25 0 0 1
1 0 0 1
3 3 3.5 3


Inverting A by �full pivot� LU decomposition gives (approximated):

A−1 ≃ B =


0 4 −4 0
7 1.94 · 10−16 −1 −2
−6 0 0 2
0 −4 5 0


We know that B is �almost� an inverse of A, but how much should it be
in�ated to guarantee the inclusion of A−1.
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Goal

LU decomposition problem
The PLUQ-decomposition (as represented by Eigen) is PLUQ with :

P =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 Q =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



L ≃


1 0 0 0
0 1 1 0
0 0, 8 1 0
0.285 0.114 0.143 1

 U ≃


3.5 3 3 3
0 1.25 1 0
0 0 0.2 0
0 0 0 0.143


In�ate L and U, keeping them low-triangular and up-triangular to ensure
the equality A ∈ P[L][U]Q (P and Q cannot change as permutation
matrices)?
And if we start with an interval matrix [A], can we use the LU
decomposition of midpoint([A]) to compute a decomposion
[A] ⊆ P[L][U]Q?
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General framework

General approach

To compute an operation on a matrix, or give a bound on its result, we can
use:

1 a known algorithm, e.g. Gauss-Jordan algorithm;

2 in�nite development, e.g. we know that, when ∥Id− A∥ ≤ 1:

(Id− A)−1 =
∑
k≥0

Ak

3 in�nite iteration, e.g. when ∥Id− A∥ ≤ 1, the sequence:

S0 = Id Sn+1 = Id+ ASn

(of course, these approaches are not mutually exclusive)
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Using Gauss-Jordan Inversion

Using Gauss-Jordan

Direct Gauss-Jordan algorithm on intervals does not work well. Using
preconditionning works better: from B approximating the inverse of A, we
look for ∆ such that A−1 = (Id−∆) · B .
Then, we have:

∆ = Id− (BA)−1

We can then try to inverse (BA)−1, which is (hopefully) a near-identity
matrix. If (BA)−1 is (almost) centered to Id, we may just have to bound
the radius if (BA)−1 around Id.
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Using Gauss-Jordan Inversion

Gauss-Jordan algorithm (bound)

Inplace Gauss-Jordan algorithm to compute S(M) = (Id−M)−1 − Id

(without row-pivoting).
procedure GaussJordanBound(M: (interval) Matrix)

for all ind : indices do

pivot ← 1/(1-M(ind,ind)) ▷ Suppose M(ind,ind)<1
for all row : indices ̸=ind, col : indices ̸=ind do

M(row,col) ← M(row,col) + M(row,ind)*pivot*M(ind,col)
end for

for all ind2 : indices ̸=ind do

M(ind,ind2) ← M(ind,ind2)*pivot
M(ind2,ind) ← M(ind2,ind)*pivot

end for

M(ind,ind) ← M(ind,ind)*pivot
end for

end procedure

When M is non-negative and ∥M∥ < 1, the algorithm succeeds and all
operations are monotonic (assuming x 7→ 1/(1− x) is atomic). We can
compute a safe bound with �oating-point computations (rounding up) on
the matrix of magnitudes.
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Using Gauss-Jordan Inversion

Example

Let's consider:

[A] =


1 1 1 1
1 0 0 −1

1.25 0 0 [− 1,−0.9]
3 3 [3.3, 3.5] 3


Using the bound version of Gauss-Jordan algorithm:

[A−1] =


0 [− 4,−2.34] [2.67, 4] 0

[6, 11] [5.66, 9] [− 8,−5.33] [− 3.33,−1.67]
[− 10,−5] [− ε, ε] [− ε, ε] [1.67, 3.33]

0 [− 5, 3.33] [2.66, 4] 0
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Using Gauss-Jordan Inversion

Discussion

+ Easy to apply, at least for some decompositions (inversion, LU)

+ Quite fast (cubic complexity, no successive iterations),

− Result dependent on the order of traversal of the indices

− Probable accumulation of errors on big matrices
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Using Gauss-Jordan Inversion

Norm-based bound

The norm-based bound is used to directly enclose:

S(M) =
∑
i ≥1

M i = (Id−M)−1 − Id

Using a multiplicative matrix norm:

∥A+ B∥ ≤ ∥A∥+ ∥B∥ ∥AB∥ ≤ ∥A∥ · ∥B∥

then:

∥M∥ < 1 ⇒ ∥S(M)∥ ≤ ∥M∥
1− ∥M∥

If ∥M∥ ≥ maxij |Mij |, we can bound S(M) inside the box ∥S(M)∥ ∗ E
where E is the interval matrix in which all coe�cients are [-1,1].
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Using Gauss-Jordan Inversion

Discussion

+ Can be applied on most problems

+ Fastest, independant of order of traversal

+ No accumulation of errors for big matrices

− Not precise, mostly useful on punctual matrices

− Does not handle 0 values well on block matrices
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Using Gauss-Jordan Inversion

Path-based algorithm
�Intermediate� algorithm: consider S(M) =

∑
i ≥1M

i . The coe�cients of
S(M) can be linked to paths on the graph associated to the matrix M.
E.g. let's consider [M]:

[M] ≃


ε 0 0 ε
ε ε [−0.6, 0.6] ε
ε ε [−0.6, 0.6] ε
ε 0 0 ε



1 2

ε

[−0.6, 0.6]

ε

4 3

ε

ε

ε

ε

ε
[−0.6, 0.6]

ε

Example of path from 2 to 4 of length 4:
2 → 2 → 1 → 4 → 4.
This path �de�nes� the term
M2,2M2,1M1,4M4,4 which is a �part�
of (M4)2,4.
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Using Gauss-Jordan Inversion

Paths

Then:

(S(M))i ,j =
∑
ℓ≥1

∑
π∈Πℓ

ij

l−1∏
k=0

Mπk ,πk+1


where Πℓ

ij is the set of paths from i to j of length ℓ (each path π being of
the form):

π0 = i → π1 → . . . → πℓ = j

1 2

ε

[−0.6, 0.6]

ε

4 3

ε

ε

ε

ε

ε
[−0.6, 0.6]

ε

Example of path from 2 to 4 of
length 4. This path de�nes the term
M2,2M2,1M1,4M4,4. The sum of these
terms for all paths of length 4 from 2 to
4 is (M4)2,4.
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Using Gauss-Jordan Inversion

Path-based bounding algorithm

Possible algorithm to bound S(M) (with M ≥ 0) based on this.

1 For each i , j , compute the maximum term Mu,v appearing in all paths
from i to j (hence a product of length l is bounded by (Mu,v )

l). This
is a (max,max) Floyd algorithm (cubic complexity).

2 Bound the number of paths, for example by bounding the number
k(i , j) of indices which can appear from i to j (easly obtained from
the Floyd algorithm).

3 Then:

(S(M))i ,j ≤
Mu,v

1− k(i , j)Mu,v
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Using Gauss-Jordan Inversion

Comparison
Let's consider:

[A] =


1 1 1 1
1 0 0 −1

1.25 0 0 [− 1,−0.9]
3 3 [3.3, 3.5] 3



norm-
based
bounding


[− 8, 8] [− 10.5, 4.17] [− 3.33, 10] [− 2.5, 2.5]
[0.5, 16.5] [− 5.15, 14.67] [− 13.33, ε] [− 5, ε]

[− 15.5, 0.5] [− 7.33, 7.33] [− 6.67, 6.67] [− ε, 5]
[− 8, 8] [− 11.5, 3.17] [− 3.33, 10] [− 2.5, 2.5]



Floyd-
based
bounding
(re�ned)


0 [− 4.17, 2.17] [2.5, 4.17] 0

[4.63, 12.38] [0.75, 13.92] [− 12.5,−0.83] [− 3.75,−1.25]
[− 11.375,−3.62] [− 4.59, 4.59] [− 4.17, 4.17] [1.25, 3.75]

0 [− 5.17, 3.17] [2.5, 4.17] 0



Gauss-
Jordan
bounding


0 [− 4,−2.34] [2.67, 4] 0

[6, 11] [5.66, 9] [− 8,−5.33] [− 3.33,−1.67]
[− 10,−5] [− ε, ε] [− ε, ε] [1.67, 3.33]

