Bisectable Abstract Domains

L. Jaulin, B. Desrochers, D. Massé Journée MRIS, Brest, June 282016

Bisectable Abstract Domain
Boxpies
Contractors
Application

Goal

Bisectable Abstract Domains

Generalize interval algorithms with bisections. Introduce bisectable abstract domains (or 'bad' for short). Introduce the boxpies as a specific bad.
Use boxpies to characterize the solution set of constraints involving complex numbers.

Bisectable Abstract Domain
Boxpies
Contractors
Application

What is a Bad ?

Consider a Riemannian manifold \mathbb{M} such a $\mathbb{R}, \mathbb{R}^{n}$, a sphere, the Klein bottle, etc.

Question : Is such a paving always possible ? How to define the intersection, the union of the 'boxes'?

Denote by $d(a, b)$ the distance between a and b.
We define the diameter $w(\mathbb{X}), \mathbb{X} \subset \mathbb{M}$.
A bad family $\mathbb{I M}$ is a family of subsets of \mathbb{M} which satisfies some properties.

1) $\mathbb{I M}$ is a Moore family (containing \mathbb{M}), i.e.,

$$
[a](1) \in \mathbb{I} \mathbb{M},[a](2) \in \mathbb{M}, \ldots \Rightarrow \bigcap_{i}[a](i) \in \mathbb{M} \mathbb{M}
$$

Note that (\mathbb{M}, \subset) is a lattice but not a sublattice of $\mathscr{P}(\mathbb{M})$. Indeed:

$$
\underbrace{[a] \cup[b]}_{\in \mathscr{P}(\mathbb{M})} \subset \underbrace{[a] \sqcup[b]}_{\in \mathbb{I} \mathbb{M}} .
$$

2) $\mathbb{I M}$ is equipped with a bisector, i.e., a function $\beta: \mathbb{M} \rightarrow \mathbb{I} \mathbb{M} \times \mathbb{I} \mathbb{M}$. If $\beta([x])=\{[a],[b]\}:$
(i) $[a]$ and $[b]$ do not overlap,
(ii) [a] and [b] cover [x]
(iii) β minimizes $\max \{w([a]), w([b])\}$.

Note: For the implementation, the bisector is defined from a starting point: the origin (plane, tore, sphere).

Contractors
Application
Question: Is the set of boxes of \mathbb{R}^{n} a bad ?

Question: Is any singleton of \mathbb{M} a bad ?

Contractors
Application
Question: Can bad be defined when the Euler-Poincarré characteristic of \mathbb{M} is non-zero?

Answer. Yes. Even if (once the bisector is defined) the poles yields implementation difficulties.

Angles

Bisectable Abstract Domains

Consider the equivalence relation on \mathbb{R}

$$
\alpha \sim \beta \Leftrightarrow \frac{\beta-\alpha}{2 \pi} \in \mathbb{Z}
$$

The set \mathbb{A} of all angles is

$$
\mathbb{A}=\frac{\mathbb{R}}{\sim}=\frac{\mathbb{R}}{2 \pi \mathbb{N}}
$$

For simplicity, we will also write $\mathbb{A}=[-\pi, \pi]$.
Note that the set \mathbb{A} is a Riemannian manifold.

If α and β are angles and if $\rho \in \mathbb{R}$, we can define $\alpha+\beta, \alpha-\beta$ and $\rho \cdot \alpha$.
Question: Is \mathbb{A} a vector space ?

Answer: No it is not. Indeed

$$
\rho(\alpha+\beta) \neq \rho \alpha+\rho \beta
$$

Take for instance $\alpha=\beta=\pi$ and $\rho=\frac{1}{2}$.

Question: Is the set of angles \mathbb{A} a lattice ?

Answer: No, due to its circular structure. It is thus not possible to define intervals of angles in order to apply interval techniques.

Bisectable Abstract Domain
Boxpies Contractors
Application
Arcs

Bisectable Abstract Domains

An $\operatorname{arc}\langle\alpha\rangle$ is a connected subset of \mathbb{A}. We have $\langle\alpha\rangle=\langle\bar{\alpha}, \widetilde{\alpha}\rangle$ with $\bar{\alpha} \in \mathbb{A}$ and $\widetilde{\alpha} \in[0, \pi]$.
The set of all arcs is denoted by $\mathbb{I} \mathbb{A}$.
Question: Is $\mathbb{I A}$ is a Moore family?

Answer: No. The intersection in $\mathbb{I} \mathbb{A}$ is not closed.

Question: What is the smallest Moore family which contains $\mathbb{I} \mathbb{A}$?

Answer: Unions of arcs.

A union of non overlapping arcs is called a circular paving. The set of circular pavings is denoted by $\mathbb{U} \mathbb{A}$ and $(\mathbb{U} \mathbb{A}, \subset)$.

Note. It may be dangerous to deal with union of arcs. Example of Chabert. With initial domains $[x]=[y]=[1,9]$,

$$
\left\{\begin{array}{l}
y=x \\
9(x-5)^{2}=16 y
\end{array}\right.
$$

an explosion of the interval propagation occurs.

