
PHD THESIS

ECOLE NATIONALE SUPERIEURE
DE TECHNIQUES AVANCÉES BRETAGNE
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NŘ 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Branch : Robotics

Presented by

Thomas LE MÉZO
Bracketing largest invariant sets of dynamical systems

An application to drifting underwater robots in ocean currents

Thesis defended at Brest on December 5, 2019
Laboratory : Lab-STICC

Rapporteurs :
David Daney Senior Researcher, Inria, Bordeaux
Antoine Girard Senior Researcher CNRS, L2S, Gif-sur-Yvette

Jury composition :
President : Thao Dang Research Director CNRS, Verimag, Saint Martin d’Heres

Reviewer : Reda Boukezzoula Professor, LISTIC, Annecy-le-vieux
Nicolas Delanoue Associate Professor, LARIS, Angers

Thesis co-directors : Luc Jaulin Professor, Lab-STICC, Brest
Benoit Zerr Professor, Lab-STICC, Brest

Thesis co-supervisor : Damien Massé Associate Professor, Lab-STICC, Brest

Bracketing largest invariant sets of dynamical
systems

An application to drifting underwater robots in ocean currents

Thomas Le Mézo

January 10, 2020

Acknowledgments

Contents

1 Introduction 5
1.1 Motivation and background 6

1.1.1 Using robots in the ocean 6
1.1.2 The problem of drifting underwater robots 9
1.1.3 Safety of robotic systems 11

1.2 Contributions and Outlines 12
1.3 Softwares . 13

2 Tools to handle dynamical systems 15
2.1 Dynamical systems . 16

2.1.1 Definition . 17
2.1.2 Flow map and properties of dynamical systems 18
2.1.3 Set and lattice . 23
2.1.4 Invariant sets . 25
2.1.5 Extension of the dynamical system model 28
2.1.6 Lyapunov theory . 32

2.2 Abstract domains . 34
2.2.1 Abstract Interpretation 36

2.2.1.1 Definitions 37
2.2.1.2 Properties of abstract domains 41

2.2.2 Example of abstract domains 43
2.2.2.1 Intervals . 44
2.2.2.2 Convex Polytopes 50
2.2.2.3 Paving and subpaving 53

2.2.3 The choice of an abstract domain 56
2.3 Constraint programming . 57

2.3.1 Constraint network and fixed points 57
2.3.1.1 Definition . 57
2.3.1.2 Fixed point 58

2.3.2 Bracketing the solution set of a Constraint Network . . 62
2.3.2.1 Outer approximation 63

1

2 CONTENTS

2.3.2.2 Inner approximation 64
2.3.2.3 Example . 65

2.3.3 Example of algorithms 68
2.3.3.1 CSP and Set inversion problem 69
2.3.3.2 Dealing with datasets 71

2.4 Conclusion . 77

3 Mazes: a new abstract domain for paths 79
3.1 Definitions and problem statement 82
3.2 Mazes . 83

3.2.1 Roads . 84
3.2.2 Inclusion and lattice 85
3.2.3 Door consistency . 87

3.3 Method and algorithm . 88
3.3.1 Computing an outer approximation for Inv+

f (X) 89
3.3.2 Computing an inner approximation for Inv+

f (X) 91
3.3.3 Main Algorithm . 97

3.3.3.1 Paving bisection 97
3.3.3.2 An algorithm to bracket the largest positive

invariant set 99
3.3.3.3 Computed enclosure 101
3.3.3.4 Complexity 101

3.3.4 The Van Der Pol example 103
3.3.5 Parameters that affect the speed of convergence 103

3.4 Toward an implementation . 108
3.4.1 The sliding issue . 108

3.4.1.1 Problem statement 108
3.4.1.2 Graph model of Mazes 109
3.4.1.3 Graph rebuilding 111

3.4.2 Using abstract domains without the ACC 114
3.4.3 Constraint propagation heuristic and multithreading

capabilities . 114
3.4.4 Using existing libraries 116

3.5 Differential inclusion & system with input 119
3.5.1 Outer approximation 119
3.5.2 Inner approximation 120
3.5.3 The example of the reverse Van Der Pol system with

an input . 122
3.6 Conclusion . 123

CONTENTS 3

4 Applications of invariant sets 125
4.1 The largest positive and negative invariant sets 126

4.1.1 The problem . 126
4.1.2 Application: the example of isobath navigation 127

4.2 Forward & Backward reach sets 134
4.3 Attraction basin . 141
4.4 Capture reach set . 145
4.5 Eulerian state estimation . 147

4.5.1 Formalism . 149
4.5.2 Invariant sets approach 149

4.6 Conclusion . 156

5 A hybrid profiling float 157
5.1 Problem formalization . 158

5.1.1 The mission . 158
5.1.1.1 Use case . 158
5.1.1.2 Mission formalization 158

5.1.2 The robot . 161
5.2 Float dynamics . 162
5.3 Design of a hybrid profiling float 165

5.3.1 Mechanical architecture 165
5.3.1.1 Float hull . 166
5.3.1.2 Float compressibility 168
5.3.1.3 Auto-ballasting system 168
5.3.1.4 Additional systems 169

5.3.2 Electronic architecture 170
5.3.3 Software architecture 171

5.4 Depth controller . 171
5.4.1 Control law . 172
5.4.2 Estimation of unknown parameters 174
5.4.3 Experimental results 175

5.5 Validation of the depth control law 181
5.5.1 Open-loop float performances 181
5.5.2 Closed-loop system . 185
5.5.3 Additional validations 187

5.5.3.1 Vector field following 187
5.5.3.2 Minimum piston volume increment 188
5.5.3.3 Energy consumption 188

5.6 Design loop . 189
5.7 Conclusion and future work 190

4 CONTENTS

6 General conclusion and prospects 191
6.1 Summary of the Contributions 191
6.2 Prospects . 192

Chapter 1

Introduction

Contents
1.1 Motivation and background 6

1.1.1 Using robots in the ocean 6

1.1.2 The problem of drifting underwater robots 9

1.1.3 Safety of robotic systems 11

1.2 Contributions and Outlines 12

1.3 Softwares . 13

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Distribution of profiling floats used in the Argo project that
gather biochemical data in the ocean (http://www.argo.ucsd.edu/).

1.1 Motivation and background

1.1.1 Using robots in the ocean

The number of deployed robots in the oceans has increased substantially the
last past decade. Indeed, they enable long-duration missions in harsh envi-
ronments to be carried out. Figure 1.1 shows, for instance, the distribution of
the nearly 4000 robots of the Argo project in August 2019 that are profiling
every day, autonomously, the oceans to gather biochemical data. They are
the sensors of a wide program that aims to better understand and predict
the evolution of oceans.

Nowadays, marine robots are used to achieve an increasing number of
tasks with a varying degree of autonomy from human operated to completely
autonomous missions. Several kinds of marine robots can be distinguished
(Creuze, 2014): Figure 1.2 shows a non exhaustive taxonomy of the main
categories. We can firstly identify Unmanned Surface Vehicles (USV), that
are mostly autonomous boats, and Unmanned Underwater Vehicles (UUV),
that are mainly submarine robots.

In this work, we will focus on UUV and more specifically on Autonomous
Underwater Vehicles (AUV). This kind of robots has the particularity of
not being linked to the surface with a wire unlike Remotely Operated Ve-
hicles (ROV). Therefore, they need to be largely autonomous because com-
munications are difficult underwater. Several kinds of AUVs can be also
distinguished: torpedo robots, gliders and profiling floats. Torpedo robots
are usually equipped with propellers and fins: they are the fastest AUVs.
Gliders use underwater wings and a variable buoyancy to travel, at small

http://www.argo.ucsd.edu/

1.1. MOTIVATION AND BACKGROUND 7

Unmanned
Underwater Vehicles

Unmanned
Surface Vehicles

Autonomous
boats

Wave glidersAutonomous
sailing boats

Remotely
Operated
Vehicules

Autonomous
Underwater

Vehicles

Marine robots

Inspector Mk2 @ECADaurade @DGA/Simon Rohou

Torpedo robots Gliders Profiling floats

NemoSens @RTSys Slocum G3 @Teledyne Marine

Hercules

@Liquid Robotics

Arvor @Ifremer

Vaimos @Ifremer/
ENSTA Bretagne

Figure 1.2: Marine robot taxonomy.

velocities, through long distances without any thrusters. Profiling floats can
only evolved vertically and are dependent of the ocean currents for their
horizontal movements. They also do not have any thrusters.

Several users of underwater robots can be identified, with specific missions
(Zereik et al., 2018).

• The Scientific community uses marine robots mainly to monitor the
ocean. For instance, gliders and profiling floats gather data such as the
temperature, the salinity, the pH, the chlorophyll concentration, etc.
The Argo project (Riser et al., 2016) is one of the most emblematic
project that uses several thousands of profiling floats to measure the
oceans. There is also some applications with water archeology.

• The Defense and State uses mainly AUVs with applications such as
bathymetry (mapping of the sea ground, see Figure 1.3), search of
wrecks and also mine-hunting. Some autonomous boats are used for
surveillance missions.

• The Industry deploys since the 1980s an important number of ROVs
in the oil and gas sector to build, maintain and repair offshore in-
frastructures. Several new applications that use marine robots have

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Example of an underwater Digital Elevation Model, Dune Hy-
draulique, west of Ouessant island, SHOM.

emerged recently such as the monitoring of offshore wind turbines, tidal
stream generators or harbor infrastructures. Some projects of auto-
mated transport ships have also appeared in the last decade (Schiaretti,
Chen, and Negenborn, 2017).

If we look closer to AUVs, they face numerous constraints and challenges
because of the high required degree of autonomy. We can highlight some
encountered issues:

• Localization and communications – One of the main problems shared
by all UUVs is the localization issue. Indeed, electromagnetic waves
barely propagates underwater in the ocean. Therefore, Global Navi-
gation Satellite Systems (GNSS) cannot be used and are instead com-
monly replaced by acoustic based systems. They are however less ac-
curate. For the same reasons, conventional electromagnetic wave-based
communication systems do not work underwater.

• Energy – There is no wire that connects the AUV to a surface power
source. Therefore, all the energy has to be embedded. This has a
significant impact on the duration of missions, in particular when strong
ocean currents have to be counteracted.

• Depth and pressure – AUVs are also limited in depth by mechanical
constraints. High depth AUVs required thick hulls that have to resist

1.1. MOTIVATION AND BACKGROUND 9

Planet A

Planet B

propellers activation

satellite’s trajectory

Figure 1.4: Schematic idea of the gravity assist. A short-time use of propellers
allows to completely change the trajectory of the satellite.

to pressure. The size and the weight of such robots depend greatly
on the maximum reachable depth, on the quantity of batteries and on
the embedded sensors. In addition, the larger an AUV is, the heavier
will be the launch system at surface, and therefore, the larger the size
of the deployment boat will be. Optimizing the weight and size of an
AUV while fulfilling the mechanical resistance constraints is then a key
topic.

• Autonomy – An important subject of research is the autonomy of AUVs
in terms of algorithms. Indeed, during a mission they mostly have to
make decisions without any human intervention because of the com-
munication issue. Moreover, the underwater environment is mostly
unstructured which requires powerful algorithms to interpret sensors
data, which makes it more difficult to make decisions.

1.1.2 The problem of drifting underwater robots

The starting point of this work was the statement that underwater robots
often battling against ocean currents wasting important quantity of energy.
Hence, the following question was raised: would it be possible to use ocean
currents as the main source of propulsion? Would it also be possible, by
using auxiliary propellers, to choose an opportunistic vein of current which
could allow long distances to be traveled in a chosen direction?

An analogy can be drawn between underwater robots using currents and
the way satellites use gravity assist maneuvers (see Figure 1.4). Indeed, to
travel long distances while saving energy, space vehicles use sequentially the
gravity of planets. The strategy is to use thrusters only for short and strategic
moments to change the satellite’s trajectory.

However, the difference between space and oceans is that currents are
much less known than the position of solar system objects. Indeed, we only

10 CHAPTER 1. INTRODUCTION

(a) T0 (b) T0 + 6h

Figure 1.5: Currents in the Fromveur passage near Ouessant island, west
from Brittany, (Ifremer MARC L1 Model – August 26, 2019, 13h00). The
current reversal appears clearly between the two maps. This could enable to
circumnavigate around the island.

have rough models of currents at small scales, with mesh of several hundred
of meters, and only with a few days of forecast. These models (Lazure and
Dumas, 2008; Pineau-Guillou, 2013) are quite good for large scales currents
but become less accurate in a coastal environment with strong currents. Fig-
ure 1.5 shows for instance the result of the MARC L1 model produced by
Ifremer1 near Ouessant island. The mesh of the model is built upon a 250
meters wide cell. Therefore, any phenomena, such as small gyres, that are
smaller than a few times the size of the cells will not appear in the results.

The current around Ouessant island are particularly interesting: indeed,
in Figure 1.5, we can see that at T0 + 6h there is a reverse of the current.
It might be then possible to find trajectories such that a robot could orbit
around Ouessant island.

The Challenges Assuming that we want our robot to travel from a point
A to a point B following a specific path, several Challenges have to be solved
that are non-exhaustively listed hereafter.