0 [− 5, 3.33] [2.66, 4] 0
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Using Gauss-Jordan Inversion

Discussion

+ A bit faster than Gauss-Jordan

+ No accumulation of errors for big matrices

+ Handles 0 values well on block matrices

− Slower than norm-based bounds

− Precision depends on the form of the matrix (sometimes worse than
the norm).
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LU decomposition

LU decomposition

Full-pivot LU decomposition decomposes a matrix M into:

M = P−1LUQ−1

where P and Q are permutation matrices, L is lower-triangular and U is
upper-triangular. In Eigen decomposition, L is unit-lower-triangular and the
diagonal coe�cients of U are sorted with the 0 at the end.
Not unique and not �stable�: given a existing decomposition of M, P and
Q may not be kept for all matrices �close� to M.(

0
0

)
= Id2

(
1
0

)
(0) Id1(

0
ε

)
̸= Id2

(
1
α

)
(β) Id1
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LU decomposition

Approximation

Let's consider M and (P, L,U,Q) an approximate decomposition:

M ≃ P−1LUQ−1 PMQ = LU

To handle rectangular matrices, we extend PMQ with a Id-block, and
adapt L and U adequately.(

2
1

)
=

(
1
0.5

)
(2) ⇒

(
2 0
1 1

)
=

(
1 0
0.5 1

)(
2 0
0 1

)
We look for a slight modi�cation of L and U to enclose a �correct�
decomposition of M:

PMQ = L(Id−∆L)(Id−∆U)U

(∆L is stricly lower, ∆U is upper)
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LU decomposition

Triangular inversion

From
PMQ = L(Id−∆L)(Id−∆U)U

to
[L−1]PMQ[U−1] = (Id−∆L)(Id−∆U)

But while L is non-singular, U can be singular. ⇒ we modify its diagonal
to make it non-singular (replacing too small coe�cients on the diagonal by
a threshold e).

Note that L and U are punctual, we can expect [L−1] and [U−1] to be
quasi-punctual (e.g. computed by substitution). The result should be close
to Id (for punctual, non-singular matrices).
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LU decomposition

Example

[M] =


1 1 1 1
1 0 0 −1

1.25 0 0 [− 1,−0.9]
3 3 [3.3, 3.5] 3



Id− [L−1]PMQ[U−1] ≃


[− 0.03, 0.03] [− 0.07, 0.07] [− 0.64, 0.64] [− 0.75, 0.75]

0 0 [− 0.21, 0.21] 0
0 [0, ε] [− 0.17, 0.17] 0

[− 0.01, 0.01] [− 0.02, 0.02] [− 0.35, 0.35] [− 0.22, 0.22]


With E = Id− [L−1]PMQ[U−1], We want to solve:

(Id−∆L)(Id−∆U) = Id− E
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LU decomposition General result

Exact value

.

.

.

. . .

. . .

.

.

.

. . .

. . .

Ei,j

i-1

i

.

.

.

. . .

i-1 j

Ei−1,i−1
Ei−1,j

i > j (lower) i ≤ j (upper)

Ei,i−1

.

.

.

. . .

. . .

.

.

.

Ej,j
.
.
.

.

.

.

. . .

Ei,j

. . .

i

j

j

1

E1,1 E1,2

E2,1

Ej,1

1 E
1,j

Ei,1

1

1 E1,1

E2,1

Ei−1,1

Ei,1

E1,1 E
1,i−1

E
1,j

Lower coe�cients (i > j):

(∆L)i,j = Ei,j + Ei,[1,j]

∑
ℓ≥0

(E[1,j],[1,j])
ℓ

E[1,j],j

Upper coe�cients (2 ≤ i ≤ j):

(∆U)i,j = Ei,j + Ei,[1,i−1]

∑
ℓ≥0

(E[1,i−1],[1,i−1])
ℓ

E[1,i−1],j
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LU decomposition General result

Application

To enclose the inverse, we needed to bracket
S(E ) = (Id− E )−1 =

∑
ℓ≥1 E

ℓ. Here, we need to enclose
Sk = S(E[1,k],[1,k]) with k varying from 1 to N − 1 −→ same techniques.

