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Reachability
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We have

a mobile robot ẋ = f(x,u)
an uncertain input u(t) ∈ [u]
an initial state state x(0) ∈ [x](0)

The reachable set is

X(t) =
{

a|∃x(0) ∈ [x](0),∃u(·) ∈ [u], a = ϕt,u(·)(x(0))
}

where ϕt,u(·) is the �ow.
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1. Linear systems
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Simple scalar linear system

ẋ = ax+u
u(t) ∈ [u] = [u−,u+]

x(0) ∈ [x](0]

This is a monotone dynamical system.
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We have

x(t) = eat · x0 +
∫ t

0 ea·(t−τ)u(τ)dτ

Thus

X(t) = eat · [x0]+
∫ t

0 ea·(t−τ) · [u] ·dτ

= eat · [x−0 ,x
+
0 ]+

[∫ t
0 ea·(t−τ)u− dτ,

∫ t
0 ea·(t−τ)u+ dτ

]
= eat · [x−0 ,x

+
0 ]+

1
a(e

a·t−1) · [u−,u+]
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Denote by Sreach the class of systems for which we know how to
compute an enclosure of X(t).{

S1 ∈Sreach

S2 ∈Sreach

⇒
{

S1 ‖S2 ∈Sreach

S1 ·S2 ∈Sreach
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Linear triangular systems ẋ1
ẋ2
ẋ3

=

 a11 0 0
a21 a22 0
a31 a32 a33

 x1
x2
x3

+

 b1
b2
b3

u
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Linear strictly triangular systems ẋ1
ẋ2
ẋ3

=

 0 0 0
a21 0 0
a31 a32 0

 x1
x2
x3

+

 b1
b2
b3

u
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We have

x1(t) = x1(0)+b1
∫ t

0 u(τ)dτ

x2(t) = x2(0)+a21
∫ t

0 x1(τ)dτ +b2
∫ t

0 u(τ)dτ

x3(t) = x3(0)+a31
∫ t

0 x1(τ)dτ +a32
∫ t

0 x2(τ)dτ +b2
∫ t

0 u(τ)dτ
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x1(t) = x1(0)+b1
∫

u
x2(t) = x2(0)+a21

∫
x1 +b2

∫
u

x3(t) = x3(0)+a31
∫

x1 +a32
∫

x2 +b2
∫

u
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x1(t) = x1(0)+b1
∫

u
x2(t) = x2(0)+a21x1(0)t+a21b1

∫ 2 u+b2
∫

u
x3(t) = x3(0)+a31x1(0)t+a31b1

∫ 2 u+a32x2(0)t+a32a21x1(0)t2

+a32a21b1
∫ 3 u+a32b2

∫
u+b2

∫
u

We have (x1,x2,x3) ∈R0 < u > .
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Linear triangularizable systems

ẋ = Ax+Bu

If A = P−1TP . Set v = P−1x .

ẋ = Ax+Bu
⇔ P−1ẋ = P−1Ax+P−1Bu
⇔ v̇ = P−1AP︸ ︷︷ ︸

T

v+P−1Bu︸ ︷︷ ︸
z
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Linear non triangularisable system{
ẋ1 = x2 +u
ẋ2 = −x1
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An integral formulation is(
x1
x2

)
=

(
cos t sin t
−sin t cos t

)(
x1(0)+

∫
(ucos t)

x2(0)+
∫
(usin t)

)
We have (x1,x2) ∈R0 < u > .
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For non linear systems?

Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



17 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

=


x5 cosx3
x5 sinx3

u1 + x5 sin(x3− x4)
x5 sin(x3− x4)

u2
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Boatbot towing a magnetometer
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We will present:

Di�erential algebra: classic, suited to symbolic approaches

Integral algebra: original ?, suited to numerical approaches
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1. Di�erential algebra
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Complex numbers
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Consider the set

R< i >=

{
−1,1,3,3.1,π, . . . , i, i2,1+2i+5i2,

1
1+ i5

, . . .

