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Goal of this work

Well-known linear algebra algorithms:
o Matrix inversion (A~1);
@ LU decomposition (A = LU);
o Cholesky decomposition (A = LLT);
@ QR decomposition (A = QR);
o (others ?7)

The precision and stability of these algorithms have been widely studied.
Nevertheless, the design of interval guaranteed results is not so clear.
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Example

Let's consider:

1 11 1
125 0 0 1
A= 1 00 1
3 3 35 3

Inverting A by “full pivot” LU decomposition gives (approximated):

0 4 -4 0

a4 s | 7T 194107 —1 -2
AT=B=1 60 0 2
0 —4 5 0

We know that B is “almost” an inverse of A, but how much should it be
inflated to guarantee the inclusion of A~1.
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LU decomposition problem
The PLUQ-decomposition (as represented by Eigen) is PLUQ with :

0001 0010
0100 1000
P=loo10] “Flooo1
1000 0100
1 0 0 0 35 3 3 3
o]0 1 1 o o0 11 o0
“|o 0,8 1 0 o o 020
0.285 0.114 0.143 1 0 0 0 0143

Inflate L and U, keeping them low-triangular and up-triangular to ensure
the equality A € P[L][U]Q (P and Q cannot change as permutation
matrices)?
And if we start with an interval matrix [A], can we use the LU
decomposition of midpoint([A]) to compute a decomposion
[A] C PILIUIQ?
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General framework

General approach

To compute an operation on a matrix, or give a bound on its result, we can

use:
O a known algorithm, e.g. Gauss-Jordan algorithm;

@ infinite development, e.g. we know that, when ||Id — A|| < 1:

(Id— At => A

k>0
O infinite iteration, e.g. when |Id — A|| < 1, the sequence:
So=1d Spi1 =Id + AS,

(of course, these approaches are not mutually exclusive)
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Using Gauss-Jordan Inversion

Using Gauss-Jordan

Direct Gauss-Jordan algorithm on intervals does not work well. Using
preconditionning works better: from B approximating the inverse of A, we
look for A such that A~ = (Id — A) - B.

Then, we have:
A=1d— (BA)™

We can then try to inverse (BA)~!, which is (hopefully) a near-identity
matrix. If (BA)~! is (almost) centered to Id, we may just have to bound
the radius if (BA)~! around Id.
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Using Gauss-Jordan Inversion

Gauss-Jordan algorithm (bound)

Inplace Gauss-Jordan algorithm to compute S(M) = (Id — M)~! —1d
(without row-pivoting).
procedure GaussJordanBound(M: (interval) Matrix)
for all ind : indices do
pivot < 1/(1-M(ind,ind)) > Suppose M(ind,ind)<1
for all row : indicesind, col : indices#ind do
M(row,col) < M(row,col) + M(row,ind)*pivot*M(ind,col)
end for
for all ind2 : indices#ind do
M(ind,ind2) < M(ind,ind2)*pivot
M(ind2,ind) < M(ind2,ind)*pivot
end for
M(ind,ind) < M(ind,ind)*pivot
end for
end procedure

When M is non-negative and ||M|| < 1, the algorithm succeeds and all
operations are monotonic (assuming x — 1/(1 — x) is atomic). We can
compute a safe bound with floating-point computations (rounding up) on
the matrix of magnitudes.
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Using Gauss-Jordan Inversion

Example

Let's consider:

1 1 1 1

1 0 0 -1
A=11250 0o [-1,-09

3 3 [3.3,3.5] 3

Using the bound version of Gauss-Jordan algorithm:

0 [—4,-234]  [2.67,4] 0
A1 — [6,11] [5.66,9] [—8,-5.33] [—3.33,-1.67]
A7T= | [Z10,25]  [—c.e] [~ e [1.67,3.33]
0 [~ 5,3.33] [2.66, 4] 0
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Using Gauss-Jordan Inversion

Discussion

+ Easy to apply, at least for some decompositions (inversion, LU)
+ Quite fast (cubic complexity, no successive iterations),

— Result dependent on the order of traversal of the indices

Probable accumulation of errors on big matrices
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Using Gauss-Jordan Inversion

Norm-based bound

The norm-based bound is used to directly enclose:
SM)=> M =@1d- M) -1d
i>1
Using a multiplicative matrix norm:
A+ Bl <[lAl+ Bl [[AB| <[IA] - B

then:
[M]]

1—[|M]
If ||M]| > max;; |Mjj|, we can bound S(M) inside the box ||S(M)]| * E
where E is the interval matrix in which all coefficients are [-1,1].