• Challenge 1 – How to find a candidate path?

• Challenge 2 – How to guarantee that the candidate path is safe and can
be followed by the robot while considering uncertainties and physical
limitations?

1French Research Institute for Exploitation of the Sea.

1.1. MOTIVATION AND BACKGROUND 11

• Challenge 3 – How to design a robot that can follow the assigned path?

In this work, we have been focusing on developing tools to answer partially
the second and third items.

Remark 1.1. Note that the candidate path does not only imply a (x, y) nav-
igation path in a R2 space but can be extended to more complex spaces
that could include velocity, time, energy,. . . For instance, we will validate in
Chapter 5 a path in a position-velocity space.

1.1.3 Safety of robotic systems

Guaranteeing the safety of robotic systems, i.e. that the system will never
reach a dangerous state for itself or for the environment, is a key question for
the use of robots. For instance, we want an autonomous car to never leave
out of the road with nominal conditions. This implies to check the safety of
the mechanics, the electronics, the softwares and the algorithms.

There exists numerous works that deal with safety issues with several as-
sociated softwares such as SpaceEx (Frehse et al., 2011), Acumen (Taha et al.,
2016) or Astrée (Cousot et al., 2005). A significant part of the applications
of these researches concerns the aviation industry where safety is critical.
There has been some work to guarantee the safety of landing (Bayen et al.,
2007), takeoff (Seube, Moitie, and Leitmann, 2000) or collisions avoidance
(Desilles, Zidani, and Crück, 2012).

More generally, robotic systems can be represented by their state space.
Guaranteeing their safety can be expressed in terms of constraints on their
state space. Although the notions of paths, sets and dynamical systems will
be formally introduced in Chapter 2, we can intuitively use these notions to
express path constraints. For instance, we might want our system to never
reach an area of the state space or at the opposite to reach at some point
a specific area. Figure 1.6 illustrates a safe and an unsafe case where paths
should never enter in hatched forbidden areas, should cross, at some point,
a set A and should finally end in a set T.

If safety constraints are only expressed in the state space, the problem
is time-independent and can be formalized through an Eulerian approach
(Mitchell, 2007) which is often used in fluid mechanics to study stationary
phenomena. Using a Lagrangian approach would have meant to study the
system properties only for a finite temporal window. In this work, we have
chosen to use an Eulerian approach. Indeed, we want to prove safety con-
straints for all time and not just for a temporal window. The reader could
argue that robotic missions have a finite time and that therefore we could
choose a temporal window large enough to cover the whole mission. However,

12 CHAPTER 1. INTRODUCTION

Rn

T

A

(i)

(ii)

Figure 1.6: An example of paths in a Rn space where hatched zones are
forbidden. The paths should cross the set A and end in the set T. Path (i)
is safe while path (ii) is not safe as it crosses a forbidden area.

for some properties such as stability or convergence, adopting an Eulerian
approach is more suitable. Moreover, time can be added to the state space
variables, if necessary, to still use Eulerian tools. However, this increases the
dimension of the state space.

1.2 Contributions and Outlines

To answer the Challenges, we have structured this work in four main chap-
ters. The three first chapters present theoretical tools that aim to answer
Challenge 2 while the last chapter is focusing on the design and validation
of an experimental demonstrator. The guidance principle of this work is the
study of paths.

In Chapter 2, we define the notions associated to dynamical systems and
more particularly the notion of paths. These paths can be gathered in special
sets called invariant sets. These sets will be the basic object which will be
used in the next chapters. To study these sets, we will look at how they can
be represented in a computer in a simpler form. Indeed, a computer cannot
handle directly objects such as sets of paths. We will introduce therefore
the Abstract Interpretation (AI) framework that formalizes this issue. Tools
from the Interval Analysis (IA) community will be also presented to complete
our toolbox. Both communities have complementary tools but few parallels
have been yet drawn between them. We will try to highlight the bridges be-
tween these two areas. We will then focus on how constraints can be applied
to set of paths. To this end, we will introduce the concept of Constraint

1.3. SOFTWARES 13

Programming. This will enable to formalize how an algorithm can solve a
problem involving paths and constraints. However, we will see that existing
tools do not efficiently handle paths and associated constraints. Proposing
solutions to this problem is the objective of the next chapter.

In Chapter 3, we introduce the main contribution of this work which is a
new domain, i.e. a new representation in a computer, called Maze, to deal
with paths. This domain will be used to study the problem of bracketing
largest invariant sets. We have chosen to study these specific sets as they
are the cornerstone of numerous classical safety problem. We will study the
properties of this new domain, and we will propose a set of tools to apply
constraints to this domain. The advantages and the limitations of mazes
will be studied in this chapter. This chapter relies on the work published in
(Le Mézo, Jaulin, and Zerr, 2017a; Le Mézo, Jaulin, and Zerr, 2019).

Chapter 4 is based on results of the previous chapter. The idea is to
use the bracket of invariant sets as a low level tool to solve more complex
problems. We will deal with problems such as the bracket of backward and
forward reachable sets, of attraction basins and of capture reach sets. These
sets will be used in the next chapter to answer the Challenges. We will
finally propose a new tool called the Eulerian state estimator that provides
a framework to express and solve problems involving paths of a dynamical
system. This chapter relies on the work published in (Le Mézo, Jaulin, and
Zerr, 2018; Le Mézo, Jaulin, and Zerr, 2017b).

Chapter 5 addresses in a practical way the Challenges. We will first see
how a mission involving the use of ocean currents can be formalized and
how tools from previous chapters can be used for validation purposes. In
a second time, we will present results around the development of a new
low-cost profiling float that is specifically designed to use ocean currents.
The complete robotic system will be presented with a dedicated and new
depth controller. Indeed, following currents requires to precisely control the
immersion depth while being energy efficient. We will use tools from the
previous chapter to validate the depth controller. This chapter relies on the
work published in (Le Mézo et al., 2019).

Chapter 6 concludes this work and draws up perspectives.

1.3 Softwares
This work has led to the development of two libraries. The first one gathers
all tools that are linked to the computation of invariants and is available on
GitHub in Python and C++ at:

https://github.com/ThomasLeMezo/invariant-lib.

https://github.com/ThomasLeMezo/invariant-lib

14 CHAPTER 1. INTRODUCTION

The second one concerns the development of the embedded software
around a new profiling float which has been developed for this work and
is also available on GitHub. This software is based on the middleware ROS2

at:

https://github.com/ThomasLeMezo/seabot.

2Robot Operating System (https://www.ros.org/)

https://github.com/ThomasLeMezo/seabot
https://www.ros.org/

Chapter 2

Tools to handle dynamical
systems

Contents
2.1 Dynamical systems 16

2.1.1 Definition . 17

2.1.2 Flow map and properties of dynamical systems . . 18

2.1.3 Set and lattice . 23

2.1.4 Invariant sets . 25

2.1.5 Extension of the dynamical system model 28

2.1.6 Lyapunov theory 32

2.2 Abstract domains 34

2.2.1 Abstract Interpretation 36

2.2.2 Example of abstract domains 43

2.2.3 The choice of an abstract domain 56

2.3 Constraint programming 57

2.3.1 Constraint network and fixed points 57

2.3.2 Bracketing the solution set of a Constraint Network 62

2.3.3 Example of algorithms 68

2.4 Conclusion . 77

15

16 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

To answer the problem of drifting underwater robots presented in the
previous chapter, and in particular Challenge 2, we will introduce here a
set of classic tools from literature. The main issue with Challenge 2 is to
determine if a path assigned to a robot is safe. As we will see, paths are
complex objects to deal with. This is why, this chapter will aim to introduce
conventional tools that help to handle them. These tools will also be the
foundations of next chapters that will answer more specifically Challenge 2.

To begin, we will present the concepts of dynamical systems which will
help to formalize the notion of paths and to model our problem. As we
said, paths are complex objects to deal with and in particular to handle
in a computer. This is why we will focus on particular set of paths: the
invariant sets which are easier to deal with. Invariant sets also play a major
role in the stability and safety analysis of dynamical systems which will help
to prove the safety of paths. More generally, to handle sets of paths in a
computer, we will introduce the framework of Abstract Interpretation. This
framework formalizes how complex mathematical objects can be represented
by a simpler object which can be handled in a computer. This will enable
to make computations on simple objects while ensuring that the obtained
results are still valid for the counterpart complex object. We will also need
tools to translate safety constraints such as the ones described in Section 1.1.3
into constraints that can be applied to paths. We will be able to determine
if a path is safe or not, i.e. if it fulfills all the constraints of the problem.

The chapter is divided in three parts. We will first focus on the key con-
cepts and definitions of dynamical systems. We will then look at how these
dynamical systems can be represented in a computer using the framework
of Abstract Interpretation. We will finally deal with how dynamical system
problems can be solved using Constraint Programming.

2.1 Dynamical systems

The origin of the study of dynamical systems, and more particularly their
stability, is commonly recognized to be the work of Henri Poincaré at the end
of the 19th century (Aubin and Dalmedico, 2002). He has laid the foundations
of a crucial domain that enables to study a wide variety of systems ranging
from physics and chemistry to economics.

In the case of robotics, a dynamical system formalization is a very inter-
esting way to model robots and to study their behaviors. We will use this
approach to formalize Challenge 2 in Chapter 5.

2.1. DYNAMICAL SYSTEMS 17

2.1.1 Definition

Definition 2.1. A dynamical system S can be defined by the following state
equation (Slotine and Li, 1991):

S : ẋ (t) = f (x (t) , t) (2.1)

where x (t) ∈ Rn is the state vector and f : Rn 7→ Rn is a non-linear Lipschitz
piecewise continuous function called the evolution function of S.

Using this equation, one can predict the evolution of the system starting
from an initial state condition x0 and an initial time t0.

Such systems can be classified in two groups where f can be explicitly
time-dependent or not:

• ẋ (t) = f (x (t) , t) is called a non-autonomous or time-variant system;

• ẋ (t) = f (x (t)) is called an autonomous or time-invariant system.

Non-autonomous systems are generally more difficult to study than au-
tonomous one because the initial time t0 has to be additionally taken into
account. Autonomous systems are said time-invariant as the system will
evolve the same way if it starts at different times but with the same initial
state.

For a wide range of systems, the time dependency can be neglected and
an autonomous model is sufficient.1 In the case of robots, considering an
autonomous model implies notably that the evolution of the environment
can be neglected during the mission time.

Remark 2.2. In robotic problems, systems have commonly an input u : Rn×
R 7→ Rm. The state equation then becomes, for autonomous systems, with
the evolution function f : Rn × Rm 7→ Rn,

Su : ẋ (t) = f (x (t) ,u (x (t) , t)) . (2.2)

Note here that the input explicitly appears. If a closed-loop dynamics is
considered, which means that we know the function u, the system can be
written as Equation (2.1). Similarly, the control can be time-dependent or
only state-dependent.2

Example 2.3. To illustrate the previous definitions, let us consider the Van
Der Pol oscillator which is a well-known and well studied dynamical system.

1In this work, unless mentioned, only autonomous systems will be considered.
2We will only consider the state-dependent case in this document where u : Rn 7→ Rm.

18 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

t

x1

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

t

x2

Figure 2.1: Evolution of the Van Der Pol system from an initial condition
(x0 = (3, 3)ᵀ) in function of time.

It was discovered by Balthasar Van Der Pol in 1920. It models an electrical
circuit with the following state equation:

SVdP :

{
ẋ1 = x2

ẋ2 = µ (1− x2
1)x2 − x1

(2.3)

where µ is a scalar.3 This system is autonomous.
Using an initial state condition, one can simulate the evolution of the

system in function of time (see Figure 2.1) or plot the evolution in a phase
plane where the time does not appear directly (see Figure 2.2).

Depending on the kind of properties we want to validate, a system can be
studied in the state-space domain (i.e phase plane) or in the time domain.

2.1.2 Flow map and properties of dynamical systems

In this work, we have chosen to adopt an Eulerian point of view rather than
a Lagrangian one (Mitchell, Bayen, and Tomlin, 2001). This point of view is
usually adopted in fluid mechanics where fluid flow is studied instead of fluid
parcel. We will then work in the state space domain rather than in the time
domain. We define hereafter the different tools to handle dynamical systems
with an Eulerian point of view.

3We will set µ = 1 in the rest of the document for simplicity.

2.1. DYNAMICAL SYSTEMS 19

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

x1

x2

x0

Figure 2.2: Evolution of the Van Der Pol system from an initial condition
(x0 = (3, 3)ᵀ) in the state space.

Definition 2.4. The flow map of S, denoted ϕf is a mapping of R×Rn 7→ Rn

such that for all x ∈ Rn and for all s, t ∈ R:{
ϕf (0,x) = x

ϕf (s, ϕf (t,x)) = ϕf (s+ t,x)

Given an initial vector x0 = x (0), the system S reaches the state ϕf (t,x0)
at time t.

Example 2.5. If we take the Van Der Pol system, with the initial condition
x0 = (3, 3)ᵀ, we obtain for instance ϕf (10.0,x0) ≈ (1.932,−0.452)ᵀ. A vector
field is usually used to represent the flow map of a system S (see Figure 2.2).