Bisectable Abstract Domain
Boxpies Contractors
Application

Pies

Bisectable Abstract Domains

The Cartesian product of bads is a bad.
A pie is an element of $\mathbb{U} \times \mathbb{R} \mathbb{R}$, i.e:
If $\alpha \in\langle\alpha>$ and $\rho \in[\rho]$ then the pair $(\alpha, \rho) \in<\alpha\rangle \times[\rho]$ which is pie.

Left: an arc; Right: a pie with a single connected component

A pie can be denoted with a polar form: $[\rho] e^{i<\alpha\rangle}$. The intersection is closed:

$$
\left[\rho_{1}\right] e^{i<\theta_{1}>} \cap\left[\rho_{2}\right] e^{i<\theta_{2}>}=\left(\left[\rho_{1}\right] \cap\left[\rho_{2}\right]\right) e^{i\left(<\theta_{1}>\cap<\theta_{2}>\right)} .
$$

Boxpies

Both $\mathbb{I C}$ (the boxes of \mathbb{C}) and $\mathbb{U} \mathbb{A} \times \mathbb{R}$ (the pies) are Moore families in $\mathscr{P}(\mathbb{C})$.
Reduced product $\otimes: \mathbb{B P}=\mathbb{I} \mathbb{C} \otimes \mathbb{U} \mathbb{A} \times \mathbb{I} \mathbb{R}$.
The family $\mathbb{B P}$ contains boxes and pies and all intersections between one box and one pie.
An element of $\mathbb{B P}$ is called a boxpie.

A boxpie can thus be written as

$$
[x]+i[y] \cap[\rho] e^{i<\theta>} .
$$

Note that the intersection in $\mathbb{B P}$ is closed:

$$
\begin{aligned}
& {\left[x_{1}\right]+i\left[y_{1}\right] \cap\left[\rho_{1}\right] e^{i<\theta_{1}>} \cap\left[x_{2}\right]+i\left[y_{2}\right] \cap\left[\rho_{2}\right] e^{i<\theta_{2}>}} \\
& = \\
& =\left[x_{1}\right] \cap\left[x_{2}\right]+i\left(\left[y_{1}\right] \cap\left[y_{2}\right]\right) \cap\left(\left[\rho_{1}\right] \cap\left[\rho_{2}\right]\right) e^{i\left(<\theta_{1}>\cap \ll \theta_{2}>\right) .}
\end{aligned}
$$

Why boxpies? An arithmetic on boxpies inherits the good properties of $\mathbb{I C}$ for the addition, but also of good properties of $\mathbb{U} \mathbb{A} \times \mathbb{I} \mathbb{R}$ for the multiplication.

Selfconsistency. The expression for a boxpie may not be unique, e.g., the boxpie

$$
[0,1]+i[1,2] \cap[1,2] \cdot e^{i\left[0, \frac{\pi}{4}\right]}=[1,1]+i[1,1] \cap[\sqrt{2}, \sqrt{2}] e^{i\left[\frac{\pi}{4}, \frac{\pi}{4}\right]}
$$

is the singleton $1+i=\sqrt{2} e^{i \frac{\pi}{4}}$.

Contractors

Denote by \mathscr{L} a set of bad. A contractor is an operator

$$
\mathscr{C}: \begin{array}{ll}
\mathscr{L} & \rightarrow \mathscr{L} \\
\mathbb{X} & \mapsto \mathscr{C}(\mathbb{X})
\end{array}
$$

which satisfies

$$
\begin{array}{ll}
\mathbb{X} \subset \mathbb{Y} \Rightarrow \mathscr{C}(\mathbb{X}) \subset \mathscr{C}(\mathbb{Y}) & \text { (monotonicity) } \\
\mathscr{C}(\mathbb{X}) \subset \mathbb{X} & \text { (contractance) }
\end{array}
$$

Constraint propagation. To each constraint $c_{j} \in\left\{c_{1}, \ldots, c_{m}\right\}$ of a constraint network, a contractor $\mathscr{C}_{j}(\mathbb{X})$ is built. We apply $\mathscr{C}=\mathscr{C}_{1} \circ \cdots \circ \mathscr{C}_{m}$ until no more contraction can be observed.
Separators. A separator is a pair of two complementary contractors. Combined with a paver, separators makes it possible to compute an inner and an outer characterization of the solution set.

Application

A robot, moving in a plane, is able to see a landmark \mathbf{m} with coordinates $(10,12)$.
More precisely, a sensor in the robot is able to measure the distance $d \in[4,6]$ and the azimuth $\alpha \in\left[\frac{\pi}{12}, \frac{\pi}{6}\right]$ of \mathbf{m}.
We know that $\mathbf{m} \in[3,8] \times[6,13]$.

Let us represent the position of the robot by a complex number $p \in \mathbb{C}$. We have:

$$
10+12 i-p=d e^{i \alpha}, p \in[3,8] \times[6,13], \alpha \in\left[\frac{\pi}{12}, \frac{\pi}{6}\right], d \in[4,6] .
$$

Left: first contraction; Right: Inner and outer approximation

To compare, we now consider boxes and pies as domains, but in a separate way.
We use some specific minimal separators for the projection of the set

$$
\{(x, y, \rho, \theta) \mid x=\rho \cos \theta \text { and } y=\rho \sin \theta\}
$$

with respect to the (x, y) and (ρ, θ) space.

Left: with boxes only; Right: with pies only

