

Analyzing Fault Behaviors in Multi-Domain Systems with Contract-Based Monitors

Friederike Bruns¹, Francesco Tosoni², Sven Mehlhop³, **Andreas Rauh**¹, Franco Fummi², Frank Oppenheimer³

¹DCIS University of Oldenburg, ²DIMI University of Verona, ³Manufacturing OFFIS e.V.

ROBEX Seminar at ENSTA Bretagne, Brest, France, Oct. 30, 2024

originally presented at the IEEE Intl. Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024

Motivation

Motivation

o Faults can have significant impact on the overall production plant

Motivation

- o Faults can have significant impact on the overall production plant
 - > Fault Detection and Isolation (FDI) processes to avoid severe damage

- o Early fault detection through simulation, fault injection and contract-based monitoring
- o Combine the following concepts:

- o Early fault detection through simulation, fault injection and contract-based monitoring
- o Combine the following concepts:
 - > Contract-based monitoring to distinguish between desired and faulty behavior

- o Early fault detection through simulation, fault injection and contract-based monitoring
- o Combine the following concepts:
 - > Contract-based monitoring to distinguish between desired and faulty behavior
 - ➤ Map FDI rules based on threshold verification on contracts that can be evaluated in a co-simulation environment

- Early fault detection through simulation, fault injection and contract-based monitoring
- Combine the following concepts:
 - > Contract-based monitoring to distinguish between desired and faulty behavior
 - ➤ Map FDI rules based on threshold verification on contracts that can be evaluated in a co-simulation environment
 - ➤ A simulation-based **fault injection** procedure highlighting the principles of contract-based FDI rules

- Early fault detection through simulation, fault injection and contract-based monitoring
- Combine the following concepts:
 - > Contract-based monitoring to distinguish between desired and faulty behavior
 - ➤ Map FDI rules based on threshold verification on contracts that can be evaluated in a co-simulation environment
 - ➤ A simulation-based **fault injection** procedure highlighting the principles of contract-based FDI rules
 - ➤ A **simulation of hardware monitors** based on time-sensitive behavioral contracts to detect faults, validating the applicability for use during system operation

Generate rotation of the shaft:

$$V = K_E \cdot \omega + R_M \cdot i + L_M \cdot \frac{di}{dt}$$

Generate rotation of the shaft:

$$V = K_E \cdot \omega + R_M \cdot i + L_M \cdot \frac{di}{dt}$$

Mechanical load behavior:

hanical load behavior:
$$\tau = K_T \cdot i - B \cdot \omega - J \cdot \frac{d\omega}{dt}$$

Nominal Behavior of the DC Motor

Contract-Based Monitoring & Fault Injection

Time-Sensitive Behavioral Contracts (TSBCs)

Assumption: Time point is within a specific interval

o Guarantee: Corresponding data value is within specified interval

$$C_i: t \in [t_1; t_2] ? d \in [d_1; d_2]$$

Contract-Based Monitoring & Fault Injection

- Time-Sensitive Behavioral Contracts (TSBCs)
 - Assumption: Time point is within a specific interval
 - Guarantee: Corresponding data value is within specified interval

$$C_i: t \in [t_1; t_2] ? d \in [d_1; d_2]$$

amount of resistance

Electrical Fault

Contract-Based Monitoring & Fault Injection

- Time-Sensitive Behavioral Contracts (TSBCs)
 - Assumption: Time point is within a specific interval
 - Guarantee: Corresponding data value is within specified interval

$$C_i: t \in [t_1; t_2] ? d \in [d_1; d_2]$$

amount of resistance

o Electrical Fault

Mechanical Fault

slow down rotation

Valid Range & Contract Specification for Supply Voltage

White
Gaussian noise
was added

 $Contract_C_1 : t \in [0.2; 0.45] ? d \in [0; 12.24]$

 $Contract_C_2 : t \in [0.45; 7.9] ? d \in [11.76; 12.24]$

 $Contract_C_3 : t \in [7.9; 8.1] ? d \in [0; 12.24]$

 $Contract_C_4 : t \in [8.1; 10] ? d = 0$

Possible Traces & Contract Violations

- Increased armature resistance
 - Wear and tear of electrical components
 - ➤ Badly placed connection
 - > External electromagnetic interference
- Always active throughout simulation
 - Constant wear of the components
- Fault affects the electric current
- Fault affects angular velocity

Possible Traces & Contract Violations

- Additional friction to rotary components
 - > Presence of debris or dust
 - ➤ External agents slowing down the shaft rotation
 - Deterioration of bearings due to motor aging
- \circ Fault is incremental and increases slightly \leq
 - ➤ Increasingly severe effect of the fault
- Larger braking force than normal friction
- Decreasing the angular velocity

Monitoring Results – A Detected Violation

- Recoverable monitors
 - Continue verification in case of being successful in the future
 - ➤ Monitors fail once may pass within the same request
- Unrecoverable monitors
 - ➤ Halt verification until subsequent request
 - > Once violated they remain so for the duration of the current request
 - > Suitable for critical fault conditions intolerant of any violations
- Find reason for critical fault and decide
 - > Are corrections needed? Improvements to the model or monitors?

Monitoring Results – A Detected Violation

- Longer fault simulation
 - Analyze effect of a persistent fault
 - > Reveal whether and how system controller mitigates the fault
- Based on severity user decides whether and how to intervene
- Simple change to the configuration: Correcting the input signal
- Changes to the contract specification
 - > Relieve intervals and broaden spectrum of allowed values
 - ➤ This does not improve reliability it prevents detection of smaller deviations
- Specify contracts systematically and consider precise requirements and behavior

Discussion

- o A suitable fault detection mechanism that can be tested during the design phase
- o Applicable to several systems that contain a physical part
 - > Establish system model and its nominal behavior
 - Derive contract specifications
- Motor model could be extended to generate data on other properties (temperature, ...)
- Later fault detection requires more resources to rectify faults

Discussion

- o Check valid behavior for signals that are not directly measured or measurable
- E.g. Besides pure threshold classifier, use extended specification to consider gradient within a contract
 - > Finer granularity of monitoring
 - > Earlier detection of potential violations
- Specifying more precise progression

- > TSBCs could do this by adding monitors (overhead)
- > A solution for this can improve fault detection
- Effect of faults might also be visible in software & extend fault detection to predictive maintenance

Summary

- A co-simulation environment that enables
 - Systematic approach for fault detection
 - > Testing the behavior of a system under faulty conditions
 - ➤ Detect different faults through the use of TSBC monitors
- Faults are directly injected into the differential equations
- Reporting on the valid or invalid behavior of the system
- TSBC-based monitor specifications can be improved based on the provided results
- Monitors could be derived for application at run-time
- o Extending the framework by a component for the control software