Remark 2.6. In the case of a system Su with a known input function u ∈ U ,
where U is the set of functions from R to Rm, we can define similarly a flow
map of Su, denoted ϕf ,u.

In the case where the input function is known, Su can be written as the
previously presented dynamical system S.

Definition 2.7 (Trajectories and paths). A trajectory is a smooth function
x (·) from R to Rn. The path associated with a trajectory x (·) is the set of
all x (t) ∈ Rn where t ∈ R, and an orientation with respect to t. We call

20 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Figure 2.3: Illustration of a path corresponding to a circle with a direct
trigonometric orientation.

positive path the path associated to all x (t) , t ≥ 0 and respectively negative
path for all x (t) , t ≤ 0.

Example 2.8. Consider the following trajectory:

x(·) :

R → R2

t 7→
(

cos(t)

sin(t)

)
.

The trajectory is here a function of R 7→ R2. The path associated with x (·)
is the set composed of a circle with the direct trigonometric orientation (see
Figure 2.3).

Remark 2.9 (Uniqueness of trajectories). Given an initial condition with a
system S, as f is Lipschitz continuous, a trajectory solution x (·) exists and
is unique (Khalil, 2002, pp. 88-90).

Definition 2.10. A path is feasible if it is associated with a trajectory x (·)
which is solution of S.

Such a path can be cyclic or can even be a single point. An important
property is that a feasible path cannot make any loop, i.e. it cannot cross
itself, or even cross another different path because of the uniqueness of the
solution (see Remark 2.9). This implies that at a point xa there exists only
one value for ẋ (see Figure 2.4).

Definition 2.11. Let us consider a trajectory solution x (·) of S.
• x (·) is an equilibrium point if for all t ∈ R, f (x (t)) = 0.

• x (·) is a limit cycle if there exists some T > 0 such that x (t+ T) =
x (t) for all t ∈ R. A limit cycle can be stable or unstable.

2.1. DYNAMICAL SYSTEMS 21

xa

Figure 2.4: A path of S cannot cross itself or another path because of the
uniqueness of trajectories. The path represented here is not feasible as there
exists two different values for f (xa).

(i)

(ii)

(iii) (iv)

(v)

Figure 2.5: Example of feasible and unfeasible paths in the state space.

Example 2.12. Several paths have been represented in Figure 2.5. Let us
assume that path (i) is feasible, then (v) cannot be feasible because it crosses
(i). (iv) cannot be feasible either because it crosses itself. Paths (ii) and (iii)
are special paths, respectively a cycle and a single point (or an equilibrium
point).

If we consider the Van Der Pol system, it has a stable limit cycle (see
Figure 2.6) whereas the reverse-timed Van Der Pol has an unstable limit
cycle. There is also an equilibrium point in (0, 0)ᵀ.

There exists several theorems about limit cycles and equilibrium points for
dynamical systems. We will only mention hereafter the Poincare–Bendixson
theorem4 which is only true for second-order (R2) autonomous systems.

4The wording is taken from (Slotine and Li, 1991)

22 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x1

x2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x1

x2

Figure 2.6: Illustration of some paths for the Van Der Pol system. The direct
timed system is represented on the left where a stable limit cycle appears.
On the contrary, on the right, the reverse-timed system reveals an unstable
limit cycle.

Theorem 2.13 (Poincare–Bendixson). If a trajectory of a second-order au-
tonomous system remains in a finite region, the one of the following is true:

• the trajectory goes to an equilibrium point,

• the trajectory tends to an asymptotically stable limit cycle,

• the trajectory is itself a limit cycle.

Example 2.14. For instance, if we take the trajectories that start inside
the limit cycle of the Van Der Pol system, they all stay in a finite region.
They tend to the limit cycle in the case of the direct-timed system and to
the central equilibrium point in the case of the reverse-timed system.

Remark 2.15. The Lorenz system is a well known three dimensions and sim-
ple system (see Equation (2.4)) which is a counterexample of the Poincare–
Bendixson theorem for dimension greater than two. It was proposed in 1963
by Edward Lorenz as a simplified model of atmospheric convection. For some
values of its parameters, a chaotic behavior appears. In that case, trajecto-
ries do not tend to a stable limit cycle but to an attractor (see Figure 2.7)
while staying in a finite region. The trajectories of such system are partic-
ularly sensitive to initial conditions. The Lorenz system is described by the
following state equations:

2.1. DYNAMICAL SYSTEMS 23

x1

−15 −10 −5
0

5
10

15
20

x2

−20

−10

0

10
20

x
3

5

10

15

20

25

30

35

40

45

Figure 2.7: A path of the Lorenz system (ρ = 29, σ = 9, β = 7
3
) with an

initial condition x0 = (10, 10, 5)ᵀ. The trajectory tends to an attractor, the
form of which recalls butterfly wings.

ẋ1 = σ (x2 − x1)

ẋ2 = x1 (ρ− x3)− x2

ẋ3 = x1x2 − βx3

. (2.4)

2.1.3 Set and lattice

Paths are difficult objects to individually deal with, especially with a chaotic
system. One solution is to group them into sets. This will allow to study
the global behavior of a dynamical system instead of a particular path with
a given initial condition. The basis of the set theory has been proposed by
Georg Cantor in 1874. We introduce hereafter the main concepts.

A set is defined as a well-defined collection of distinct objects that belong
to a universe Ω. Several operations can be applied classically to sets (see
Table 2.1).

Remark 2.16. In addition to operations on sets, we recall the De Morgan’s

24 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Operation
Union A ∪ B {x | x ∈ A or x ∈ B}

Intersection A ∩ B {x | x ∈ A and x ∈ B}
Difference A \ B {x | x ∈ A and x /∈ B} = A ∩ B

Complement A {x ∈ Ω | x /∈ A}
(a)

Relation
Inclusion A ⊂ B⇔ ∀x ∈ A, x ∈ B
Equality A = B⇔ A ⊂ B and B ⊂ A

(b)

Table 2.1: Basic operations and relations on sets.

laws: {
A ∪ B = A ∩ B
A ∩ B = A ∪ B

.

From the inclusion property, we can define a relation between sets.

Definition 2.17 (Subset and powerset). The set X is a subset of Y if X ⊆ Y.
We can also define the powerset of X, noted P (X), as the set of all subsets
of X.

Functions can be extended to sets.

Definition 2.18. Given two sets X and Y, the direct image of a set X1 ⊂ X
under a function f : X→ Y is:

f (X1) = {f (x) | x ∈ X1}
The reciprocal image of Y1 ⊂ Y is:

f−1 (Y1) = {x ∈ X | f (x) ∈ Y1}

Some families of sets have specific properties on which powerful theorems
can be applied. This is the case for partially ordered sets and lattices that
we define hereafter. To handle sets of paths, we will try to choose families
which have a lattice structure as this will enable to use useful convergence
theorems.

Definition 2.19 (Partially ordered set). A partially ordered set (A,≤) is
defined by the following axioms. For all a, b, c ∈ A:

2.1. DYNAMICAL SYSTEMS 25

(L,∨,∧)
Idempotent a ∧ a = a and a ∨ a = a
Commutative a ∧ b = b ∧ a and a ∨ b = b ∨ a
Associative (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c)
Absorption a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a

Table 2.2: Axioms of a Lattice, for all a, b, c ∈ L.

• a ≤ a (reflexivity)

• if a ≤ b and b ≤ a then a = b (antisymmetry)

• if a ≤ b and b ≤ c, then a ≤ c (transitivity)

Definition 2.20 (Lattice). A lattice 〈L,≤〉 is a partially ordered set, closed
under least upper bound and greatest lower bound (Davey and Priestley,
2002). The least upper bound of x and y is called the join and is denoted by
x ∨ y. The greatest lower bound is called the meet and is written as x ∧ y.

The fundamental properties of lattices are summarized in Table 2.2.

Definition 2.21 (Complete lattice). A lattice E is complete if for all (finite
or infinite) subsets A of E , the least upper bound ∧A and the greatest lower
bound ∨A belong to E . We define the top and the bottom of E as > = ∧E
and ⊥ = ∨E .

A sublattice of a lattice 〈L,≤〉 is a nonempty subset of L that is a lattice
with the same meet and join operations ∨ and ∧ as L.

Example 2.22. The powerset P (Rn) is a complete lattice. The top element
is > = Rn and the bottom element is ⊥ = ∅. In Figure 2.8, the left graph
shows the powerset and the right graph shows the state space Rn. We can
see that we have a partial order as B ≤ A and C ≤ A, but B and C cannot
be compared. The join and the meet operations are respectively the union
and intersection of sets.

2.1.4 Invariant sets

The properties of dynamical systems can be studied through specific sets,
called invariant sets, that are introduced in this subsection. They play a
major role in the proof of stability of dynamical systems.

26 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

A B

C

⊥ = ∅

> = Rn

C ∨ B

C ∧ B

RnP(Rn)

AB

C

Figure 2.8: The powerset of Rn is a complete lattice.

Definition 2.23. The set A is a positive invariant set (or forward invariant
set) of S if for any trajectory x (·) solution of S,

x (0) ∈ A, t ≥ 0 =⇒ x (t) ∈ A.

The set B is a negative invariant set (or backward invariant set) of S if
for any trajectory x (·) solution of S,

x (0) ∈ B, t ≤ 0 =⇒ x (t) ∈ B.

The set C is an invariant set (or forward-backward invariant set) of S if
for any trajectory x (·) solution of S,

x (0) ∈ C, t ∈ R =⇒ x (t) ∈ C.

Remark 2.24. Invariant sets (positive, negative and positive-negative) have
a complete lattice structure (Kalies, Mischaikow, and Vandervorst, 2016)
where the join operator is the union of sets ∪ and the meet operator is the
intersection of sets ∩. The top element is the whole state space > = Rn

and the bottom element is the empty set ⊥ = ∅. Therefore, if A and B are
invariant sets then A ∪ B and A ∩ B are also invariant sets. This allows us
to define the notion of the largest positive invariant set enclosed in a set X
(see Definition 2.26 hereafter).

Example 2.25. In the Van Der Pol system (see Figure 2.9): C the limit cy-
cle, P the equilibrium point, and I the open set bounded by C without P, are
invariant sets. We also have P, C, I, {C ∪ P}, {C ∪ I}, {I ∪ P}, {C ∪ P ∪ I},
{C ∪ P}, {C ∪ I}, {I ∪ P}, {C ∪ P ∪ I}, R2 and ∅ that are invariant sets.

2.1. DYNAMICAL SYSTEMS 27

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x1

x2

C

P

I

Figure 2.9: Several invariant sets can be identified in the Van Der Pol system.
C,P, I are invariant sets. See Figure 2.6 on page 22 for an overview of the
paths.

Let us take an initial condition that belongs to one of these positive invari-
ant sets. The associated path will stay forever inside the positive invariant
set.

Definition 2.26. The largest positive invariant set of a set X is:

Inv+
f (X) = {x0 | ∀t ≥ 0, ϕ (t,x0) ∈ X} .

The largest negative invariant set of a set X is:

Inv−f (X) = {x0 | ∀t ≤ 0, ϕ (t,x0) ∈ X} .

The largest invariant set of a set X is:

Invf (X) = {x0 | ∀t ∈ R, ϕ (t,x0) ∈ X} .

Remark 2.27. The largest positive or negative invariant sets can also be de-
fined as the union of all positive, respectively negative, invariant sets included
in X. Indeed, invariant sets have a lattice structure, i.e. there exists an upper
bound. The formulas of Definition 2.26 become then a property.

28 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Remark 2.28. The largest negative invariant set can be defined as the largest
positive invariant set since Inv−f (X) = Inv+

−f (X). We also have a relation
between the largest invariant set and the intersection of the largest negative
and largest positive one:

Invf (X) = {x0 | ∀t ∈ R, ϕ (t,x0) ∈ X}
= {x0 | ∀t ≥ 0, ϕ (t,x0) ∈ X ∧ ∀t ≤ 0, ϕ (t,x0) ∈ X}
= {x0 | ∀t ≥ 0, ϕ (t,x0) ∈ X} ∩ {x0 | ∀t ≤ 0, ϕ (t,x0) ∈ X}
= Inv+

f (X) ∩ Inv−f (X)

Finding the largest positive invariant set can be of considerable interest
in terms of safety issue. It means for instance that if the set X is defined
as the set where the system is safe, it is possible to find the set of all initial
conditions, Inv+

f (X), into which the system can be released such that it will
stay forever in X. Several control problems can be rewritten as finding a
largest positive invariant set.

2.1.5 Extension of the dynamical system model

Differential inclusions For some systems, the evolution function of S is
not known exactly but with some uncertainties. To model such systems,
differential inclusions can be used. This is the case in our application where
ocean currents are not known exactly: uncertainties can be modeled using
sets. To this end, we can define a set-valued function that maps for instance a
time-geographical position point (x, y, z, t) to a set of oceanic current values
instead of single value.

Definition 2.29. A set-valued function F : Rn 7→ P (Rm) maps an element
of Rn to a set of Rm.

The definition of a dynamical system can be extended using a differential
inclusion.

Definition 2.30. A differential inclusion can be written as (Blanchini and
Miani, 2015):

ẋ (t) ∈ F (x (t))

where F : Rn 7→ P (Rn) is a set-valued function instead of a single valued
function.

