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Reachability



We have

@ a mobile robot x =f(x,u)

@ an uncertain input u(z) € [u]

@ an initial state state x(0) € [x](0)
The reachable set is

X(r) = {a|3x(0) € [x](0),Fu(") € [u], a = @ u(, (x(0)) }

where @, ) is the flow.



1. Linear systems



Linear systems

Simple scalar linear system

This is a monotone dynamical system.



Linear systems

We have
x(r) = xo+ Joe " Du(t)dr
Thus
X(I)Ze“’[o] Joe )[]df
= [y a0+ [fo Du~dr, [y Put drl
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Linear systems

Denote by .%each the class of systems for which we know how to
compute an enclosure of X(7).
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Linear systems

Linear triangular systems
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Linear systems

Linear strictly triangular systems
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Linear systems

We have

x1(t) = x1(0)+by [yu(t)dT
x() = x(0)+ay fyxi1(t)dt+by [yu(t)dt
x3(t) = x3(0)+az fotxl (1)dt+as féXQ(T)dT—i-bz féu(r)dr



Linear systems

x1(t) = x1(0)+by fu
XQ(I) = x2(0)+a21 fxl —l—bzfu
x3(t) = x3(0)+az [x1+an [x2+by[fu



Linear systems

xi(t) = x1(0)+b1fu

x2(1) x2(0) +az1x1(0)t +an by [2u+bs [u

x3(t) = x3(0)+azix1(0)t+azib f2u+a32x2(0)t+a32a21x1 (0)1‘2
+azanb [Pu+anb [u+b; [u

We have (x1,x2,x3) € Zo <u > .



Linear systems

Linear triangularizable systems

x = Ax+Bu
f A=P !TP. Setv=P !x .

x = Ax+ Bu
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Linear systems

Linear non triangularisable system

X1 = x2+tu
X = —X]



Linear systems

An integral formulation is

() = (o ) () et )

We have (x1,x) € Zo <u>.



For non linear systems?



Linear systems

atd ‘—t‘f\J

)'Cl X5COSX3

bl X581nx3

X3 | =] wu+xssin(xz —xy)
X4 X5 sin(x3 - X4)

X5 up



Linear systems

Boatbot towing a magnetometer



Linear systems

We will present:
o Differential algebra: classic, suited to symbolic approaches

o Integral algebra: original 7, suited to numerical approaches



Differential algebra

1. Differential algebra



Differential algebra

Complex numbers



Differential algebra

Consider the set
R<i>=<{-1,1,3,3.1 "21+2'+5'2L
<i>=s-—1L35L,m.. . i1, 1 l’1+i5’m

Take the equation i+ 1 = 0. The quotient



Differential algebra

In R <i>, iis algebraically independent.
In C, iis algebraic (e.g., = 1).
C/R is a field extension.



Differential algebra

Differential algebra



Differential algebra

A differential ring is a ring (%Z,+,) equipped with the derivative %

() RcCcZx
(i) Vae%,%ae%’

where R is the set of real numbers.



Differential algebra

4

= satisfies the classical rules. For instance

Moreover

%(a—l—b) = d%a+%bd



Differential algebra

A system is finitely generated differential extension.
For instance, the system .% : X = x4 u corresponds to the

differential extension
> R <u,x>

X—x—u



Differential algebra

Elimination methods are used in this context



Differential algebra

PR

X1 X5COSX3

X X5 Sinxs N
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S| x| = ur+xssin(x3s—x4) | Y =
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The variable x; of the system is observable if x; € R < y1,y, >



We have
Y1 _ [ *1
2 X2

Thusxi e R<yi,yo>and x e R < yp,y >.



Differential algebra

We have
X1 [ Xs5cosx3
X )\ xssinxz
Thus x3 = atan2(iz,%;) and x5 = /%% + i3.

Thus x3 ER <yq,y2 > and x5 ER < y1,y, > .
We can show that x4 ¢ R <y, y, >



Integral algebra

3. Integral algebra



Integral algebra

An integral ring is a a ring (#,+,-) equipped with the integration
J such that

(1) RcZz

(i) Vace R, [ac X



Integral algebra

The meaning of [ is the primitive which cancel for t =0, i.e.,

/a = /Ota(f)dr.