M| < 1= [IS(M)]| <
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Using Gauss-Jordan Inversion

Discussion

Can be applied on most problems

Fastest, independant of order of traversal

+ + +

No accumulation of errors for big matrices
— Not precise, mostly useful on punctual matrices

— Does not handle 0 values well on block matrices
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Using Gauss-Jordan Inversion

Path-based algorithm

“Intermediate” algorithm: consider S(M) = >, -, Mi. The coefficients of
S(M) can be linked to paths on the graph associated to the matrix M.
E.g. let's consider [M]:

e 0 0 €
e ¢ [-0.6,0.6] ¢
[M] = e ¢ [-0.6,0.6] ¢
e 0 0 €

: h Example of path from 2 to 4 of length 4:

3
2=32—=>1—=4 — 4.
. < > [06056 This  path  “defines” the  term

M272M271M174M474 which is a “part"

—0) G of (M*)24.
&)‘\E_/([Jo.s,o 6]
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Paths
Then:

-1
(S(M))i,j = Z Z H My 71

21\ rent k=0

where I_Ig. is the set of paths from i to j of length ¢ (each path 7 being of

the form):
Mo=Ii—mT — ... >Tp=J

8;\82_ Example of path from 2 to 4 of
length 4. This path defines the term
. [-ofs.0.6) M272M271M174M4,4. The sum of these
. terms for all paths of length 4 from 2 to

<—® \/@ 4is (M4)274.
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Inversion
Path-based bounding algorithm

Possible algorithm to bound S(M) (with M > 0) based on this.

@ For each /,j, compute the maximum term M, , appearing in all paths
from i to j (hence a product of length / is bounded by (M, ,)’). This
is a (max,max) Floyd algorithm (cubic complexity).

@ Bound the number of paths, for example by bounding the number
k(i,j) of indices which can appear from i to j (easly obtained from
the Floyd algorithm).

© Then:

Mu,v
(S(M))ij < T k() May

)
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Using Gauss-Jordan Inversion

Comparison
Let's consider:

11 1 1
1 0 0 -1

=1 125 0 o0 [—1,-0.9]
3 3 [33,35] 3

[-8,8] [—105,417] [—3.33,10] [—25,2.5]
[05,16.5] [—5.15,14.67] [—13.33,¢] [—5,¢]

based [—155,05] [-733,7.33] [—6.67,667] [—c.5]
bounding [—88] [-115,3.17] [—3.33,10] [-25,2.5]
0 [—4.17,2.17] [2.5,4.17] 0
Floyd- [4.63,12.38] [0.75,13.92] [—125,-0.83] [—3.75,—1.25]
based [—11.375,—3.62] [—4.59,459] [—4.17,4.17] [1.25,3.75]
boundi 0 [—5.17,3.17] [2.5,4.17] 0
ounding
(refined)
0 [—4,-234]  [2.67,4] 0
Gauss- [6.11] [5.66,9]  [—8,-533] [—3.33,-1.67]
Jordan [—10,-5]  [—e.e] [—ee] [1.67,3.33]
bounding 0 [—5,3.33] [2.66,4] 0
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Using Gauss-Jordan Inversion

Discussion

+ A bit faster than Gauss-Jordan

+ No accumulation of errors for big matrices
-+ Handles 0 values well on block matrices

— Slower than norm-based bounds

— Precision depends on the form of the matrix (sometimes worse than
the norm).
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LU decomposition

LU decomposition
Full-pivot LU decomposition decomposes a matrix M into:
M=PLUQ™!

where P and Q are permutation matrices, L is lower-triangular and U is
upper-triangular. In Eigen decomposition, L is unit-lower-triangular and the
diagonal coefficients of U are sorted with the O at the end.

Not unique and not “stable”: given a existing decomposition of M, P and
Q@ may not be kept for all matrices “close” to M.