2.1. DYNAMICAL SYSTEMS 29

f (x)
x

f (X)
X

F (x)
x

Rn Rm

P (Rn) P (Rm)

Rn P (Rm)

Figure 2.10: Illustration of the differences between, from top to bottom, a
single value function, a set function and a set-valued function.

Example 2.31. Figure 2.10 illustrates the different type of functions: a
single value function; a set function (Definition 2.18 on page 24) which is a
simple extension of a single value function to sets; and a set-valued function
(Definition 2.29 on the facing page).

Definition 2.32. An uncertain dynamical system is of the form:

ẋ (t) = f (x (t) ,w (t)) ,w (t) ∈ W
In this case, the system can be modeled using a differential inclusion where
F (x) = {f (x,w) ,w ∈ W}.
Remark 2.33. The definitions of Section 2.1.4 which concern invariant sets
can be extended to uncertain dynamical systems.

Systems with input Another case that we will consider, is systems with
inputs (see Remark 2.2 on page 17). The notion of invariant sets can be in
a way extended to such system by the notion of viability.

Definition 2.34. The set A is a positive viable (or forward viable) set (Aubin,
2009) of Su if

∀x0 ∈ A,∃u ∈ U , ∀t ≥ 0, ϕf ,u (t,x0) ∈ A.
The set B is a negative viable (or backward viable) set of Su if

30 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

∀x0 ∈ B,∃u ∈ U , ∀t ≤ 0, ϕf ,u (t,x0) ∈ B.

The set C is a viable set of Su if

∀x0 ∈ C,∃u ∈ U ,∀t ∈ R, ϕf ,u (t,x0) ∈ C.

We can also define the largest and the smallest viable sets.

Definition 2.35. The largest positive viable set, known as the viability kernel
(Aubin, 2009), of a set X is:

Viab+
f (X,U) = {x0 | ∃u ∈ U ,∀t ≥ 0, ϕf ,u (t,x0) ∈ X} .

The largest negative viable set of a set X is:

Viab−f (X,U) = {x0 | ∃u ∈ U ,∀t ≤ 0, ϕf ,u (t,x0) ∈ X} .
The largest viable set of a set X is:

Viabf (X,U) = {x0 | ∃u ∈ U ,∀t ∈ R, ϕf ,u (t,x0) ∈ X} .

Example 2.36. To illustrate these sets, let us consider the system composed
of a car and an infinite straight road with a width of L (see Figure 2.11 on the
facing page). The state of the car is defined in the space of its lateral position
on the road (x) and its angle with respect to the road (θ). We will study
paths in this space. The system input is u ∈ U the steering angle velocity of
the car. We want the car to stay on the road and to move forward, which
means that X = [0, L]×

[
−π

2
, π

2

]
.

In Figure 2.11 on the next page we have represented with the gray hatched
area what could be the complementary set of the largest positive viable set
of the system. In other words, for these states, the car will leave for any
input the road.

For (i), we can find for instance the input u = 0 such that the car stays
indefinitely on the road. For (ii), there also exists several inputs, represented
in the state space by the black arrows, such that the car stays forever in the
road. Indeed, the car can in a first step turns its wheels, more or less rapidly,
to the right to be parallel to the road and then sets u = 0. For (iii), there
exists no input such that the car does not leave the road because the angle
is too important: this state is then outside Viab+

f (X,U). We can also see
that if the car is parallel to the road and on the left edge, this state is inside
the viable set but the driver should not turn to the left, i.e. we must have
u ≤ 0.

2.1. DYNAMICAL SYSTEMS 31

(i)(ii)

(iii)

x

θ

θ

π/2

0

(i)

(ii)

(iii)

Viab+
f (X,U)

0 L

Figure 2.11: An illustrative positive viable set for the example of a car on a
road.

32 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Viable sets, as the invariant ones, play a major role in the study of dy-
namical systems. In Chapter 5, we will use these sets to validate the control
law of our robot. We have seen in Example 2.36 on page 30 that viable sets
are subsets of the state space. In the case of a car, it might be interesting to
compute a viable set to detect if a distracted driver will leave the road, and
consequently trigger appropriate measures.

2.1.6 Lyapunov theory

Traditionally, dynamical systems properties are studied through the Lya-
punov theory, which was first introduced in 1892. We found then interesting
to show here the advantages and drawbacks of such based methods as we
will develop in the next chapters an orthogonal way to study such systems.
We will introduce briefly, in this section, the main results of the theory. For
more details, the reader can refer to any of the following books: (Slotine and
Li, 1991; Khalil, 2002; Blanchini and Miani, 2015).

We consider here the case of an autonomous system

ẋ = f (x) (2.5)

of Rn where x = 0 is an equilibrium point which means that f (x) = 0 and
f is continuous. Note that by a change of variables any equilibrium point of
the dynamical system can be shifted to the origin and then studied through
this formalism.

Definition 2.37. The equilibrium point x = 0 is stable if

∀R > 0,∃r > 0, ‖x0‖ < r =⇒ ∀t ≥ 0, ‖ϕf (t,x0)‖ < R.

It is unstable otherwise.

Theorem 2.38. Let x = 0 be an equilibrium point for Equation (2.5) and
D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously
differentiable function, called a Lyapunov function, such that:

1. V (0) = 0 and ∀x ∈ D \ {0} , V (x) > 0,

2. V̇ (0) = 0 and ∀x ∈ D \ {0} , V̇ (x) < 0,

where V̇ is the derivative of V along the trajectory solution of (2.5):

V̇ (x) =
d

dt
V (ϕf (t,x))

∣∣∣∣
t=0

Then, x = 0 is stable.

2.1. DYNAMICAL SYSTEMS 33

θ

l

mg

Figure 2.12: A Pendulum example with a friction coefficient k.

Example 2.39 (Pendulum). Consider a simple pendulum (Khalil, 2002) of
mass m and of length l with a friction coefficient k, we have from Newton’s
second law:

mlθ̈ = −mg sin θ − klθ̇
By setting the state variables to x1 = θ and x2 = θ̇, and the two coeffi-

cients to a = g
l
and b = k

m
, we obtain:{
ẋ1 = x2

ẋ2 = −a sinx1 − bx2

.

Equilibrium points are located at (nπ, 0) , n ∈ Z. We try now to find a
candidate Lyapunov function: let us take V (x) = a (1− cosx1) + 1

2
x2

2. We
have V̇ (x) = aẋ1 sinx1 + ẋ2x2 = ax2 sinx1 + (−a sinx1 − bx2)x2 = −bx2

2.
We can try to check the hypothesis of Theorem 2.38: (1) we have V (0) =

0 and V (x) > 0 for x ∈ R2 \ {(nπ, 0) , n ∈ Z}. So we can take for instance
D =

[
−π

2
, π

2

]
× R. We also have (2) V̇ (x) ≤ 0 for all x ∈ D, but this is not

sufficient here to apply Theorem 2.38.
Indeed, we shall use an additional Theorem from LaSalle (LaSalle and Lef-

schetz, 1961) that justifies the stability of the origin. If ∀x ∈ D, V̇ (x) ≤ 0
with {0} ∈ D and if no solution can stay identically in S = {x ∈ D |
V̇ (x) = 0

}
except x (·) = 0 then the origin is stable. With this new Theo-

rem, we can conclude that the origin point (0, 0) is stable.

Remark 2.40. The asymptotic stability is also an important property to
study. If the equilibrium point is asymptotically stable, we have ‖ϕf (0,x)‖ <
r ⇒ limt→+∞ (ϕf (t,x)) = 0 (from Definition 2.37 notations). If the second
hypothesis of Theorem 2.38 is changed to V̇ (x) < 0,x ∈ D, then x = 0 is
asymptotically stable.

A pendulum with no friction has a stable equilibrium point which is,
however, not asymptotically stable. In fact, we can find a trajectory as
closed as we want from the equilibrium point that oscillate on a stable cycle.

34 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

The Lyapunov theory and positive invariant sets are closely related. La
Salle has extended in 1961 the Lyapunov theory with invariant sets theorems.

Theorem 2.41 (Local Invariant Set Theorem5). Consider the Equation (2.5)
and let V (x) be a scalar function with continuous first partial derivatives.
Assume that:

• for some l > 0, the region Ωl = {x | V (x) < l} is bounded,

• ∀x ∈ Ωl, V̇ (x) ≤ 0.

Let R =
{

x ∈ Ωl | V̇ (x) = 0
}
and M the largest positive invariant set in R.

Then every solution x (t) originating in Ωl tends to M as t→∞.

Remark 2.42. The set Ωl is called a level-set and is a positive invariant set.

The main drawback of Lyapunov theory is that it might be difficult to
find a Lyapunov function. There is no method to find a candidate function
V in a general case nor any guarantee of the existence of an analytical form
of V . Moreover, the study of limit cycles is difficult with Lyapunov theory
as it requires finding, most of the time, a complex function V . However,
Lyapunov theory can still be used in high dimensions systems if a function
V is found.

2.2 Abstract domains

As we have seen in the previous section, dynamical systems can be studied
through specific sets such as invariant sets. In the case of ocean currents, we
do not have a formal expression of the system but rather a set of numerical
data. We therefore have chosen a numerical approach instead of formal
computation approach to deal with invariant sets in this work.

A first step is to be able to handle in a computer these sets and perform
computations. This requires to ensure that they are computer-representable.
Indeed, computers do not have infinite memories and can only handle finite
size objects. The problem is that most mathematical objects, we will be
working with (sets of Rn, paths, . . .), are not representable in a computer
directly. Therefore, a solution is to use instead a counterpart object which is
computer-representable. The aim of this section is to study which counter-
part object can be chosen and what are the links between the initial object
and its counterpart.

5The wording is taken from (Slotine and Li, 1991)

2.2. ABSTRACT DOMAINS 35

x xf

R

R

R

X

x
xx

xx

Figure 2.13: Illustration of several machine representations of a real. Gray
graduations depict the reals that can be handled in a computer. For the sake
of clarity, the distance between two machine’s reals has been chosen constant
which is not the case with the IEEE754 standard.

Example 2.43. To further illustrate the issue, let us consider the set of real
numbers R. They can be represented in a computer using the set of floating-
point numbers F (IEEE754 standard). In that case, only a finite number of
reals can be represented as F has a finite number of elements.

For a given real number x, a method is to choose the closest floating-
point number xf to represent x (see Figure 2.13). The limitation of the
use of floating-point numbers is the introduction of an error between xf and
x. If computations are undertaken, the error will be propagated through
the operations. This can lead to false results. For instance, let us take
x = 0.1. The closest floating-point arithmetic (32-bit) to x is the number
xf = 0.100000001490116119384765625. If we now add one million time xf
to itself, we will find xf + . . .+ xf = 100000.000001

In a context of safety proof of systems, if computation errors are not
carefully tracked, such computations may lead to false results. One solution
to guarantee the results is to bracket any real number by two bounds that are
themselves representable in a computer. In other words, it means to choose
a better counterpart object to represent real numbers.

Example 2.44. Let us consider another example with more complex data.
When working with ocean currents, we would like to be able to represent the
value of the currents in a certain area. Figure 2.14 is the result of an oceanic
current model near the Ouessant island. The model has some uncertainties
and provide data only on a discrete grid.

Let us assume that we want to handle the set of currents in the yellow box
of Figure 2.14, we need to find a computer object that can represent this set.
In that case, we can again use two bounds to represent the set as shown in
the third graph in Figure 2.13. The set is bracketed using two representable

36 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Figure 2.14: East component of the current in the Fromveur passage near
Ouessant island, west from Brittany (24 October 2018, 00h00UTC+0, Ifre-
mer MARC L1 Model, http://marc.ifremer.fr, scale in m s−1).

bounds.

To study dynamical systems, in addition to find computer representable
objects, we should track computation errors carefully to guarantee the va-
lidity of results. Indeed, most dynamical systems are sensitive to initial
conditions as shown in Remark 2.15 on page 22.

Two issues are then raised. How to represent a dynamical system in a
computer, and how to deal with the error associated with the representa-
tion and its propagation during computation? To answer the problem, we
introduce hereafter the Abstract Interpretation framework.

2.2.1 Abstract Interpretation

The link between sets and their computer representations has been studied
and formalized since the late 1970s by the Abstract Interpretation (AI) com-
munity (Cousot and Cousot, 1977; Cousot and Cousot, 1979). The main
problems addressed by the AI community were initially the static analysis,
i.e. without execution, of computer softwares and their optimization at the
stage of compilation.

In the AI community, the initial object is called the concrete object, and
its counterpart, the abstract object. The abstract object is an abstraction of

http://marc.ifremer.fr

2.2. ABSTRACT DOMAINS 37

the concrete object. Given an abstraction, an important issue that we must
consider is that the results obtained on the abstract objects soundly, i.e.
correctly, represent those which could have been obtained with the concrete
objects. We will then be able to work only with the abstract objects.