}
Take the equation i2 +1 = 0. The quotient

R< i >
i2 +1

= C
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In R< i >, i is algebraically independent.
In C, i is algebraic (e.g., i4 = 1).
C/R is a �eld extension.
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Di�erential algebra
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A di�erential ring is a ring (R,+, ·) equipped with the derivative d
dt

(i) R⊂R
(ii) ∀a ∈R, d

dt a ∈R

where R is the set of real numbers.
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Moreover, d
dt satis�es the classical rules. For instance

d
dt (a+b) = d

dt a+
d
dt b

d
dt (a ·b) = d

dt a ·b+a · d
dt b
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A system is �nitely generated di�erential extension.
For instance, the system S : ẋ = x+u corresponds to the
di�erential extension

S :
R< u,x >
ẋ− x−u
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Elimination methods are used in this context
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S :


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

=


x5 cosx3
x5 sinx3

u1 + x5 sin(x3− x4)
x5 sin(x3− x4)

u2

 ;
(

y1
y2

)
=

(
x1
x2

)

The variable xi of the system is observable if xi ∈ R< y1,y2 >
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We have (
y1
y2

)
=

(
x1
x2

)
Thus x1 ∈ R< y1,y2 > and x2 ∈ R< y1,y2 > .
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We have (
ẋ1
ẋ2

)
=

(
x5 cosx3
x5 sinx3

)
Thus x3 = atan2(ẋ2, ẋ1) and x5 =

√
ẋ2

1 + ẋ2
2.

Thus x3 ∈ R< y1,y2 > and x5 ∈ R< y1,y2 > .
We can show that x4 /∈ R< y1,y2 >
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3. Integral algebra
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An integral ring is a a ring (R,+, ·) equipped with the integration∫
such that

(i) R⊂R
(ii) ∀a ∈R,

∫
a ∈R
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The meaning of
∫
is the primitive which cancel for t = 0, i.e.,∫

a =
∫ t

0
a(τ)dτ.
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Moreover,
∫
satis�es the classical integral rules. For instance∫

(a+b) =
∫

a+
∫

b∫
a ·
∫

b =
∫
(a ·

∫
b+

∫
a ·b)
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Consider R0 the smallest real integral ring.
We have

a = 2 ∈R0 it is a constant
b = 2t ∈R0 since, b =

∫
a

We assume that (R0,+) is a topological group (i.e., an in�nite
number of addition is allowed).

Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



37 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications

Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



38 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications

Consider an integral ring extension is L /R.
An element u of L is said to be integral R-algebraic independent if

u,
∫

u,
∫ 2

u,
∫ 3

u, . . .

are all independent.
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Integral dynamical system
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Given an integral ring R.
We denote by R < u1,u2, · · ·> the integral ring generated by R
and by a �nite set {u1,u2, . . .} that are integral R-algebraic
independent.
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Example. Consider the integral ring L = R0 < u > . We have

cos t ∈ L
u+

∫
sinu+3 ∈ L

u+
∫ (

sin
∫ 3 u

)
+3 ∈ L
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De�nition. An integral dynamical system is de�ned as a �nite
subset {x1, . . . ,xn} of R0 < u1, . . . ,um > .
x1,x2, . . . are called the state variables
u1,u2, . . . are called the inputs.
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Consider a system of the form{
ẋ = f(x,u)
x(0) = x0

Equivalently,

x(t) = x0 +
∫ t

τ=0 f(x(τ),u(τ))dτ.

This system is an integral dynamical system if for all i ∈ {1, . . . ,n},
xi ∈R0 < u1, . . . ,um >.
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Interval extension of an

integral dynamical system
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Consider an integral dynamical system
{x1 . . . ,xn} ∈R0 < u1, . . . ,um >.

For each xi, we can build an expression which involves
x1(0), . . . ,xn(0), u1, . . . ,um as variables and +,−, ·,/,

∫
as

operators.

An interval evaluation for the xi's can be performed using the
classical rules of interval arithmetic.
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4. Applications
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The Car-Trailer
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ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

=


x5 cosx3
x5 sinx3

u1 + x5 sin(x3− x4)
x5 sin(x3− x4)

u2



Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



50 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications

Can we conclude that x1,x2,x3,x4 belong or not to R0 < u1,u2 >?
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Proposition. An integral formulation of the car-trailer is

x1 = x1(0)+
∫
(x5 cosx3)

x2 = x2(0)+
∫
(x5 sinx3)

x3 = x4 + v1
x4 = x4(0)+

∫
(x5 sinv1)

v1 = v1(0)+
∫

u1
x5 = x5(0)+

∫
u2

with
v1(0) = x3(0)− x4(0).
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Integral representation of the car-trailer
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Proof. Since 
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

