Loop detection with proprioceptive sensors

Luc Jaulin, Clément Aubry, Rozenn Desmare

ENSTA-Bretagne, Brest, France

1 Time plane

A robot trajectory with one single loop

2 Kernel

Consider a mapping $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

$$
\operatorname{ker} \mathbf{f}=\{\mathbf{x} \mid \mathbf{f}(\mathbf{x})=\mathbf{0}\}=\mathbf{f}^{-1}(\mathbf{0})
$$

Example. If a robot has a velocity $\mathbf{v}(t)$. Define

$$
\mathbf{f}(\mathbf{t})=\mathbf{f}\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}} \mathbf{v}(\tau) d \tau=\mathbf{0}
$$

The loop set is

$$
\begin{aligned}
\mathbb{T} & =\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} \mid \mathbf{f}\left(t_{1}, t_{2}\right)=\mathbf{0} \text { and } t_{2}>t_{1}\right\} \\
& =\operatorname{ker} \mathbf{f} \cap\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} \mid t_{2}>t_{1}\right\}
\end{aligned}
$$

The kernel of an interval function $[\mathrm{f}]: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is

$$
\mathbb{X}=\operatorname{ker}[\mathrm{f}]=\bigcup_{\mathbf{f} \in[\mathrm{f}]} \operatorname{ker} \mathrm{f}=\left\{\mathrm{x} \in[\mathrm{x}] \subset \mathbb{R}^{n} \mid \mathbf{0} \in[\mathrm{f}](\mathrm{x})\right\}
$$

Example 1. With all uncertainties, an automonous robot satisfies

$$
\dot{\mathrm{x}} \in[\mathrm{f}](\mathrm{x}) .
$$

The set of all feasible equilibrium points is

$$
\mathbb{X}=\operatorname{ker}[\mathbf{f}]
$$

Example 2. Consider the set

$$
\begin{aligned}
\mathbb{X}^{\exists} & =\{\mathbf{x} \mid \exists \mathbf{p} \in[\mathbf{p}],\|\mathbf{x}-\mathbf{p}\| \in[d]\} \\
& =\operatorname{ker}[\mathbf{f}]
\end{aligned}
$$

Problem. Find an inner and an outer approximation of $\mathbb{X}=\operatorname{ker}[\mathrm{f}]$:

$$
\mathbb{X}^{-} \subset \mathbb{X} \subset \mathbb{X}^{+} .
$$

As a consequence,

$$
\operatorname{ker} \mathrm{f}^{*} \subset \mathbb{X}^{+}
$$

3 Characterization of the kernel

We have,

$$
\begin{aligned}
\mathbf{0} & \in[\mathbf{f}](\mathbf{x}) \Leftrightarrow \mathbf{0} \in\left[\mathbf{f}^{-}(\mathbf{x}), \mathbf{f}^{+}(\mathbf{x})\right] \\
& \Leftrightarrow \mathbf{f}^{-}(\mathbf{x}) \leq \mathbf{0} \leq \mathbf{f}^{+}(\mathbf{x}) \Leftrightarrow \underbrace{\binom{-\mathbf{f}^{-}(\mathbf{x})}{\mathbf{f}^{+}(\mathbf{x})}}_{=\boldsymbol{\psi}(\mathbf{x})} \geq \mathbf{0} .
\end{aligned}
$$

Thus

$$
\mathbb{X}=\operatorname{ker}[\mathbf{f}]=\boldsymbol{\psi}^{-1}\left(\mathbb{R}^{2 n}\right)
$$

4 Interval arithmetic

Problem. Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a box $[\mathrm{x}] \subset \mathbb{R}^{n}$, prove that $\forall \mathbf{x} \in[\mathrm{x}], f(\mathrm{x}) \geq 0$.

$$
\begin{aligned}
{[-1,3]+[2,5] } & =[1,8] \\
{[-1,3] \cdot[2,5] } & =[-5,15] \\
\text { abs }([-7,1]) & =[0,7]
\end{aligned}
$$

If f is given

Algorithm $f\left(\right.$ in: $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, out: $\left.y\right)$	
1	$z:=x_{1} ;$
2	for $k:=0$ to 100
3	$z:=\left(\cos x_{2}\right) \cdot\left(\sin (z)+k x_{3}\right) ;$
4	next;
5	$y:=\sin \left(z x_{1}\right) ;$

Its interval extension is

Algorithm $[f]\left(\right.$ in: $[\mathrm{x}]=\left(\left[x_{1}\right],\left[x_{2}\right],\left[x_{3}\right]\right)$, out: $\left.[y]\right)$	
1	$[z]:=\left[x_{1}\right] ;$
2	for $k:=0$ to 100
3	$[z]:=\left(\cos \left[x_{2}\right]\right) \cdot\left(\sin ([z])+k \cdot\left[x_{3}\right]\right) ;$
4	next;
5	$[y]:=\sin \left([z] \cdot\left[x_{1}\right]\right) ;$

Theorem (Moore, 1970)

$$
[f]([\mathrm{x}]) \subset \mathbb{R}^{+} \Rightarrow \forall \mathrm{x} \in[\mathrm{x}], f(\mathrm{x}) \geq 0
$$

5 Loop detection

The robot knows a box $[\mathbf{v}](t)$ which contains $\mathbf{v}(t)$ for each. The loop set is
$\mathbb{T}=\left\{\left(t_{1}, t_{2}\right) \in\left[0, t_{\text {max }}\right]^{2} \mid \exists \mathbf{v} \in[\mathbf{v}], \int_{t_{1}}^{t_{2}} \mathbf{v}(\tau) d \tau=\mathbf{0}\right\}$

$$
[\mathbf{f}](\mathbf{t})=\left[\int_{t_{1}}^{t_{2}} \mathbf{v}^{-}(\tau) d \tau, \int_{t_{1}}^{t_{2}} \mathbf{v}^{+}(\tau) d \tau\right] .
$$

Thus

$$
\mathbb{T}=\left\{\mathbf{t} \in\left[0, t_{\max }\right]^{2}, \mathbf{0} \in[\mathrm{f}](\mathrm{t})\right\}=\operatorname{ker}[\mathrm{f}] .
$$

6 Test-case

Redermor, built by GESMA (Groupe d'Etude Sous-Marine de I'Atlantique)

Tube enclosing the trajectory of the robot. The 14 black/gray crosses correspond to detected loops.

Inner and outer approximation of \mathbb{T}