(8>:Id2<(1)>(0)1d1
(2) (Yo
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LU decomposition

Approximation
Let's consider M and (P, L, U, Q) an approximate decomposition:
M~ P tLUQ™! PMQ = LU

To handle rectangular matrices, we extend PMQ with a Id-block, and
adapt L and U adequately.

(1)=(os)@=(31)=(as 1) (5 1)

We look for a slight modification of L and U to enclose a “correct”
decomposition of M:

PMQ = L(Id — AL)(Id — AU)U

(AL is stricly lower, AU is upper)
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LU decomposition

Triangular inversion

From
PMQ = L(Id — AL)(Id — AU)U

to
[L7HPMQIU™ = (Id — AL)(Id — AU)

But while L is non-singular, U can be singular. = we modify its diagonal
to make it non-singular (replacing too small coefficients on the diagonal by
a threshold e).

Note that L and U are punctual, we can expect [L™!] and [U™!] to be

quasi-punctual (e.g. computed by substitution). The result should be close
to Id (for punctual, non-singular matrices).
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LU decomposition

Example
1 1 1 1
1 0 0 -1
M=1 1250 0o [-1-09
3 3 [3.3,35] 3
[—0.03,0.03] [—0.07,0.07] [-—0.64,0.64] [— 0.75,0.75]
ld - [L-]PMQIU-Y] ~ 0 0 [—0.21,0.21] 0

0 [0,¢] [—0.17,0.17] 0
[-0.01,001] [—0.02,0.02] [—0.35035 [—0.22,0.22]

With E = Id — [L7]PMQ[U~!], We want to solve:

(Id — AL)(Id — AU) =1d — E
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LU decomposition General result

Exact value
1

1
1 |Eaa E12 1 |11 E1a Eyi—1
Ex 1 Ex 1
b | Ea | Ei—1a Ei_1,i—
T \Ein Eii—1 J
1 Eiq E,-,j ]

i > j (lower)

Lower coefficients (i > j):

i <j (upper)

(AL)ij = Eij+ Eipgy | D (Enjp)” | B
>0

Upper coefficients (2 < i < j):

(AU)ij=Eij+Eipi-q Z(E[l,i—l],[l,i—l])e
>0

Epicyyy
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Gzl e
Application

To enclose the inverse, we needed to bracket
S(Ey=(d—-E)!= D1 E*. Here, we need to enclose
Sk = S(Eq1,k,[1,6) With k varying from 1 to N — 1 — same techniques.

@ Both Gauss-Jordan and Floyd-Based algorithms compute bounds for
successive Sy incrementally;

@ In the case of oo coefficients, we should consider 0 x co = 0. It works
well for Id-blocks on the right/bottom of the decomposition.

o No need to compute S(E) itself (the last step).
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LU decomposition General result

Example
[—0.03,0.03]  [-0.07,007] [— 064,064 [—0.75,0.75]
£e 0 0 [—0.21,0.21] 0
= 0 [0, €] [-0.17,0.17] 0

[—0.087,0.087] [—0.020,0.020] [—0.35,0.35] [—0.22,0.22]

With Gauss-Jordan-based bounds:

0 0 0 0

0 0 0 0

Al= 0 [0,¢] 0 0
[—0.089,0.089] [—0.021,0.021] [— 0.44,0.44] 0

[—0.03,0.03] [—0.07,007] [—0.64,0.64] [—0.75,0.75]
0

N 0 [—0.21,0.21] 0
AU= 0 0 [—0.17,0.17] 0
0 0 0 [—0.23,0.23]
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General result
Example (cont'd)

1 1 1 1

1 0 0 -1
MI=1 125 0 0o [-1-09

3 3 [3.3,35 3

[0.89,1.11] [0.89,1.11] [0.94,1.06]  [0.74,1.30]
1 0 0 [~ 1.08,—0.91]

1.25 0 0 [—1,-0.9]

[2.82,3.18] [2.82,3.18] [3.3,3.5] [2.69,3.31]

PLLUIQ ! ~

Note: Eigen may not select the “best” pivot w.r.t. to the uncertainties (it
used 4th line, 3rd column as the first pivot), but it knows only the

midpoint. Implanting a different strategy (based on the absolute value of
the midpoint and the radius of the interval) may be possible but not easy.