=


x5 cosx3
x5 sinx3

u1 + x5 sin(x3− x4)
x5 sin(x3− x4)

u2


We set v1 = x3− x4. We have:

x5 ∈ R0 < u2 >
v1 ∈ R0 < u1 >
x4 ∈ R0 < v1,x5 > ⇒ (x1,x2,x3,x4,x5) ∈R0 < u1,u2 >
x3 ∈ R0 < v1,x4 >

(x1,x2) ∈ R0 < x3,v5 >
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Take

u(t) =
(

u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
=

(
e−t

e−t

)
+10−2

(
[−1,1]
[−1,1]

)

x(0) ∈ [x](0) =


0
0
1

1.5
1

+


[−0.001,0.001]
[−0.001,0.001]

[−0.2,0.2]
[−0.01,0.01]

[−0.001,000.1]

 .
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The interval trajectory is obtained by:

In: [x1](0), [x2](0), [x3](0), [x4](0), [x5](0), [u1](t), [u2](t)
[v1](0) = [x3](0)− [x4](0).
[v1](t) = [v1](0)+

∫ t
0[u1](τ)dτ

[x5](t) = [x5](0)+
∫ t

0[u2](τ)dτ

[x4](t) = [x4](0)+
∫ t

0[x5](τ) · cos([v1](τ)) ·dτ

[x3](t) = [x4](t)+ [v1](t)
[x1](t) = [x1](0)+

∫ t
0[x5](τ) · cos([x3](τ)) ·dτ

[x2](t) = [x2](0)+
∫ t

0[x5](τ) · sin([x3](τ)) ·dτ

Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



56 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications

Integral simulation of the car-trailer
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The hovercraft
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The hovercraft has two propellers and can glide in all directions
without any friction

Luc Jaulin
Validated control using intervals and �atness; The car-trailer problem



59 / 71

Linear systems
Di�erential algebra

Integral algebra
Applications

The state equations are given by

ẋ1 = v1 cosψ− v2 sinψ

ẋ2 = v1 sinψ + v2 cosψ

v̇1 = u1 +ωv2
v̇2 = −ωv1
ψ̇ = ω

ω̇ = u2
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Proposition. An integral formulation of the hovercraft is

(
x1
x2

)
=

(
x1(0)
x2(0)

)
+

( ∫
(cosψ · v1− sinψ · v2)∫
(sinψ · v1 + cosψ · v2)

)
(

v1
v2

)
=

(
cosψ sinψ

−sinψ cosψ

)((
a1(0)
a2(0)

)
+

( ∫
(u1 cosψ)∫
(u1 sinψ)

))
ψ = ψ(0)+

∫
ω

ω = ω(0)+
∫

u2

where (
a1(0)
a2(0)

)
=

(
cosψ(0) −sinψ(0)
sinψ(0) cosψ(0)

)(
v1(0)
v2(0)

)
.
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Take

u(t) =
(

u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
=

(
e−t

e−t

)
+

(
[−0.01,0.01]
[−0.01,0.01]

)

x(0) ∈ [x](0) =



0
0
2
0
1
0

+



[−0.001,0.001]
[−0.001,0.001]
[−0.001,0.001]
[−0.001,0.001]

[−0.2,0.2]
[−0.001,0.001]


The interval trajectory in the (x1,x2)-space is obtained by
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In: [x](0), [v](0), [ψ](0), [ω](0), [u](t)

[a](0) =

(
cos([ψ](0)) −sin([ψ](0))
sin([ψ](0)) cos([ψ](0))

)
· [v](0)

[a](t) = [a](0)+
( ∫ t

0[u1](τ) · cos([ψ](τ)) ·dτ∫ t
0[u1](τ) · sin([ψ](τ)) ·dτ

)
[ω](t) = [ω](0)+

∫ t
0[u2](τ)dτ

[ψ](t) = [ψ](0)+
∫ t

0[ω](τ)dτ

[v](t) =

(
cos([ψ](t)) sin([ψ](t))
−sin([ψ](t)) cos([ψ](t))

)
· [a](t)

[x](t) = [x](0)+
(

cos([ψ](t)) −sin([ψ](t))
sin([ψ](t)) cos([ψ](t))

)
· [v](t)
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