Both Gauss-Jordan and Floyd-Based algorithms compute bounds for
successive Sk incrementally;

In the case of ∞ coe�cients, we should consider 0 ∗∞ = 0. It works
well for Id-blocks on the right/bottom of the decomposition.

No need to compute S(E ) itself (the last step).
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LU decomposition General result

Example

E ≃


[− 0.03, 0.03] [− 0.07, 0.07] [− 0.64, 0.64] [− 0.75, 0.75]

0 0 [− 0.21, 0.21] 0
0 [0, ε] [− 0.17, 0.17] 0

[− 0.087, 0.087] [− 0.020, 0.020] [− 0.35, 0.35] [− 0.22, 0.22]


With Gauss-Jordan-based bounds:

∆L ≃


0 0 0 0
0 0 0 0
0 [0, ε] 0 0

[− 0.089, 0.089] [− 0.021, 0.021] [− 0.44, 0.44] 0



∆U ≃


[− 0.03, 0.03] [− 0.07, 0.07] [− 0.64, 0.64] [− 0.75, 0.75]

0 0 [− 0.21, 0.21] 0
0 0 [− 0.17, 0.17] 0
0 0 0 [− 0.23, 0.23]
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LU decomposition General result

Example (cont'd)

[M] =


1 1 1 1
1 0 0 −1

1.25 0 0 [− 1,−0.9]
3 3 [3.3, 3.5] 3



P−1[L][U]Q−1 ≃


[0.89, 1.11] [0.89, 1.11] [0.94, 1.06] [0.74, 1.30]

1 0 0 [− 1.08,−0.91]
1.25 0 0 [− 1,−0.9]

[2.82, 3.18] [2.82, 3.18] [3.3, 3.5] [2.69, 3.31]


Note: Eigen may not select the �best� pivot w.r.t. to the uncertainties (it
used 4th line, 3rd column as the �rst pivot), but it knows only the
midpoint. Implanting a di�erent strategy (based on the absolute value of
the midpoint and the radius of the interval) may be possible but not easy.
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Cholesky decomposition

Cholesky decomposition (LLT )

Cholesky decomposition decompose a symmetric positive matrix M in the
form of :

M = LLT

where L is lower-triangular.
A similar approach to the LU can be considered, in which we would have to
solve:

(Id−∆L)(Id−∆LT ) = (Id− Err)

However the diagonal �shared� by ∆L and ∆LT modify slightly the
computation.
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Cholesky decomposition

Cholesky decomposition (LDLT )

Another Cholesky decomposition (which avoids square root computations)
is of the form:

M = LDLT

where L is unit-lower-triangular, and D is diagonal.
We consider an approximative decomposition M ≃ LD0L

T . Our goal is to
enclose ∆L (stricly lower triangular) and D such that:

M = L(Id−∆L)D(Id−∆LT )LT

(D is not built from D0, in fact D0 will not be used).
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Cholesky decomposition

Problem formulation

From:
M = L(Id−∆L)D(Id−∆LT )LT

we get:
[L−1]M[(LT )−1] = (Id−∆L)D(Id−∆LT )

We can expect A = [L−1]M[(LT )−1] to be �almost diagonal�. With V the
diagonal of A, we pose:

A = V (Id− E )

where the diagonal of E is 0 (note that E is not symmetric).
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Cholesky decomposition

Result

(Id−∆L)D(Id−∆LT ) = A = V (Id− E )

Diagonal coe�cients:

Dj = Vj

Ej,[1,j−1]

∑
ℓ≥0

(E[1,j−1],[1,j−1])
ℓ

E[1,j−1],j


Lower coe�cients (i > j):

(∆L)i,j = V−1

j (Ai,j + Ai,[1,j]

∑
ℓ≥0

(E[1,j],[1,j])
ℓ

E[1,j],j)

�Upper� coe�cients (transpose) (i > j):

(∆L)i,j = (∆L)Tj,i = Ej,i + Ej,[1,j]

∑
ℓ≥0

(E[1,j],[1,j])
ℓ

E[1,j],i
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Cholesky decomposition

