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Occupancy set



We have

@ a multi-body mobile robot x = f(x,u)

@ an uncertain input u(z) € [u]

e Hj(x) is the shape function of the ith body,
The occupancy set is

X= U UHx®)

t€[0,fmax]) ¢
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Boatbot towing a magnetometer



Differential algebra

1. Differential algebra



Differential algebra

Complex numbers



Differential algebra

Consider the set
R<i>=<{1,33.1 "21+2'+5'2L
<1>= ,3,3.1L,m, ..., 1,17, 1 1,1+i5,...

Take the equation i+ 1 = 0. The quotient



Differential algebra

In R <i>, iis algebraically independent.
In C, iis algebraic (e.g., = 1).
C/R is a field extension.



Differential algebra

Differential algebra



Differential algebra

A differential ring is a ring (%Z,+,) equipped with the derivative %

(1) Rcx
(i) Vae%,%ae%’

where R is the set of real numbers.



Differential algebra

4

= satisfies the classical rules. For instance

Moreover

%(a—l—b) = d%a+%bd



Differential algebra

A system is finitely generated differential extension.
For instance, the system .% : X = x4 u corresponds to the

differential extension
> R <u,x>

X—x—u



Differential algebra

Elimination methods (mainly differential Grébner bases or
resultant) are used in this context



Differential algebra
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The variable x; of the system is observable if x; € R < y1,y, >



We have
Y1 _ [ *1
2 X2

Thusxi e R<yp,yo>and x e R <y, >.



Differential algebra

We have
X1 [ Xs5cO0sx3
X )\ xssinxz
Thus x3 = atan2(iz,%;) and x5 = /%2 + i3.

Thus x3 ER <yq,y2 > and x5 ER < y1,y, > .
We can show that x4 ¢ R < y;,y; >



Integral algebra

2. Integral algebra



Integral algebra

An integral ring is a a ring (#,+,-) equipped with the integration
J such that

(1) RcZx

(i) Vace R, [ac X



Integral algebra

The meaning of [ is the primitive which cancel for t =0, i.e.,

/a = /Ota(f)dr.



Integral algebra

Moreover, [ satisfies the classical integral rules. For instance

J(a+b) = Ja+[b
Ja-Jb = [(a-[b+ [a-b)



Integral algebra

Consider Z, the smallest real integral ring.

We have
a=2¢€% it is a constant

b=2te % since, b= [a

We assume that (%o, +) is a topological group (i.e., an infinite
number of addition is allowed).



Integral algebra

B =
[%
—




Integral algebra

Consider an integral ring extension is £ | .
An element u of .Z is said to be integral %-algebraic independent if

2 3
o fu [ [

are all independent.



Integral algebra




Integral algebra

Integral dynamical system



Integral algebra

Given an integral ring Z.

We denote by Z < uj,uy,--- > the integral ring generated by #
and by a finite set {u;,uy,...} that are integral Z-algebraic
independent.



Integral algebra

Example. Consider the integral ring ¥ = %y < u > . We have

cost e Z
u+ [sinu+3 e Z

u+f(sinf3u)+3 € <



Integral algebra

Definition. An integral dynamical system is defined as a finite
subset {x1,...,x,} of Zo <uy,...,upm>.

X1,X2,... are called the state variables

ui,uy,... are called the inputs.



Integral algebra

Consider a system of the form

Lo

Equivalently,
x(t) =xo + [i_o f(x(7),u(7))dr.

This system is an integral dynamical system if for all i € {1,...,n},
Xi €ERo <uy,...,up>.



Integral algebra

Interval extension of an
integral dynamical system



Integral algebra

Consider an integral dynamical system
{X1.. X0 ERo < uy,... uy>.

@ For each x;, we can build an expression which involves
x1(0),...,x,(0), uy,...,uy as variables and +,—,-,/, [ as
operators.

@ An interval evaluation can be performed using the classical
rules of interval arithmetic.

@ We get an interval expression which provides a guaranteed
enclosure for the trajectories x;(1).



Integral algebra

Occupancy set



X = |J UHix(

1€[0,tmax] £

< UUH

[t] @



Application: the Car-Trailer

Application: the Car-Trailer



Application: the Car-Trailer
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Application: the Car-Trailer

Uy

Can we conclude that x1,x5,x3,x4 belong or not to Zy < uy,uy >?
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Application: the Car-Trailer

Proposition. An integral formulation of the car-trailer is

xi = x1(0)+ [ (xscosx3)
X2 = X2 (0) + f ()C5 sinx3)
X3 = X4+ V1

X4 = X4(0) + f(X5 sinvl)
Vi = V1 (0) + fu1

X5 = X5(0) +fM2

with
Vi (0) = X3(0) —X4(0).



Application: the Car-Trailer
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Integral representation of the car-trailer



Application: the Car-Trailer

Proof. Since

We set vi = x3 —x4. We have:

X5

Vi

X4

X3
(xl 7x2)

S
S
€
S
S

X5

%0 <up; >
Koy < uy >
Ko < Vi,X5 >
Ko < Vi,X4 >
Ko < X3,V5 >

X5COSX3
X5 sinx3
Uy +xs sin(x3 —X4)
X5 sin(x3 — )C4)
U

= (x1,x2,X3,%4,X5) € Zo < uy,up >
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Illustration



Application: the Car-Trailer

[—0.001,0.001]
[~0.001,0.001]
x(0) € [x](0) =x"(0) + [—0.2,0.2]
[~0.01,0.01]
[—0.001,000.1]
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The interval trajectory in the (x1,x2)-space is obtained by:




Applicati e Car-Trailer

Integral simulation of the car-trailer
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