Example 2.45. To better illustrate the following discussions, we will use in
the rest of this section the example of the sets of Rn as the concrete objects,
which cannot be handled in a computer, and the boxes of Rn, as the abstract
objects.6 Boxes are easy to handle in a computer and allow to perform a
wide range of computations.7 To use the abstraction, we will need to define
how a box can be built from a set of Rn. We will also need to check that
computations on boxes soundly represent computations on sets. For instance,
if we intersect two sets, does the intersection of their box abstraction soundly
represent their intersection?

We first introduce the main definitions and properties of AI. We will then
look at some properties that should be fulfilled by the abstractions in order
to be used in a computer.

2.2.1.1 Definitions

Definition 2.46. (Cousot, 2001) Let us take (D ,⊆) and
(
D#,⊆]

)
, be two

partial ordered sets, respectively a concrete set and an abstract set.
We define two monotone functions called the abstraction function α : D →

D# and the concretization function γ : D# → D that map respectively all
element x of D to an element α (x) of D# and all element y of D# to an
element γ (y) of D , such that:

• α and γ are increasing functions, which means that:{
∀x, y ∈ D , x ⊆ y ⇒ α (x) ⊆] α (y)

∀x, y ∈ D], x ⊆] y ⇒ γ (x) ⊆ γ (y)
.

• The abstract domain is an abstraction, i.e. an approximation, of the
concrete domain:

∀x ∈ D , x ⊆ γ (α (x)) .

This means that γ ◦ α is extensive.
6Boxes of Rn cannot be directly represented in a computer. However, they can be

easily abstracted by boxes of Fn (using floating-point numbers) that are representable
(with a finite n). We will assume that this second abstraction is implicit.

7Section 2.2.2.1 will be specifically dedicated to boxes of Rn.

38 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

P (Rn) IRn

α (X) = [X]

[X]
X

γ ([X]) ⊇ Xγ (α (X))

Figure 2.15: Galois connection between the powerset of Rn and the powerset
of IRn.

• The concrete domain does not lose any data of the abstract domain,
which means that ∀y ∈ D#, y = α (γ (y)) or more generally:

∀y ∈ D#, α (γ (y)) ⊆ y.

This means that α ◦ γ is contractive.

The pair (α, γ) defines a Galois connection denoted: (D ,⊆)
γ
↼−−⇁
α

(
D#,⊆]

)
.

Example 2.47. Let us take the example of sets of Rn and boxes8 of Rn:
(P (Rn) ,⊆)

γ
↼−−⇁
α

(IRn,⊆). Figure 2.15 represents a set X which is abstracted

by a box [X]. The abstraction function α is a convex hull operator that we
will define later (see Definition 2.66 on page 45). The concretization function
is the projection of the box in P (Rn) as a box of Rn is also a set of Rn.
Therefore, we can check that X ⊆ γ (α (X)) = [X]. We also have, for any box
[x] of Rn, that α (γ ([x])) = [x]. Finally, α and γ are increasing functions.

Example 2.48. Let us consider a second example with two lattices (which
are also partial ordered sets): the concrete domain 〈D ,⊆〉 composed of six
discrete states and the abstract domain

〈
D#,⊆]

〉
composed of only three

discrete states (see Figure 2.16). We can find a pair (α, γ) of functions that
are increasing and that verify ∀x ∈ D , x ⊆ γ (α (x)) and also, in our case,
that ∀y ∈ D#, y = α (γ (y)).

We can also see the α ◦ γ is idempotent, which is a property of Galois
connections.

Remark 2.49 (Loss of information). The abstraction generates a loss of in-
formation in the case where x ⊂ γ (α (x)). This loss is in some way wanted

8As we will see in Section 2.2.2.1, the set of boxes of Rn will be denoted IRn.

2.2. ABSTRACT DOMAINS 39

D D#

α

D

γ

D#

α

x ⊆ γ (α (x))

α (γ (y)) ⊆ y

x

y

⊥

>

⊥

>

Figure 2.16: Example of a pair (α, γ) for two domains D and D#. Discrete
states are ordered vertically from bottom to top.

as it allows to reduce the complexity of the concrete domain. However, the
abstraction should be carefully chosen to avoid as much as possible any un-
necessary loss of information that produces over-approximations.

For instance, the abstraction between P (Rn) and IRn produces a loss of
information which can be clearly seen in Figure 2.15 as X ⊂ [X].

Remark 2.50. Several levels of abstraction can be used depending on the
problem. All the levels of abstraction of a concrete set can be organized in a
lattice (Cousot, 2001). For instance reals can be abstracted by floating-point
numbers, by integers or even by the sign of the real. The last abstraction
is of a higher level of abstraction than the integer one. In the same way,
sets of Rn can be abstracted by boxes of Rn, boxes of Fn or also boxes of In
(integers).

Theorem 2.51 (Uniqueness). Given γ : D# → D , there exists at most one
α : D → D#, called the best abstraction, such that (D ,⊆)

γ
↼−−⇁
α

(
D#,⊆]

)
and

if it exists then α (x) = ∩
{
y ∈ D# | x ⊆ γ (y)

}
.

Similarly, given α : D → D], there exists at most one γ : D# → D such
that (D ,⊆)

γ
↼−−⇁
α

(
D#,⊆]

)
and if it exists then γ (y) = ∪{x ∈ D | α (x) ⊆ y}.

Example 2.52. Let us take (P (Rn) ,⊆)
γ
↼−−⇁
α

(IRn,⊆) which is a Galois con-
nection, from Theorem 2.51 there exists a unique α. To illustrate the unique-
ness of α, let us consider a candidate abstraction function ϕ that maps all
sets of Rn to a box that is strictly larger than the set. We keep the projec-
tion function for γ. We then have for all boxes [x] ∈ IRn, ϕ (γ ([x])) ⊃ [x]
which does not fulfill the Galois connection definition as we should have
ϕ (γ ([x])) ⊆ [x]. Indeed, α ◦ γ is necessarily contractive.

40 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Remark 2.53. In practice, the function α or γ might not exist for a pair
of abstract and concrete domains as we will see later. In such cases we
can choose to define arbitrary functions that map the abstract and concrete
domains. However, we might lose some properties of the Galois connection
(see (Cousot and Cousot, 1992a) for more details).

Most of the time, we only work with the abstract domain as it is the
only one that can be represented in a computer. This is why we do not
have to know nor to be able to compute α or γ. However, knowing that
these functions exist enables to use the properties of Galois connection and
associated theorems. In particular, it allows to prove that results obtained
on abstract domains are also valid for the concrete ones.

We will now consider the relation between functions in the abstract do-
main and functions in the concrete domain.

Definition 2.54 (Abstract function). We consider a monotone concrete
function f : D → D .

• The best abstract transformer approximating f is f] = α ◦ f ◦ γ.

• A sound abstract transformer approximating f is any operator
f] : D# → D# such that α ◦ f ◦γ ⊆] f] (or equivalently f ◦γ ⊆ γ ◦ f]).

Example 2.55. Let us consider the example of the best abstract transformer
f] of a function f , with the Galois connection (P (Rn) ,⊆)

γ
↼−−⇁
α

(IRn,⊆), that

contracts9 sets of Rn. Figure 2.17 shows, on the top left, a set X which is
contracted into a set Y. On the top right, we have [X] the box abstraction of
X. The best abstract transformer f] is used to obtain [Y] = f] ◦ α (X). We
can finally obtain Z = γ ◦ f] ◦ α (X). We note that Y = f (X) ⊂ Z which is
only due to the loss of information of the abstraction.

In the case where we only have a sound abstract transformer approxi-
mating f , we will have obtained an over approximation of the set Z. In this
case the loss of information is due to the abstraction and to the abstract
transformer.

Remark 2.56. From Example 2.55, we highlight that in the case where we
only have a sound abstract transformer approximating f , a loss of informa-
tion appears. This phenomenon is not due to the abstraction but to the
approximation of the function f in the abstract domain. Therefore, we have
two possible sources of loss of information: from the abstract transformer
and from the abstract function (see Remark 2.49).

9The notion of contractor is defined later in this chapter (see Definition 2.105 on
page 62).

2.2. ABSTRACT DOMAINS 41

D = P (Rn) D] = IRn

α

γ

Rn Rn

X

Y = f (X) [X]

[Y]

X

Y

[X] = α (X)

[Y] = f] ◦ α (X)

f f]

Z

Z

Figure 2.17: Illustration of the use of the best abstract transformer f] of a
function f that contracts sets of Rn. The abstract domain is the set of boxes
of Rn. There is a loss of information which is only due to the abstraction.

In practice, computing the best abstract transformer can be complex and
time-consuming, this is why the use of a sound abstract transformer could
be sufficient.

2.2.1.2 Properties of abstract domains

As said previously, an abstract domain should be representable in a com-
puter, but this is not sufficient. Indeed, we will look here at some additional
properties that an abstract domain should fulfill to avoid convergence is-
sues of algorithms. We will deal with closure operators, Ascending Chain
Condition and widening operators.

Definition 2.57. A closure operator on a set S is a function ρ : P (S)→ P (S)
such that for X and Y in P (S):

• X ⊆ Y =⇒ ρ (X) ⊆ ρ (Y) (monotonic)

• X ⊆ ρ (X) (extensive)

• ρ (ρ (X)) = ρ (X) (idempotent)

42 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

a0

a1

a2

a3

an

Figure 2.18: Ascending chain condition in a complete lattice. There exists
an n such that the sequence is constant.

The image of a closure operator is closed by (infinite) intersection. This
operator is also called a hull operator and the family of sets that have a
closure operator is called a Moore family.

Another important property that should be looked at is the Ascending
Chain Condition (ACC) that we introduce below. In particular, verifying
this property is a key point to validate the convergence of algorithms in
a finite number of steps. This is mandatory when using computers. This
property is stronger than the existence of a closure operator. Sets that do
not have a closure operator will not verify the ACC.

Definition 2.58 (Ascending Chain Condition). A partially ordered set
(A,≤) satisfies the ascending chain condition (ACC) if for any weakly as-
cending sequence (ai)i∈N, i.e. a0 ≤ a1 ≤ a2 ≤ . . ., there exists a positive
integer n such that an = an+1 = . . . (see Figure 2.18). Equivalently, this
means that for any non-empty subset B ⊆ A, B has at least one maximal
element.

A descending chain condition can be similarly defined with a weakly de-
scending sequence.

Example 2.59. The set of float numbers F used in computers equipped with
the usual order relation verifies the ascending chain condition. Indeed, F has
a finite number of elements, so in the worst case one of the two bounds is
reached in a finite number of steps. This is also the case for boxes of Fn. The
set of natural numbers N verifies the descending chain condition but does
not verify the ascending one as it has a lower bound but no upper bound.

In particular, it means that if we apply several times a contractor oper-
ator10 C on a box of Fn, there exists a number of iterations n such that the
box is no more contracted on additional iterations.

10see Footnote 9 and Section 2.3 on convergence proof.

2.2. ABSTRACT DOMAINS 43

a0

a1

a2

a∞

b0

b0 5 a1 = b1

bn
b2

Figure 2.19: Illustration of the widening operator.

In some cases, partially ordered sets (A,≤) do not verify the ascending
chain condition. Indeed, it means that some sequences of calculations are
not stationary. This is a major issue when a fixed point has to be reached
with a computer (see later the Section 2.3). This is why a widening operator
is introduced to counteract the issue.

Definition 2.60 (Widening operator (Cousot and Cousot, 1992b)). A widen-
ing operator

`
: D × D → D is defined in order to verify the following con-

ditions:

• ∀x, y ∈ D, x ⊆ x
`
y and y ⊆ x

`
y

• For all increasing chain (ai)i∈N of elements of D, i.e. a0 ⊆ a1 ⊆ . . ., the

increasing chain (bi)i∈N defined by

{
b0 = a0

bi+1 = bi
`
ai+1

, is not strictly

increasing.

Remark 2.61. The widening operator can be seen as an over approxima-
tion of the union. This allows to obtain an over approximation of the limit
of an increasing chain (see Figure 2.19). An increasing chain (ai) is over-
approximated by an increasing chain (bi) that is stationary after a number
of iterations. Partially ordered sets that do not verify the ACC can be still
used inside algorithms, while keeping the property of convergence in a finite
number of steps. This operator will be particularly useful when using convex
polytopes.

Note that a narrowing operator that produces an over-approximation of
the intersection can also be defined.

2.2.2 Example of abstract domains

To validate the behavior of a robot drifting in the currents, we have to study
the paths of a dynamical system. A first level of abstraction was to use

44 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

invariant sets that are sets of Rn instead of paths (see Definition 2.26). How-
ever, working with sets is still difficult as they cannot be represented in a
computer. We will present hereafter well-known domains that can abstract
sets of Rn.

Several abstract domains have been formalized in the AI community such
as intervals (Cousot and Cousot, 1976), simple congruences, linear equali-
ties, linear congruences, polyhedra (Cousot and Halbwachs, 1978), octagons
(Miné, 2006), ellipsoids, varieties, etc. In the following, we will focus on two
of them: intervals and convex polytopes. We will also introduce subpavings
that are specific sets of intervals.

2.2.2.1 Intervals

The formalization of intervals with the associated interval arithmetic has
started in the mid 1960s slightly before and in parallel with its development
in the AI community. Ramon E. Moore published in 1966 a reference book
entitled Interval Analysis (IA) which is considered as one of the reference in
the field (Moore, 1966). This work was driven by the need to handle numer-
ical computer errors (see Example 2.43). Nowadays, interval arithmetic is a
useful tool for the validation of safety constraints (Gouttefarde, Daney, and
Merlet, 2011; Daney, Papegay, and Neumaier, 2004).