D. Massé (LabSTICC-UBO) Réunion Robex 24 / 40



Cholesky decomposition (LLT)

Cholesky decomposition decompose a symmetric positive matrix M in the
form of :

M=LLT
where L is lower-triangular.

A similar approach to the LU can be considered, in which we would have to
solve:

(Id — AL)(Id — ALT) = (Id — Exr)

However the diagonal “shared” by AL and ALT modify slightly the
computation.
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Cholesky decomposition (LDLT)

Another Cholesky decomposition (which avoids square root computations)
is of the form:

M=LDL"

where L is unit-lower-triangular, and D is diagonal.
We consider an approximative decomposition M ~ LDoL". Our goal is to
enclose AL (stricly lower triangular) and D such that:

M = L(Id — AL)D(Id — ALT)LT

(D is not built from Dy, in fact Dy will not be used).
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Cholesky decomposition

Problem formulation

From:
M = L(Id — AL)D(Id — ALT)LT
we get:
° [L-YM[(LT) Y = (Id — AL)D(Id — ALT)

We can expect A = [L~]M[(LT)7!] to be “almost diagonal”. With V the
diagonal of A, we pose:

A=V(d— E)

where the diagonal of E is 0 (note that E is not symmetric).
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Result

(Id — AL)D(Id — ALT)Y = A= V(Id - E)
Diagonal coefficients:
Di = Vi | Epj-y | D_(Epj-nns-1)" | Ej-1
£>0
Lower coefficients (i > j):
(AL)ij = Vi (A + A | DB’ | Ewig)
£>0
“Upper"” coefficients (transpose) (i > j):

(AL = (A0 = E i+ Epg | D (Ergp)’ | Eui
>0
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Cholesky decomposition

Example

4 1 1 -1
|1 445 0 0
M= 0 3 [—0.2,0]

-1 0 [-020 [23]

[3.94,4.06] [0.88,1.13] [0.98,1.02]  [—1.02,—0.98]

[0.87,1.13] [4,4.5] [—0.04,0.04] [—0.04,0.04]

[0.98,1.02]  [—0.04,0.04] [2.99,3.01] [—0.21,0.01]
[—1.02,-0.08] [—0.04,0.04] [—021,001]  [1.96,3.04]

PHLDILT]P ~
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Cholesky decomposition Orthogonal matrices

Application to orthogonal matrices

An orthogonal matrix @ € SO,(R) satisfies QQ7 = Id. “Almost
orthogonal” matrix would be QT ~1d.

If a (non-singular) matrix A satisfies QQ7 = AAT then A71Q € SO,(R)
(with a Cholesky decomposition QQT = LDLT, D=%5.71Q € SO,(R)).

We can use this approach to enclose a orthogonal matrix “around” Q ( e.g.
when Q is the “quasi-orthogonal” result of a floating-point computation).
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Cholesky decomposition Orthogonal matrices

Example

We consider:
08 -03 -0.1
Q= 0.3 0.6 —-0.6
—-0.2 -04 -0.7

We use here only the enclosing algorithm developed for decomposing Id — E
on QR (i.e. no preliminary Cholesky decomposition). The result is:

0.93 —0.35 —0.12
Q] ~ 0.19 0.73 —0.66
[-032,-0.31] [—0.59,-058] [—0.75,—0.74]

This approach does not find the “closest” orthogonal matrix, but can be
used to “terminate” approximate methods.
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Orthogonal matrices
More general approach

Instead of trying to solve (Id — A)(Id — A7) = Id — E, we can decompose
A as a sum of infinite terms:

(Id— Ay —Ay.. )Id-A] —A]..)=1d - E,

each term being of decreasing order.
Then, we have:

A+A = E
n—1

Vn>2, A+ AT = Y AAT
i=1

+ we can select whatever we want to decompose E to A1 + A{ (e.g.
A = AlT, since E is symmetric)

— exact expression of A, is harder, bounding relies more on norms.
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Cholesky decomposition Orthogonal matrices

Norm-based bounding

Looking for symmetric A; (i.e. matrix square root):

E
A=A = 5
n—1

i1 DAL
Vn > 2, AnIA,,T — ZL:lf

To bound ||Aj||, we look for a formula of the form:

=
Aj = 0(i) g

We can achieve that if ®(n) satisfies for n > 2:

n—1

O(n) =) b(i)P(n— i)

i=1
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Cholesky decomposition Orthogonal matrices

Norm-based bounding

With ®(1) =1 and

Vn > 2,d(n Z¢( (n—1)

&, = C,_1 where C, = % are the Catalan numbers.

