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To park, the blue car needs to move sideway
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
ẋ1 = u1 cosx3
ẋ2 = u1 sinx3
ẋ3 = u2
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ẋ =

 cosx3
sinx3

0


︸ ︷︷ ︸

f(x)

·u1 +

 0
0
1


︸ ︷︷ ︸

g(x)

·u2
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The Lie bracket between the two vector �elds f and g is

[f,g] =
dg
dx

· f− df
dx

·g.
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Consider the system

ẋ = f(x) ·u1 +g(x) ·u2.

Apply the following cyclic sequence:

t ∈ [0,δ ] t ∈ [δ ,2δ ] t ∈ [2δ ,3δ ] t ∈ [3δ ,4δ ] t ∈ [4δ ,5δ ] . . .
u = (1,0) u = (0,1) u = (−1,0) u = (0,−1) u = (1,0) . . .

where δ = o(1). We have (See Lavalle, Section 15.4.2.3.)

x(t+4δ ) = x(t)+ [f,g] (x(t))δ
2 +o(δ 2).
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Equivalently, we have the system

ẋ = f(x) ·u1 +g(x) ·u2.

We apply:

u ∝

(
cos πt

2δ

sin πt
2δ

)
where δ = o(1). We have

x(t+4δ ) = x(t)+ [f,g] (x(t))δ
2 +o(δ 2).
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Joint distribution theory
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u1(t) and u2(t)
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u1 ·
∫

u2 ≥ 0
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We converge to a strange distribution

Luc Jaulin Swim with brackets



17 / 41

Control with Lie brackets
Skate car

Abstract swimmer

What it this distribution?
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Remark. Since δ = o(1), we cannot go fast along [f,g].
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For our Dubins car:

ẋ =

 cosx3
sinx3

0


︸ ︷︷ ︸

f(x)

·u1 +

 0
0
1


︸ ︷︷ ︸

g(x)

·u2
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We have

[f,g] (x) =
dg
dx

(x)︸ ︷︷ ︸
0 0 0
0 0 0
0 0 0



· f(x)︸︷︷︸
cosx3
sinx3

0



− df
dx

(x)︸ ︷︷ ︸
0 0 −sinx3
0 0 cosx3
0 0 0



· g(x)︸︷︷︸
0
0
1



=

 sinx3
−cosx3

0


We can now move the car laterally.
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If we apply the cyclic sequence, we get

ẋ =

 cosx3
sinx3

0


︸ ︷︷ ︸

f(x)

·a1 +

 0
0
1


︸ ︷︷ ︸

g(x)

·a2 +

 sinx3
−cosx3

0


︸ ︷︷ ︸

[f,g](x)

·a3
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2. Skate car
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Model for the skate car

ẋ = vcosθ

ẏ = vsinθ

θ̇ = vβ

v̇ = −(β + sinα)u2
α̇ = −v(β + sinα)

β̇ = u1
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Velocity model 
θ̇ = vβ

v̇ = −(β + sinα)u2
α̇ = −v(β + sinα)

β̇ = u1
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
θ̇

v̇
α̇

β̇

=


vβ

0
−v(β + sinα)

0


︸ ︷︷ ︸

f

+


0
0
0
1


︸ ︷︷ ︸

g1

·u1+


0

−β − sinα

0
0


︸ ︷︷ ︸

g2

·u2

Luc Jaulin Swim with brackets



28 / 41

Control with Lie brackets
Skate car

Abstract swimmer

We want to control v to equal to v̄. Since

v̇ = −(β + sinδ )u2.

We could take

u2 =− v̄− v
β + sinδ

We get v̇ = v̄− v . We quickly reach a singularity when
β + sinδ = 0.
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We have

[g1,g2] = dg2
dx ·g1 −

dg1

dx︸︷︷︸
=0

·g2

=


0 0 0 0
0 0 −cosα −1
0 0 0 0
0 0 0 0

 ·


0
0
0
1

 =


0
−1
0
0


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We now have the system



ẋ
ẏ
θ̇

v̇
δ̇

β̇

=



vcosθ

vsinθ

vβ

0
−v(β + sinα)

0


︸ ︷︷ ︸

f

+



0
0
0
0
0
1


︸ ︷︷ ︸

g1

·a1 +



0
0
0
−1
0
0


︸ ︷︷ ︸

[g1,g2]

·a2
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Assume that we want to control v and β . i.e.(
v̇
β̇

)
=

(
0 −1
1 0

)
·a

We want (
v̇
β̇

)
= K

(
v̄− v
β̄ −β

)
Thus we take

a =

(
0 −1
1 0

)−1(
K
(

v̄− v
β̄ −β

))
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To have a heading control, we take

˙̄
β =−0.01β̄ +0.1(θ̄ −θ).
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Desired heading θ̄ = π

6 and a desired speed v̄ = 100.
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3. Abstract swimmer
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ẋ = f(x)+g1(x) ·u1 +g2(x) ·u2.

with
x = (v, · · ·)

v driftless, i.e.,f1(x) = 0
[g1,g2] ∥ (1,0,0, . . .)
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The skate car:



v̇
ẋ
ẏ
θ̇

α̇

β̇

=



0
vcosθ

vsinθ

vβ

−v(β + sinα)
0


︸ ︷︷ ︸

f

+



0
0
0
0
0
1


︸ ︷︷ ︸

g1

·u1+



−(β + sinα)
0
0
0
0
0


︸ ︷︷ ︸

g2

·u2

with
[g1,g2] = (−1,0,0, . . .)
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