Distributed localization of a group of underwater robots

Aymeric Béthencourt and Luc Jaulin OSM, IHSEV, ENSTA Bretagne, LabSTICC.

Presentation available at http://youtu.be/qDtnTzzY9ms

A trajectory is a function $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{n}$. For instance

$$
\mathbf{f}(t)=\binom{\cos t}{\sin t}
$$

is a trajectory.

Order relation

$$
\mathbf{f} \leq \mathbf{g} \Leftrightarrow \forall t, \forall i, f_{i}(t) \leq g_{i}(t)
$$

We have

$$
\begin{aligned}
\mathbf{h} & =\mathbf{f} \wedge \mathbf{g} \Leftrightarrow \forall t, \forall i, h_{i}(t)=\min \left(f_{i}(t), g_{i}(t)\right) \\
\mathbf{h} & =\mathbf{f} \vee \mathbf{g} \Leftrightarrow \forall t, \forall i, h_{i}(t)=\max \left(f_{i}(t), g_{i}(t)\right)
\end{aligned}
$$

The set of trajectories is a lattice. Interval of trajectories (tubes) can be defined.

2 Tube arithmetics

If $[x]$ and $[y]$ are two scalar tubes, we have
$[z]=[x]+[y] \Rightarrow[z](t)=[x](t)+[y](t)$
$[z]=\operatorname{shift}_{a}([x]) \Rightarrow[z](t)=[x](t+a)$
$[z]=[x] \circ[y] \Rightarrow[z](t)=[x]([y](t))$
$[z]=\int[x] \Rightarrow[z](t)=\left[\int_{0}^{t} x^{-}(\tau) d \tau, \int_{0}^{t} x^{+}(\tau) d \tau\right]$
(sum)
(shift)
(compositi
(integral)

3 Tube contractors

Example 1. Consider $x(t) \in[x](t)$ with the constraint

$$
\forall t, x(t)=x(t+1)
$$

Contract the tube $[x](t)$.

We first decompose into primitive trajectory constraints

$$
\begin{aligned}
& x(t)=a(t+1) \\
& x(t)=a(t)
\end{aligned}
$$

Contractors

$$
\begin{array}{ll}
{[x](t)} & :=[x](t) \cap[a](t+1) \\
{[a](t)} & :=[a](t) \cap[x](t-1) \\
{[x](t)} & :=[x](t) \cap[a](t) \\
{[a](t)} & :=[a](t) \cap[x](t)
\end{array}
$$

Example 2. Consider for instance the differential constraint

$$
\begin{aligned}
& \dot{x}(t)=x(t+1) \cdot u(t) \\
& x(t) \in[x](t), \dot{x}(t) \in[\dot{x}](t), u(t) \in[u](t)
\end{aligned}
$$

We decompose as follows

$$
\left\{\begin{aligned}
x(t) & =x(0)+\int_{0}^{t} y(\tau) d \tau \\
y(t) & =a(t) \cdot u(t) \\
a(t) & =x(t+1)
\end{aligned}\right.
$$

Possible contractors are

$$
\left\{\begin{aligned}
{[x](t) } & =[x](t) \cap\left([x](0)+\int_{0}^{t}[y](\tau) d \tau\right) \\
{[y](t) } & =[y](t) \cap[a](t) \cdot[u](t) \\
{[u](t) } & =[u](t) \cap \frac{[y](t)}{[a](t)} \\
{[a](t) } & =[a](t) \cap \frac{[y](t)}{[u](t)} \\
{[a](t) } & =[a](t) \cap[x](t+1) \\
{[x](t) } & =[x](t) \cap[a](t-1)
\end{aligned}\right.
$$

4 Time-space estimation

Classical state estimation

$$
\left\{\begin{array}{llll}
\dot{\mathbf{x}}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) & & t \in \mathbb{R} \\
\mathbf{0} & =\mathbf{g}(\mathbf{x}(t), t) & & t \in \mathbb{T} \subset \mathbb{R}
\end{array}\right.
$$

Space constraint $\mathbf{g}(\mathbf{x}(t), t)=0$.