We will attempt in this section to adopt a view that bring together the
tools from the IA and AI communities. Indeed, it seems to exist very few links
between them although their tools are quite similar. Most of the definitions
and properties of intervals will be given from the IA point of view while
highlighting the links to AI.

Definitions and arithmetic

Definition 2.62. We define an interval [x] as a closed and connected subset
of R. The set of all intervals is denoted by IR. We have:

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x}
where x is the lower bound and x is the upper bound.
Remark 2.63. The empty set ∅ is considered as an interval which represents
the absence of solution. This allows the set of intervals IR, to be closed with
respect to the intersection. When an interval contains only a single element,
it is called a singleton or a degenerated interval.

An important point is that if the bounds of intervals are subsets of F
(set of floating-point numbers), then the domain verifies the ACC (see Def-
inition 2.58). This implies that monotonic operators working with intervals

2.2. ABSTRACT DOMAINS 45

will converge toward a limit in a finite number of steps without the need of
a widening operator (see also Example 2.59).

Example 2.64. [−4, 2] , [−∞,∞] , [−∞, 4] , {2} are all intervals of IR.
The East component of the currents in the yellow box in Figure 2.14 on

page 36, can be for instance enclosed in the interval [−0.244, 3.186] m s−1. We
already mentioned that the forecast of ocean currents is subject to important
uncertainties. Intervals are here an interesting way to enclose uncertainties
of data while maintaining the guarantee of computations. However, this
requires to have known bounded uncertainties. For instance, if the ocean
current model has a known bounded velocity error of 10%, the currents in
the yellow box can be enclosed within the interval [−0.248, 3.505] m s−1.

Definition 2.65. An interval vector, or a box, [x] of Rn is defined as the
Cartesian product of n intervals. The set of all interval vectors of Rn is
denoted IRn. We have:

[x] = [x1]× [x2]× · · · × [xn] .

The notion of singleton or degenerated interval can be extended to interval
vectors. They are called degenerated if one dimension is at least a degenerated
interval, and singleton when all dimensions are degenerated.

Definition 2.66. The interval hull, or box hull, of a subset A ⊂ Rn, denoted
[A], is the smallest box of IRn that contains A.

Remark 2.67. The interval hull operator that associates the set A ⊂ Rn to
[A] is called a wrapper in the IA community. This operator is the abstraction
function α, of the AI community. The sets of Rn and the boxes of Rn form
a Galois connection (P (Rn) ,⊆)

γ
↼−−⇁
α

(IRn,⊆). This operator is then the best

abstraction, i.e. it optimally abstracts sets of Rn (see Theorem 2.51 on
page 39).

The interval hull operator is also a closure operator (see Definition 2.57
on page 41). Indeed, for two sets X,Y ∈ P (Rn), we can trivially verify that:
if X ⊆ Y then [X] ⊆ [Y], X ⊆ [X] and [[X]] = [X]. In particular, it means
that an infinite intersection or union of boxes is still a box.

Definition 2.68. The width of an interval vector [x] is defined as

w ([x]) = max
1≤i≤n

w ([xi])

and wi ([x]) = w ([xi]).

46 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Operation
Intersection [x] ∩ [y] {z ∈ R | z ∈ [x] ∧ z ∈ [y]}

Union [x] ∪ [y] {z ∈ R | z ∈ [x] ∨ z ∈ [y]}
Interval Union (interval hull) [x] t [y] [[x] ∪ [y]]

Interval Difference [x] \ [y] [{x ∈ [x] ∧ x /∈ [y]}]

Table 2.3: Set operations on Intervals.

[x] ∪ [y] [x] t [y]

[x] \ [y]

[y]

[x]

[y]

[x]

[y]

[x]

[x] ∩ [y]

[y]

[x]

[y][x]

[x] \ [y]

Figure 2.20: Examples of set operations on Intervals.

The lower bound x and the upper bound x of an interval vector [x] are
defined as the following punctual vectors:

x = (x1, x2, . . . , xn)ᵀ ,

x = (x1, x2, . . . , xn)ᵀ .

Definition 2.69. Interval counterpart of classic set operations are defined
in Table 2.3. They are the best abstract transformers of the set operators in
the interval domain.

Remark 2.70. We can observe that the intersection of two intervals is still
an interval (IR is closed by intersection). It is not always the case for the
classic union ∪. This is why the interval union t is defined as the interval
hull of the union of two intervals (see examples on Figure 2.20). The loss of
information is due to the abstraction.

2.2. ABSTRACT DOMAINS 47

If we associate to the set IRn, the intersection ∩ as the meet operation,
and the interval union t as the join operation, we obtain a complete lattice
structure. The top element is > = Rn and the bottom element is ⊥ = ∅.
This lattice structure property will be essential in Section 2.3 to prove the
convergence of algorithms.

Definition 2.71. An arithmetic of intervals can be defined:

[x] � [y] = [{x � y ∈ R | x ∈ [x] , y ∈ [y]}]

where � ∈ {+,−, ·, /}.

Example 2.72. Let us consider several operations:

• [1, 4] + [−4, 2] = [−3, 6],

• [1, 4]− [−4, 2] = [−1, 8],

• [1, 4]× [−4, 2] = [−16, 8],

• [1, 4] / [−4, 2] = [−∞,+∞],

• [1, 4] / [2, 4] = [0.25, 2],

• [1, 4] / [0] = ∅.

We can note that the division by an interval which contains zero is allowed
as the bounds can be set to ±∞.

Interval functions and inclusion functions We will show now, how
functions of Rn can be abstracted in the interval domain. In the IA commu-
nity, the abstracted function f] of a function f is denoted [f].

Definition 2.73. Classic functions can be abstracted by interval functions.
Let f be a function from R to R, the associated interval function [f] is defined
as:

[f] ([x]) = [{f (x) | x ∈ [x]}] .

Example 2.74. Let consider several classic functions:

• [exp] ([1, 2]) = [2.718, 7.389],

• [sqr] ([2, 4]) = [4, 16],

• [sqr] ([−4, 2]) = [0, 16],

48 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

• [arctan] ([−2, 4]) = [−1.107, 1.326],

• [sin]
([

3π
4
, 7π

3

])
=
[
−1,

√
3

2

]
.

Remark 2.75. The build of classic functions is straightforward for mono-
tonic functions as they can be expressed in terms of bounds. For in-
stance, the arctangent function is monotonic positive so: [arctan] ([x]) =
[arctan (x) , arctan (x)].

This is more difficult for non-monotonic functions such as sine or cosine
where modulo operations have to be performed. Nevertheless, all classic
functions have nowadays efficient algorithms that evaluate their associated
interval functions. This has been the subject of important research efforts
(“IEEE Standard for Interval Arithmetic” 2015; Goualard, 2015).

Definition 2.76. More generally, an interval function [f] from IRn to IRm is
an inclusion function of the function f from Rn to Rm (see Definition 2.18)
if:

∀ [x] ∈ IRn, f ([x]) ⊆ [f] ([x]) .

An inclusion function [f] is said to be minimal, and denoted [f]∗, if for
any [x], [f] ([x]) is the smallest box that contains f ([x]).

It is convergent if for any sequence of boxes [x] (k),

lim
k→∞

w ([x] (k)) = 0⇒ lim
k→∞

w ([f] ([x] (k))) = 0.

Remark 2.77. If f is monotone, then [f] is a sound abstract transformer
approximating f , and [f]∗ is the best abstract transformer approximating f
(see Definition 2.54 on page 40). The use of a minimal inclusion function will
therefore reduce the loss of information.
Remark 2.78 (Natural inclusion functions). A simple way to build an inclu-
sion function is to replace each classic functions, variables and operators by
their interval counterparts as defined previously. The obtained formal expres-
sion is called the natural inclusion function. In most cases, this function is
not minimal except if all operators and elementary functions are continuous
and each variable appears only once in the formal expression. A rewriting
of the formal expression to satisfy this condition is one of the techniques to
obtain a minimal inclusion function (Jaulin et al., 2001).

Limiting the pessimism of inclusion functions has been the subject of
numerous works and implementations based on centered form, Taylor exten-
sions,. . . In this work, we have been using the IBEX library11 to deal with

11http://www.ibex-lib.org/

http://www.ibex-lib.org/

2.2. ABSTRACT DOMAINS 49

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

x1

x2

f ([a])

[f] ([a])

[a] =

ẋ1

ẋ2

Figure 2.21: Evaluation of an inclusion function build from the Van Der Pol
system. On the left: the normalized vector field. On top right: a zoom on
[a], and on the bottom right, the sets f ([a]) and [f] ([a]) in the space (ẋ1, ẋ2).

intervals and inclusion functions. We assume that the issue of function eval-
uations is solved by the library and that it gives guaranteed and sufficient
accurate results.

Moreover, we will assume, in this work, that all inclusion functions are
convergent as this property will be required to prove the convergence of
algorithms.

Example 2.79. We can build an inclusion function from the Van Der Pol
system (presented on page 17). If we evaluate the function (see Figure 2.21)
on the interval vector [a] = [1, 1.5]× [1, 1.5], we get the black hull box [f] ([a])
equal to [1, 1.5] × [−3.375,−1]. We can see here that we verify f ([a]) ⊂
[f] ([a]) where f ([a]) is the orange-colored set. The inclusion function is here
convergent. We have also a monotonic function: for instance, if we take
[b] = [1.1, 1.2]× [1.1, 1.2], we have [f] ([b]) = [−1.728,−1.331] ⊂ [f] ([a]).

Remark 2.80 (Wrapping effect). As seen on Example 2.79, the use of boxes
produces an over-approximation of f ([x]). This phenomenon is called the
wrapping effect in the IA community and is equivalent to the loss of infor-
mation due to the abstract transformer described in Remark 2.49. When
functions are composed, the over-approximation is propagated and increases
along each evaluation which can lead to accuracy issues.

50 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

A

[A]

B

[B] [C]

C

Figure 2.22: Illustration of the wrapping effect resulting from the use of the
convex hull operator. This effect is called the loss of information in the
Abstract Interpretation community.

To summarize, there are two kinds of wrapping effect : the one described
above which is due to the use of an inclusion function (Remark 2.56), and
the one which is due to the abstraction (Remark 2.49). Figure 2.22 recalls
how a loss of information or a wrapping effect may appear when sets of Rn

are enclosed by boxes.
Several techniques can be used to reduce the wrapping effect such as

bisecting boxes, but the pessimism remains inherent to the interval represen-
tation.

2.2.2.2 Convex Polytopes

To limit the interval wrapping effect, convex polytopes can be used. They
indeed better approximate sets of Rn. However, there are some drawbacks
that we will highlight hereafter.

Definition 2.81. A convex polytope P can be defined as the intersection of
a set of half-spaces or the combination of linear inequality constraints. More
formally, in an euclidean space Rn, let us consider A ∈ Rm×n and b ∈ Rm:

P = {x ∈ Rn | Ax ≤ b} .

We denote PR the set of all convex polytopes.

Example 2.82. Let us take P ∈ PR2, A =

1 1
−1 2
−1 −1
1 −1
−10 −1

 and b =

2.2. ABSTRACT DOMAINS 51

-3 -2 -1 0 1 2-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

−x − y ≤ 1.5

x + y ≤ 0.2

−x + 2y ≤ 0.5

x − y ≤ 1

−10x − y ≤ 10

Figure 2.23: Example of a two-dimensional polytope.

0.2
0.5
1.5
1
10

. The corresponding polytope P is represented in Figure 2.23.

Remark 2.83. In the general case, using polytopes will limit the loss of infor-
mation. They allow to obtain a better over-approximation of a set compared
to a box which is indeed a specific case of polytope. Nevertheless, this is
achieved at the cost of an increase on computer’s memory space as the num-
ber of constraints (m) is greater than with boxes.

Definition 2.84. (Halbwachs, Proy, and Roumanoff, 1997) The intersection
∩ of two convex polytopes P,Q ∈ PRn is defined as the polytope whose
linear inequality constraint system is the conjunction of those of P and Q.

The convex hull t is defined as the least convex polytope containing both
P and Q. Note that, as for intervals, the union ∪ of two convex polytopes
is not necessary a convex polytope (see Figure 2.24).

Remark 2.85. The number of linear constraints of the resulting polytope after
applying intersections or after applying a convex hull operator will increase in
most of the cases. Constraints can be sometimes removed with intersections
as they are redundant but not in the general case. Limiting this phenomenon
is a key factor to allow any algorithm to be implemented in a computer.

52 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

P Q P Q

P ∩Q P tQ

Figure 2.24: Intersection and union of two polytopes. In the case of the
union, the convex hull operator t is used to stay in the space of convex
polytopes. This produces an over approximation: P ∪Q ⊂ P tQ.

P1

P0

⋂
Pi ⋃

Pi

Figure 2.25: A square P0 of R2 is rotated to form a sequence (Pi). The
intersection, respectively the union, of all elements of the infinite sequence is
not a polytope but a disk.