Integral algebra

Moreover, [ satisfies the classical integral rules. For instance

J(a+b) = Ja+[b
Ja-Jb = [(a-[b+[a-b)



Integral algebra

Consider Z, the smallest real integral ring.

We have
a=2¢€% it is a constant

b=2te % since, b= [a

We assume that (%o, +) is a topological group (i.e., an infinite
number of addition is allowed).



Integral algebra




Integral algebra

Consider an integral ring extension is £ | .
An element u of .Z is said to be integral %-algebraic independent if

2 3
o fu [ [

are all independent.



Integral algebra




Integral algebra

Integral dynamical system



Integral algebra

Given an integral ring Z.

We denote by Z < uj,uy,--- > the integral ring generated by #
and by a finite set {u;,uy,...} that are integral Z-algebraic
independent.



Integral algebra

Example. Consider the integral ring ¥ = %y < u > . We have

cost e Z
u+ [sinu+3 e Z

u+f(sinf3u)+3 € <



Integral algebra

Definition. An integral dynamical system is defined as a finite
subset {x1,...,x,} of Zo <uy,...,upm>.

X1,X2,... are called the state variables

ui,uy,... are called the inputs.



Integral algebra

Consider a system of the form

Lo

Equivalently,
x(t) =xo + [i_o f(x(7),u(7))dr.

This system is an integral dynamical system if for all i € {1,...,n},
Xi €ERo <uy,...,up>.



Integral algebra

Interval extension of an
integral dynamical system



Integral algebra

Consider an integral dynamical system
X1 X0} ERo < uy,... upy>.

@ For each x;, we can build an expression which involves
x1(0),...,x,(0), uy,...,uy as variables and +,—,-,/, [ as
operators.

@ An interval evaluation for the x;'s can be performed using the
classical rules of interval arithmetic.



4. Applications



Applications

The Car-Trailer



Applications

PR R
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X3 | =] wu+xssin(xz —x4)
X4 X5 sin(x3 — )C4)

X5 up



Uy

Can we conclude that x1,x2,x3,x4 belong or not to Zy < uy,uy >?

Applications

Jagsinrg

v

v

v

=] =] =] =

.

-




Applications

Proposition. An integral formulation of the car-trailer is

xi = x1(0)+ [ (xscosx3)
x2 = x2(0)+ [ (xssinx3)
X3 = X4+ V1

X4 = X4(0) + f(X5 sinvl)
Vi = Vi (0) -+ fu1

X5 = X5(0) +fM2

with
Vi (0) = X3(0) —X4(0).



Applications
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Integral representation of the car-trailer




Applications

Proof. Since

X1 X5COSX3

X2 X58inx3

X3 = Uy +xs sin(x3 —X4)
X4 X5 sin(x3 — )C4)
X5 up

We set vi = x3 —x4. We have:

Xs

Vi

X4

X3
(xl 7x2)

S
S
S
S
S

Ky < upy >

Koy < uy >
Ky < vi,x5 > = (x1,%2,X3,X4,X5) € Ko < uy,up >
Ry < Vi,X4 >
Ko < X3,V5 >



- ()< (640 (22) e (32)

0 [—0.001,0.001]

0 [—0.001,0.001]
x(O)exj(0)=| 1 |+ [—0.2,0.2]

1.5 [—0.01,0.01]

1 [—0.001,000.1]



The interval trajectory is obtained by:
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Applications

Integral simulation of the car-trailer



Applications

The hovercraft



Applications

Ty

The hovercraft has two propellers and can glide in all directions
without any friction



Applications

The state equations are given by
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Applications
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Proposition. An integral formulation of the hovercraft is

where



Applications
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Applications

Take

(w) Wl [ e ~0.01,0.01
u() < (1) ) € < 1) (1) ) < e )*( -0.01,0.01] >
—0.001,0.001]
~0.001,0.001]
—0.001,0.001]
—0.001,0.001]

[-0.2,0.2]
[~0.001,0.001]
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The interval trajectory in the (xj,x2)-space is obtained by
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Applications

t=10




Applications
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