Example.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{3} \cos x_{4} \\
\dot{x}_{2}=x_{3} \cos x_{4} \\
\dot{x}_{3}=u_{1} \\
\dot{x}_{4}=u_{2} \\
\left(x_{1}(5)-1\right)^{2}+\left(x_{2}(5)-2\right)^{2}-4=0 \\
\left(x_{1}(7)-1\right)^{2}+\left(x_{2}(7)-2\right)^{2}-9=0
\end{array}\right.
$$

With time-space constraints

$$
\left\{\begin{array}{lll}
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) & & t \in \mathbb{R} \\
\mathbf{0} & =\mathbf{g}\left(\mathbf{x}(t), \mathbf{x}\left(t^{\prime}\right), t, t^{\prime}\right) & \\
\left(t, t^{\prime}\right) \in \mathbb{T} \subset \mathbb{R} \times \mathbb{R}
\end{array}\right.
$$

Example. An ultrasonic underwater robot with state

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)=(x, y, \theta, v, \ldots)
$$

At time t the robot emits an onmidirectional sound. At time t^{\prime} it receives it

$$
\left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2}-c\left(t-t^{\prime}\right)^{2}=0
$$

5 Mass spring problem

The mass spring satisfies

$$
\ddot{x}+\dot{x}+x-x^{3}=0
$$

i.e.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{2}-x_{1}+x_{1}^{3}
\end{array}\right.
$$

The initial state is unknown.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{2}-x_{1}+x_{1}^{3} \\
L-x_{1}\left(t_{1}\right)+L-x_{1}\left(t_{2}\right)=c\left(t_{2}-t_{1}\right)
\end{array}\right.
$$

6 Swarm localization

Consider n robots $\mathcal{R}_{1}, \ldots, \mathcal{R}_{n}$ described by

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right), \mathbf{u}_{i} \in\left[\mathbf{u}_{i}\right]
$$

Omnidirectional sounds are emitted and received.

A ping is a 4-uple (a, b, i, j) where a is the emission time, b is the reception time, i is the emitting robot and j the receiver.

With the time space constraint

$$
\begin{aligned}
& \dot{\mathbf{x}}_{i}=\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right), \mathbf{u}_{i} \in\left[\mathbf{u}_{i}\right] \\
& g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right)=0
\end{aligned}
$$

where

$$
g\left(\mathbf{x}_{i}, \mathbf{x}_{j}, a, b\right)=\left\|x_{1}-x_{2}\right\|-c(b-a)
$$

Clocks are uncertain. We only have measurements $\tilde{a}(k), \tilde{b}(k)$ of $a(k), b(k)$ thanks to clocks h_{i}. Thus

$$
\begin{aligned}
& \dot{\mathbf{x}}_{i}=\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right), \mathbf{u}_{i} \in\left[\mathbf{u}_{i}\right] . \\
& g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right)=0 \\
& \tilde{a}(k)=h_{i(k)}(a(k)) \\
& \tilde{b}(k)=h_{j(k)}(b(k))
\end{aligned}
$$

The drift of the clocks is bounded

$$
\begin{aligned}
& \dot{\mathbf{x}}_{i}=\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right), \mathbf{u}_{i} \in\left[\mathbf{u}_{i}\right] . \\
& g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right)=0 \\
& \tilde{a}(k)=h_{i(k)}(a(k)) \\
& \tilde{b}(k)=h_{j(k)}(b(k)) \\
& \dot{h}_{i}=1+n_{h}, n_{h} \in\left[n_{h}\right]
\end{aligned}
$$

References

A. Bethencourt and L. Jaulin (2013). Cooperative localization of underwater robots with unsynchronized clocks, Journal of Behavioral Robotics, Volume 4, Issue 4, pp 233244, pdf.
A. Bethencourt and L. Jaulin (2014). Solving non-linear constraint satisfaction problems involving time-dependant functions. Mathematics in Computer Science.
A. Bethencourt (2014), Interval Analysis for swarm localization. Application to underwater robotics. Thesis of University of Brest.