An important issue with polytopes is that there is no abstract function
α (see Definition 2.46) between the sets of Rn and convex polytopes. The
set of polytopes do not have a closure operator (see Definition 2.57). Indeed,
let us take P0 ∈ PR2, a square, and Pi the rotation of i radian of P0 (see
Figure 2.25). An infinite union of the squares gives a disk which is not a
convex polytope:

∞⋃
i=0

Pi /∈ PR2.

More generally, the infinite intersection or union of convex polytopes gives
the set of closed convex sets. This implies that there is no best abstraction
of a set using convex polytopes. In other words, we cannot find a unique
best polytope that abstracts a set (see Theorem 2.51), i.e. there is no α.
Moreover, the set of convex polytopes is also not a complete lattice and do
not verify the ACC.

To use convex polytopes, we then need to use a widening operator (see
Definition 2.60). It will basically give an over-approximation of the convex
hull with a limited number of constraints. In this work, we have been using

2.2. ABSTRACT DOMAINS 53

the Parma Polyhedra Library12 (Bagnara, Hill, and Zaffanella, 2008) to deal
with polytopes. This library implements a widening operator.

To conclude, the main drawbacks of convex polytopes compared to boxes
is that they are slower to compute, they take more memory, and they do not
fulfill the ACC. Moreover, using inclusion functions with polytopes sets is
limited for now to linear transformations in available libraries.

2.2.2.3 Paving and subpaving

Using a single simple domain such as boxes or convex polytopes to represent
sets leads to a large over-approximation arising from the loss of information.
A straightforward idea is then to use a set of simple domains instead of a
single domain to represent sets of Rn.

In this section, we will present a particular set of simple domains called
subpaving. We will only focus on subpaving of boxes. The subpaving is a
tool of the IA community and is barely used by the AI community as they do
not form a Galois connection with the set of Rn (see Remark 2.87 hereafter).

Definition 2.86. A paving P of Rn is a union of non-overlapping boxes with
non-zero width of IRn that covers Rn.

A subpaving of a box [x] ∈ IRn is a union of non-overlapping subboxes of
[x] with non-zero width that covers [x].

Remark 2.87. There is no Galois connection between the subpavings and the
sets of Rn. Let us consider an example of a subpaving and a set of R2. We
set the order relation ⊂ such that for two subpavings A,B, A ⊂ B if the set
union ∪ of all boxes of A is included in the set union of all boxes of B. Let
us consider now the L shape of Figure 2.26. We want to find a subpaving
that minimize the number of boxes but also the loss of information. We can
see that there do not exist a unique best abstraction as we can choose two
minimum different subpavings.

Similarly, the same problem appears if we consider the problem of building
the subpaving of a circle.

Example 2.88. Subpavings approximate better sets than a single box. In
Figure 2.27a, [x0] or [x1] are outer approximations of the set X (i.e. [x0] ⊇ X
and [x1] ⊇ X). We also have that [x0] is a better outer approximation of X
than [x1] as [x0] ⊂ [x1]. In Figure 2.27b, [x2] is an inner approximation of
the set X (i.e. [x2] ⊆ X). Due to the wrapping effect (see Remark 2.80), a
subpaving can better outer approximate the set X than [x0]. This is the case
on Figure 2.27c where we have X ⊆ ⋃i [xi] ⊆ [x0]. We could have also built
a subpaving to under approximate the set X.

12https://www.bugseng.com/ppl

https://www.bugseng.com/ppl

54 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Figure 2.26: On the left an L shape which is a set of R2 and on the right,
two possible subpavings of the set.

X

[x1]

[x0]

(a)

X

[x2]

(b)

X

[xi]

(c)

Figure 2.27: Illustration of outer and inner subpavings of a set X.

2.2. ABSTRACT DOMAINS 55

[x]

w0 ([x])

w1 ([x]) [a] [b]

w0 ([a]) w0 ([b])

Figure 2.28: Illustration of a bisector in IR2 with a ratio r.

A subpaving can be refined using a bisector.

Definition 2.89. A bisector is a function β : IRn × R 7→ IRn × IRn such
that β ([x] , r) = {[a] , [b]} and that verifies (i) [a] and [b] do not overlap, (ii)
[x] = [a] ∪ [b] and (iii) wi ([b]) = r · wi ([x]) where i is the first dimension
such that ∀k ∈ J0, nK , wi ([x]) ≥ wk ([x]).

Example 2.90. Let [x] ∈ IR2 and w0 ([x]) ≥ w1 ([x]) (see Figure 2.28). We
apply the bisector to [x] with r = 0.375. We obtain the two boxes [a] and
[b] where w0 ([b]) = r · w0 ([a]).

Remark 2.91. Bisectors and pavings can be generalized to other simple do-
mains, but as stated in the introduction, we will only need in this work to use
bisectors applied to boxes. In this document, the r parameter of the bisector
is assumed to be equal to 0.5 unless otherwise stated.

Bisectors can be used recursively to build a subpaving from an initial
box [x] ∈ IRn. A subpaving is called regular if each of its boxes is ob-
tained through a finite succession of chosen bisections. In this case, it
can be represented as a binary tree where each child is the result of a bi-
section (see Figure 2.29). We can define the left child and right child as
β ([x]) = {L [x] , R [x]} where L and R can be viewed as operators from IRn

to IRn.
Additionally, we can define another type of bisection heuristics. This

is interesting when the operator is applied recursively. In most cases, it is
chosen to bisect at each step the largest first component of the box.

Remark 2.92. Bisectors are not used, to our knowledge, in the AI community.
Indeed, using such a tool implies to define a heuristic which means, most of
the time, that there is no Galois connection. Moreover, bisecting produces
a combinatory explosion that could additionally explain why this tool is not
studied in the AI community.

56 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

[x]

R [x]L [x]L [x] R [x]

RR [x]
RR [x]

LR [x]LL [x]

RL [x]
LR [x]RL [x]LL [x]

[x]

Figure 2.29: Tree representation of a subpaving built with a bisector. The
tree has a binary structure.

Abstract domain Moore family Loss of information Computation costs
Polytopes No + +++
Octagons Yes ++ ++
Intervals Yes +++ +

Table 2.4: Summary of abstract domains properties.

2.2.3 The choice of an abstract domain

Choosing the proper abstract domain for a problem is important to avoid
over approximation or convergence issues.

To guarantee the convergence of algorithms, a domain that fulfills the
ACC is mandatory unless a widening operator is used. A compromise has to
be found between the loss of information due to the abstraction and the com-
putation costs. In this context, using subpaving appears to be an interesting
way to reduce the wrapping effect.

The properties of some abstract domains have been summarized in Ta-
ble 2.4. We have had Octagons that could be a good compromise between
polytopes and intervals, but they have not been studied in this work. How-
ever, we will see later that in the algorithms of Chapter 3, the use of polytopes
will be mandatory to avoid convergence issues.

2.3. CONSTRAINT PROGRAMMING 57

2.3 Constraint programming

Validating that a robot will accomplish its mission correctly can be expressed
as constraints on the paths of a dynamical system. From the previous section,
we have seen how sets of Rn, which were used to abstract paths, can be
represented in a computer. We will now see how constraint problems on these
sets can be formalized and solved. To this end, we introduce the Constraint
Programming framework.

The early history of Constraint Programming (CP) starts in the 1960s.
One of the first reference paper dealing with CP was published in 1974 by
Montanari (Montanari, 1974) to deal with picture processing. CP has then
been the subject of numerous works (Rossi, Van Beek, and Walsh, 2006) and
has now a large community.

The main idea of CP is to compute or over-approximate the solutions
of complex problems which are modeled using constraints. Although the
CP community shares a significant number of ideas with the AI community,
their goal does not coincide (Pelleau et al., 2013). Indeed, the CP community
focuses on finding the solution (mostly an outer approximation) of problems
of the form f (x) ≥ 0 whereas the AI community rather looks for the solutions
of x = f (x) problems. In the second case, a fixed point must be reached to
conclude unlike the first case where only an outer approximation is required.

In this section, we will introduce the notions of constraint network and
fixed points. We will then look at the different ways they can be computed
by taking advantage of both CP and AI ideas. Finally, we will deal with
some examples to illustrate the approach.

2.3.1 Constraint network and fixed points

2.3.1.1 Definition

Definition 2.93. A constraint network (CN) H is composed of (Russell,
Norvig, and Davis, 2010; Rossi, Van Beek, and Walsh, 2006):

• a set of variables V = {x1, . . . , xn},

• a set of domains D = {X1, . . . ,Xn} associated to the xi,

• and a set of constraints C = {c1, . . . , cm} that specifies allowable com-
binations of values. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ,
the constraint scope, is a list of variables, and ρ, the constraint relation,
is a subset of the cartesian product of their domains.

58 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

A
B

a
b

v

V

Figure 2.30: The visibility problem of Example 2.95.

Finding the set S ⊂ D solution of the CN means to solve a Constraint
Satisfaction Problem (CSP).

Remark 2.94. The domains D of the CN are usually intervals, boxes (Jaulin
et al., 2001), zonotopes (Combastel, 2005), tubes (Drevelle and Bonnifait,
2013; Rohou et al., 2017) or more generally any abstract domains as seen in
Section 2.2. We will assume that domains are at least partially ordered sets
(see Definition 2.19 on page 24).

The variables could be the paths of Rn and the constraints can be, for
instance: “all paths starting from X1 should not intersect X2” where X1 and
X2 are sets of Rn.

Example 2.95 (Visibility problem). We consider here a simple example.
Let us take two sets A and B of R2 and a set of vectors V of R2. The set B
is said to be visible from A if there exists a ray of direction v ∈ V starting
from A that intersects B (see Figure 2.30). This problem can be modeled
using a CN (Guyonneau, Lagrange, and Hardouin, 2013):

• The variables are a,b and v, they are respectively points of the set A,
B and V;

• the domains are the sets A,B and V, i.e. D = {A,B,V};

• the constraint is: “there exists a ray of direction v starting from a that
intersects b”.

2.3.1.2 Fixed point

To find the solution set S of a CN, we will use functions that will modify the
domains according to the constraints. To use these functions we first need
to introduce the notion of fixed points and associated theorems. Indeed,
these tools will give the framework to prove that domains can progressively
converge towards the set S by applying dedicated functions.

2.3. CONSTRAINT PROGRAMMING 59

f(x)

y = x

L

L

gfplfp

Figure 2.31: Illustration of the Knaster-Tarski theorem. Each • is a fixed
point.

Definition 2.96. Let f : A 7→ A be a function, a fixed point is an element
x ∈ A such that f (x) = x.

Definition 2.97. Let 〈L,≤〉 be a lattice and f : L 7→ L a function.

• The least fixed point (lfp or smallest fixed point) is, if it exists, the
unique fixed point that is smaller than each other fixed point.

• The greatest fixed point (gfp) is, if it exists, the unique fixed point that
is greater than each other fixed point.

We denote lfpX the least fixed point that is a subset of X and gfpX the greatest
fixed point that is a superset of X.

Theorem 2.98 (Knaster-Tarski). (Tarski, 1955) Let 〈L,≤〉 be a complete
lattice, let f : L 7→ L be an increasing function and let P be the set of all fixed
points of f . Then the set P is not empty and 〈P,≤〉 is a complete lattice.

Remark 2.99. The previous theorem guarantee that there exists a least fixed
point and a greatest fixed point for f as complete lattices cannot be empty.
The result is also true for any decreasing function. Figure 2.31 illustrates the
theorem.

Choosing a domain that fulfilled the ACC will allow to build an algorithm
that reaches a fixed point in a finite number of steps. Therefore, it will be
possible to implement, in a computer, an algorithm that reaches a fixed point.

The following theorem makes the link between a fixed point in the ab-
stract domain and its counterpart in the concrete domain. By verifying the
following hypothesis we can compute a fixed point on the abstract domain
and then prove that it is at least an over-approximation of the fixed point in
the concrete domain.

60 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Theorem 2.100 (Exact fixed point transfer). We assume that 〈D,≤〉 and〈
D],≤]

〉
are complete lattices. We consider a Galois connection 〈D,≤〉 γ

↼−−⇁
α〈

D],≤]
〉
, two functions f : D → D and f] : D] → D], and two elements

d0 ∈ D and d]0 ∈ D] such that (Miné, 2013):

• f is continuous,

• f] is monotone,

• α ◦ f = f] ◦ α,

• α (d0) = d]0.

We then have:

• both f and f] have a lfp (see Theorem 2.98),

• α
(
lfpd0f

)
= lfpd]0f

].

Example 2.101. We will illustrate Theorem 2.100 in the case of a gfp.
Let us take the following Galois connection (P (Rn) ,⊆)

γ
↼−−⇁
α

(IRn,⊆), and a

function f that contracts sets of Rn.13 We assume that f] is the best abstract
transformer of f . X0 ∈ P (Rn) is the initial set. On the top left of Figure 2.32
we can see that the set X0 is being contracted by f until the computation
reaches the greatest fixed point as we verify the hypothesis of Theorem 2.98.
On the top left, the set X0 is abstracted by a box [Y0] = α (X0). The best
abstract transformer f] is then applied several times until a gfp is reached.
On the bottom of Figure 2.32, we have shown the evolution of the sets. We
obtain at the end: α

(
gfpX0

f
)

= gfp[X0]f
] which corresponds to an exact

fixed point transfer. Due to the abstraction, we can notice that we have
gfpX0

f ⊂ γ
(
gfp[X0]f

]
)
.