To conclude (matrix square root development):
i
A < Ci—122,-—_1

and we want to bound .y [|A].
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Cholesky decomposition Orthogonal matrices

Bounding (cont'd)
Theorem
; 1
if p<1/4, then pC=—(1-+1-4p)
Hence, with || E|| < 1:

dolAil <1 V1]

i>0

Two bounds for the residual 3~ [|A/]]:
@ the “exact” one (with ||E|| < 1) (hard to compute):

Sl <1-1-E[ - Z

i>N

s EN

@ the “approximate” one (with ||E|| < 1):

Z”A I < Cn_1|EIV < IE|IM
sn T 22N-1(1— | E|l) T 2(1 - [IEID
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QR decomposition

QR decomposition

QR decomposition decomposes a rectangular matrix A into A = QR where
Q is orthogonal and R is upper-triangular (with pivoting, the
decomposition is AP = QR where P is a permutation matrix).
From an existing approximate decomposition A ~ QR:
o if the goal is to find A € [Q'][R'] with Q" € SO,(R) and [R'] is almost
upper-triangular, just compute [@'] from Q, then [R'] = [Q'] T A.
@ To get a “real” QR decomposition, we can use an “infinite"-sum
approach with a norm-based bound.
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QR decomposition

Equations

From an approximate decompositon A ~ QR, we look for an equality of
the form:

A=QId—AQ —AQ —..)...(ld— AR — AR, —..)R

where the AR; are upper-triangular, and Q(Id — AQ1 — AQ —...) is
orthogonal.
l.e.

(Id—AQ —AQ —...)...(Id— AR, — AR, —...) = Q !AR!
Id—AQ —AQ —..)Id-AQ] —AQ] —..)=(Q"TQ)™!

Note: case A not square or R singular should be more formalised.

Let's pose E, =1d — QAR ! and E; =1d — (QT Q)~! (note that £, is
symmetric).
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Systems

Then we have the following systems:

AQI + AQlT = Eq
AQi+ AR =E

{ AQ, +AQ] = Z;li AQAQT ,  (symmetric)
AQn+ AR, =71 AQKAR,_«
This systems enable to compute Q; and R;, e.g. for i = 1:

o we have AQ; = E, for the lower triangular part

o using AQy + AQ] = E, we deduce the upper triangular part and
diagonal

@ back to AQ; + ARy = E, we compute Ry.
If V'is the maximum of || Eq||a, ||Erlla With a € {1,00}:

for all a € {1, 00}, [|Q1]|la < 3N [Rilla <3N
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QR decomposition

Error bounds
Extending the result to successive products, we get:

G
> 1801 < 5755

i>N
(3N)
> I8R < 03w

The bound is quite rough, but can be used for punctual decompositions.

N)

[02,021] —23 -01 -0.6

1.3 06 —06 -—1.2
(Al = —0.2 —-14 —07 1.3
—0.2 —-15 —-02 14

[0.17,0.23]  [—2.32,-2.27] [—0.16,—0.03] [—0.65,—0.54]

(QIRIP ~ [1.28,1.32] [0.58,0.62]  [—0.65,—0.55] [—1.24,—1.16]
= | [—022,-018] [—1.42,-1.38] [—0.75,—0.65]  [1.26,1.34]
[—0.22,-0.18] [—1.52,—1.48] [—0.25,—0.15]  [1.36,1.44]
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Future work

Implementation into Codac.
More tests, larger and complex matrices.
Comparison with other tools (Intlab).

Better boundings (e.g. for QR decomposition).

Specific applications, on the contraction of matrix product, linear
programming, etc.

Other computations.
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