Example

[M] =


4 1 1 −1
1 [4, 4.5] 0 0
1 0 3 [− 0.2, 0]
−1 0 [− 0.2, 0] [2, 3]



P−1[L][D][LT ]P ≃


[3.94, 4.06] [0.88, 1.13] [0.98, 1.02] [− 1.02,−0.98]
[0.87, 1.13] [4, 4.5] [− 0.04, 0.04] [− 0.04, 0.04]
[0.98, 1.02] [− 0.04, 0.04] [2.99, 3.01] [− 0.21, 0.01]

[− 1.02,−0.98] [− 0.04, 0.04] [− 0.21, 0.01] [1.96, 3.04]
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Cholesky decomposition Orthogonal matrices

Application to orthogonal matrices

An orthogonal matrix Q ∈ SOn(R) satis�es QQT = Id. �Almost
orthogonal� matrix would be QQT ≃ Id.
If a (non-singular) matrix A satis�es QQT = AAT then A−1Q ∈ SOn(R)
(with a Cholesky decomposition QQT = LDLT , D−0.5L−1Q ∈ SOn(R)).

We can use this approach to enclose a orthogonal matrix �around� Q ( e.g.
when Q is the �quasi-orthogonal� result of a �oating-point computation).
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Cholesky decomposition Orthogonal matrices

Example

We consider:

Q =

 0.8 −0.3 −0.1
0.3 0.6 −0.6
−0.2 −0.4 −0.7


We use here only the enclosing algorithm developed for decomposing Id−E
on QQT (i.e. no preliminary Cholesky decomposition). The result is:

[Q ′] ≃

 0.93 −0.35 −0.12
0.19 0.73 −0.66

[− 0.32,−0.31] [− 0.59,−0.58] [− 0.75,−0.74]


This approach does not �nd the �closest� orthogonal matrix, but can be
used to �terminate� approximate methods.
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Cholesky decomposition Orthogonal matrices

More general approach

Instead of trying to solve (Id−∆)(Id−∆T ) = Id− E , we can decompose
∆ as a sum of in�nite terms:

(Id−∆1 −∆2 . . .)(Id−∆T
1 −∆T

2 . . .) = Id− E ,

each term being of decreasing order.
Then, we have:

∆1 +∆T
1 = E

∀n ≥ 2, ∆n +∆T
n =

n−1∑
i=1

∆i∆
T
n−i

+ we can select whatever we want to decompose E to ∆1 +∆T
1 (e.g.

∆1 = ∆T
1 , since E is symmetric)

− exact expression of ∆n is harder, bounding relies more on norms.
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Cholesky decomposition Orthogonal matrices

Norm-based bounding
Looking for symmetric ∆i (i.e. matrix square root):

∆1 = ∆T
1 =

E

2

∀n ≥ 2, ∆n = ∆T
n =

∑n−1
i=1 ∆i∆n−i

2

To bound ∥∆i∥, we look for a formula of the form:

∆i = Φ(i)
E i

22i−1

We can achieve that if Φ(n) satis�es for n ≥ 2:

Φ(n) =
n−1∑
i=1

Φ(i)Φ(n − i)
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Cholesky decomposition Orthogonal matrices

Norm-based bounding

With Φ(1) = 1 and

∀n ≥ 2,Φ(n) =
n−1∑
i=1

Φ(i)Φ(n − i)

Φn = Cn−1 where Cn = (2n)!
(n+1)!n! are the Catalan numbers.

To conclude (matrix square root development):

∆i ≤ Ci−1
E i

22i−1

and we want to bound
∑

i≥N ∥∆i∥.
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Cholesky decomposition Orthogonal matrices

Bounding (cont'd)

Theorem

if ρ ≤ 1/4, then
∑
i≥0

ρiCi =
1

2ρ
(1−

√
1− 4ρ)

Hence, with ∥E∥ ≤ 1: ∑
i≥0

∥∆i∥ ≤ 1−
√
1− ∥E∥

Two bounds for the residual
∑

i≥N ∥∆i∥:
the �exact� one (with ∥E∥ ≤ 1) (hard to compute):

∑
i≥N

∥∆i∥ ≤ 1−
√
1− ∥E∥ −

N−1∑
i=1

Ci−1

22i−1
∥E∥i

the �approximate� one (with ∥E∥ < 1):∑
i≥N

∥∆i∥ ≤
CN−1∥E∥N

22N−1(1− ∥E∥)
≤

∥E∥N

2(1− ∥E∥)
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QR decomposition

QR decomposition

QR decomposition decomposes a rectangular matrix A into A = QR where
Q is orthogonal and R is upper-triangular (with pivoting, the
decomposition is AP = QR where P is a permutation matrix).
From an existing approximate decomposition A ≃ QR :

if the goal is to �nd A ∈ [Q ′][R ′] with Q ′ ∈ SOn(R) and [R ′] is almost

upper-triangular, just compute [Q ′] from Q, then [R ′] = [Q ′]TA.

To get a �real� QR decomposition, we can use an �in�nite�-sum
approach with a norm-based bound.
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QR decomposition

Equations

From an approximate decompositon A ≃ QR , we look for an equality of
the form:

A = Q(Id−∆Q1 −∆Q2 − . . .) . . . (Id−∆R1 −∆R2 − . . .)R

where the ∆Ri are upper-triangular, and Q(Id−∆Q1 −∆Q2 − . . .) is
orthogonal.
I.e.

(Id−∆Q1 −∆Q2 − . . .) . . . (Id−∆R1 −∆R2 − . . .) = Q−1AR−1

(Id−∆Q1 −∆Q2 − . . .)(Id−∆QT
1 −∆QT

2 − . . .) = (QTQ)−1

Note: case A not square or R singular should be more formalised.

Let's pose Er = Id− Q−1AR−1 and Eq = Id− (QTQ)−1 (note that Eq is
symmetric).
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QR decomposition

Systems
Then we have the following systems:{

∆Q1 +∆QT
1 = Eq

∆Q1 +∆R1 = Er{
∆Qn +∆QT

n =
∑n−1

k=1∆Qk∆QT
n−k (symmetric)

∆Qn +∆Rn =
∑n−1

k=1∆Qk∆Rn−k

This systems enable to compute Qi and Ri , e.g. for i = 1:

we have ∆Q1 = Er for the lower triangular part

using ∆Q1 +∆QT
1 = Eq we deduce the upper triangular part and

diagonal

back to ∆Q1 +∆R1 = Er we compute R1.

If N is the maximum of ∥Eq∥α, ∥Er∥α with α ∈ {1,∞}:

for all α ∈ {1,∞}, ∥Q1∥α ≤ 3N ∥R1∥α ≤ 3N
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QR decomposition

Error bounds
Extending the result to successive products, we get:∑

i≥N
∥∆Qi∥ ≤ (3N )N

2(1− 3N )

∑
i≥N

∥∆Ri∥ ≤ (3N )N

2(1− 3N )

The bound is quite rough, but can be used for punctual decompositions.

[A] =


[0.2, 0.21] −2.3 −0.1 −0.6

1.3 0.6 −0.6 −1.2
−0.2 −1.4 −0.7 1.3
−0.2 −1.5 −0.2 1.4



[Q][R]P−1 ≃


[0.17, 0.23] [− 2.32,−2.27] [− 0.16,−0.03] [− 0.65,−0.54]
[1.28, 1.32] [0.58, 0.62] [− 0.65,−0.55] [− 1.24,−1.16]

[− 0.22,−0.18] [− 1.42,−1.38] [− 0.75,−0.65] [1.26, 1.34]
[− 0.22,−0.18] [− 1.52,−1.48] [− 0.25,−0.15] [1.36, 1.44]
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Conclusion

Future work

Implementation into Codac.

More tests, larger and complex matrices.

Comparison with other tools (Intlab).

Better boundings (e.g. for QR decomposition).

Speci�c applications, on the contraction of matrix product, linear
programming, etc.

Other computations.

D. Massé (LabSTICC-UBO) Interval matrix decompositions Réunion Robex 40 / 40


	Goal
	General framework
	Using Gauss-Jordan
	Inversion

	LU decomposition
	General result

	Cholesky decomposition
	Orthogonal matrices

	QR decomposition
	Conclusion