Remark 2.102. In most cases, we only have α ◦ f ⊆ f] ◦ α. This is the case
when we do not have the best abstract transformer for f but only a sound
abstract transformer (see Definition 2.54). This can still be the case with the
best abstract transformer if we do not have completeness, i.e. if we do not
have α ◦ f = α ◦ f ◦ (γ ◦ α) but only α ◦ f ⊂ α ◦ f ◦ (γ ◦ α).

In these cases, the result of Theorem 2.100 becomes α
(
lfpd0f

)
⊆ lfpd]0f

].

Remark 2.103. When there is no Galois connection, we can choose a mono-
tone function ϕ that plays the role of the abstract function α. We have then
to ensure that ϕ◦f ⊆ f]◦ϕ and ϕ (d0) ⊆ d]0 to prove that ϕ

(
lfpd0f

)
⊆ lfpd]0f

].
13Idem. footnote 9 on page 40.

2.3. CONSTRAINT PROGRAMMING 61

P (Rn)

P (Rn)

IRn

IRn

X1X2 X0
gfpX0

X0X1X2gfpX0

f

Rn Rn

[X0] = [Y0]α
[Y1]
[Y2]

gfp[Y0]

[Y1][Y2]gfp[Y0] [Y0]

f]

γ

gfp[Y0]

Figure 2.32: Illustration of the exact fixed point transfer with the Galois
connection (P (Rn) ,⊆)

γ
↼−−⇁
α

(IRn,⊆) and a function f , a contractor, and its

best abstract transformer f].

62 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

S
X+

X−

Figure 2.33: Bracketing the solution set S of a CN with an interval [X−,X+].

2.3.2 Bracketing the solution set of a Constraint Net-
work

We recall that we want to approximate the solution set S of a CN. It is
important to note that, most of the time, the set S cannot be represented in
a computer. Therefore, we will abstract S by an interval of sets that brackets
S (see Figure 2.33).

Definition 2.104. A set X+ is an outer approximation of the solution set
S of CN H if S ⊆ X. A set X− is an inner approximation if X− ⊆ S.
Bracketing the solution of H consists in finding two sets X+ and X− such
that X− ⊆ S ⊆ X+. We have S ∈ [X−,X+].

To obtain an inner X− or an outer X+ approximation of the CSP from
an initial state of the domain X0, we can build several functions f : D 7→ D
with the following four strategies which will be studied in detail, in the next
sections:

1. remove non-solutions without removing any solutions of X0 to obtain
a X+,

2. remove all non-solutions of X0 to obtain a X−,

3. add all solutions to X0 to obtain a X+,

4. add solutions without adding any non-solutions to X0 to obtain a X−.

Removing solutions is an operation that contracts, i.e. f (x) ≤ x, the do-
mains, while adding solutions inflates, i.e. f(x) ≥ x, the domains. We give
hereafter a definition of the two operators.

Definition 2.105. A contractor C (Chabert and Jaulin, 2009) is an operator
MRn 7→MRn, such that for all x,y ∈MRn,

2.3. CONSTRAINT PROGRAMMING 63

• C (x) ⊆ x (contractance)

• x ⊂ y =⇒ C (x) ⊂ C (y) (monotonicity)

Definition 2.106. Similarly to the contractor, an inflator I is defined as an
operator MRn 7→MRn, such that for all x,y ∈MRn,

• I (x) ⊇ x (inflation)

• x ⊂ y =⇒ I (x) ⊂ I (y) (monotonicity)

The function f can be applied several times to the domain until a fixed
point is reached, i.e. when no more solutions can be added or non-solutions
removed. To ensure that the function will reach a fixed point, we recall that
we have to verify that: f is an increasing function, i.e. x ≤ y ⇒ f (x) ≤ f (y),
and that 〈D,≤〉 is a lattice (see Theorem 2.98).

Remark 2.107. In practice, contractors or inflators will be built on abstract
domains to be implemented in a computer. For instance, the strategy 1:
“remove non-solutions without removing any solutions of X0” is commonly
used in the IA community. The function will then reach a fixed-point, which
is an over or an under approximation of S, as proved by the fixed point
transfer theorem (see Theorem 2.100).

We will now focus successively on the computation of the outer approxi-
mation and then on the computation of the inner approximation.

2.3.2.1 Outer approximation

To find an outer approximation, we need to obtain a set X+ such that S ⊆ X+.
It means that we may have in X+ non solutions together with all solutions
of the CSP.

To this end, there are two different approaches which depend on the initial
set X0 we have, and on the difficulty of finding a function f :

• if X0 is a superset of S (S ⊆ X0) then we can use a contractor approach
and build a function f which verifies strategy (1),

• if X0 is a subset of S (X0 ⊆ S) then we can use an inflator approach
and build a function f which verifies strategy (3).

Figure 2.34 illustrates the contraction approach where S ⊆ X0. If f is applied
several times, the contracted domain will converge to the greatest fixed point
f∞ (X0) = f ◦ f ◦ · · · ◦ f (X0) = X∞ which is still an outer approximation of
S. The accuracy of the outer approximation will depend on the efficiency of

64 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

f(x)

y=x

S X0

X0

gfp

S

Lattice Domain space
X∞

⊥ ⊥

Figure 2.34: A function that contracts domains to compute an outer ap-
proximation of S. The grey polygon is the set of all fixed points for the
function.

f to remove all non-solutions. We do not necessarily need to reach the fixed
point to obtain an outer approximation as fk (X0) is always an outer approx-
imation. When a fixed point is reached, the domain will not be contracted
anymore by applying f , i.e. f (X∞) = X∞.

Figure 2.35 illustrates the inflation approach with X0 ⊆ S. Contrary to
the contraction case, the fixed point of f has to be reached to obtain S ⊆ X+

as f is designed to validate this property only at the fixed point. After
reaching the fixed point, which is the least fixed point in Figure 2.35, we can
verify that X∞ ⊇ S.

Depending on the problem it is easier to have X0 ⊂ S and to use an
inflator approach, or X0 ⊃ S and to use a contractor approach.

2.3.2.2 Inner approximation

To find an inner approximation, the same approach as the outer approxima-
tion can be applied but with the use of strategy (2) and (4). However, finding
an inner approximation requires most of the time that the solution set has
a non-zero volume (Lebesgue measure). For instance if the solution set of a
CN is the limit cycle of the Van Der Pol system, it is possible to obtain an
outer approximation but it will not be possible to obtain, numerically with
a computer, an inner approximation. Moreover, to our knowledge, there is
no analytical expression of the limit cycle.

We have similarly:

• if X0 is a superset of S (S ⊆ X0) then we can use a contractor approach

2.3. CONSTRAINT PROGRAMMING 65

f(x)

y=x

SX0

X0

lfp

S

Lattice Domain space
X∞

⊥

>

⊥

Figure 2.35: A function that inflates domains to compute an outer approxi-
mation of S. The grey polygon is the set of all fixed points for the function.

and build a function f with the property (2) (see Figure 2.36),

• if X0 is a subset of S (X0 ⊆ S) then we can use an inflator approach
and build a function f with the property (4) (see Figure 2.37).

Remark 2.108. In some cases, it is interesting to consider the complementary
CN H. Indeed, a function f that contracts or inflates an initial set X0 might
be easier to implement with the complementary form of the CN. This idea
will be used in Chapter 3.

2.3.2.3 Example

Let us consider again the visibility problem of Example 2.95. We want to find
an over approximation of the set S ⊂ R2×R2×R2 solution of the constraint
network. The constraint can be rewritten as:

∀a ∈ A,∀b ∈ B,∃v ∈ V,∃t ≥ 0, a + tv = b

which can be divided into two constraints with the intermediate variable c
and the projection of v and c:

c = b−a

t = c1/v1

t = c2/v2

.

We chose to use intervals to abstract the sets, and we will assume that
we are in the case where S ⊂ X0. To obtain an outer approximation of S,

66 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

f(x)

y=x

S X0

X0

gfp S

Lattice Domain space
X∞

⊥ ⊥

Figure 2.36: A function that contracts domains to compute an inner approx-
imation of S. The grey polygon is the set of all fixed points for the function.

f(x)

y=x

SX0

X0

lfp S

Lattice Domain space
X∞

⊥

>

⊥

Figure 2.37: A function that inflates domains to compute an inner approxi-
mation of S. The grey polygon is the set of all fixed points for the function.

2.3. CONSTRAINT PROGRAMMING 67

-2 -1 0 1 2 3 4

-2

-1

0

1

2

A

B

[a] [b]

[v]

Figure 2.38: Example of the Cvisibility contractor. The sets A and B are
abstracted using a single box, respectively [a] and [b], with the convex hull
operator. The result of the contractor is shown in dashed. The gray cone
represents the union of the directions of [v].

we define [a] , [b] and [v], respectively the box hull of A,B and V. We also
define the contractor Cvisibility as:

[a]
[b]
[c]
[t]
[v]

 7→Cvisibility

[a] ∩ ([b]− [c])
[b] ∩ ([c] + [a])

[c] ∩ ([b]− [a]) ∩ ([t] · [v])
[t] ∩ ([c1] / [v1]) ∩ ([c2] / [v2])

[v] ∩ ([c] / [t])

 .

This contractor only removes non solutions of the domain. By applying
the contractor up to the fixed point, we obtain an outer approximation of S.

Let A be the circle centered in (0, 0)ᵀ of radius 2, B the circle centered in
(3, 1.5)ᵀ of radius 0.5 and V = {1}× [0.4, 0.5]. We have [a] = [−2, 2]× [−2, 2],
[b] = [2.5, 3.5] × [1, 2] and [v] = {1} × [0.4, 0.5]. We set [t] = [0,∞] and
[c] = [−∞,∞]. Note that we use the box hull operator to abstract the sets
of R2 to the interval domain.

By applying the contractor Cvisibility up to the fixed point, we obtain [a] =
[−2, 2]× [−1.75, 1.8]. Figure 2.38 shows the contracted boxes (dashed).

Due to the loss of information of the boxes, we obtain a large over-
approximation of S. To improve the result, we can use subpavings as do-
main instead of boxes. To over-approximate the set A and B we build two
subpavings that over approximate the sets instead of using the convex hull
operator.

For simplicity, we will use in this example a simple subpaving A for A
composed of four boxes of same size, and we will keep one box for B. We can

68 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

A

B

A [b]

[v]

Figure 2.39: Example of the Cvisibility contractor with a subpaving. This
example is identical to Figure 2.38 except that the set A is now abstracted
using a subpaving A. The result is shown in dashed.

see the result in Figure 2.39 after applying the contractions. The obtained
set is more accurate than with a single box.

We can note that we have chosen an ad hoc function to abstract the set
of R2 into a subpaving as there is no Galois connection (see Remark 2.87 on
page 53). The function works the following way: we use the convex hull of
A and we apply a bisector β to this hull until we obtain four boxes.

2.3.3 Example of algorithms

In this section, we will look at two examples of algorithms that illustrate the
CP approach. The ideas on which these algorithms rely, will also be useful to
the next chapters. The first one concerns the way a subpaving can be built
from a set of constraints and the second one concerns the use of datasets
with contractor techniques.

Remark 2.109 (Color convention). Before we start looking at the examples,
we will set a color convention which will be valid for all the following figures
of this work.

Let us take back Example 2.88 and let us use the same subpaving to over
and under approximate the set X. We obtain two sets X+ and X− such that

2.3. CONSTRAINT PROGRAMMING 69

X

X−

X+

Figure 2.40: Outer and inner subpaving of a set X with color convention:
magenta inside, blue outside and yellow for the undetermined boxes.

X− ⊂ X ⊂ X+ (see Figure 2.40).
The color convention is the following: X− is composed of the union of all

magenta boxes () and X+ is composed of all magenta and yellow boxes (
∪).
To summarize (with an island analogy)

• Blue boxes are completely outside the set ([xi] ∩ X = ∅) – the sea;

• Magenta boxes are completely inside the set ([xi] ∩ X = [xi]) – the
ground ;

• Yellow boxes are undetermined – the sand.

2.3.3.1 CSP and Set inversion problem

When solving a CSP, we have a set of inequalities of the form f (x) ≥ 0
which requires to find the x solutions. However, we do not have, most of the
time, an explicit form of f−1 which would have allowed to solve the problem
analytically. Therefore, we will introduce here the set inversion problem and
an algorithm to solve this problem.

Definition 2.110. Let f be a function from Rn to Rm and Y a subset of Rm.
Set inversion is the characterization of

X = {x ∈ Rn | f (x) ∈ Y} = f−1 (Y) .

The SIVIA (Set Inverter Via Interval Analysis) algorithm (Jaulin et al.,
2001) is design to build two regular subpavings Louter and Linner such that⋃

L− ⊂ X ⊂
⋃
L+

70 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

where
⋃

is the union (not convex hull) of all boxes of the subpaving. The
algorithm uses as input an inclusion function [f] : IRn → IRm of f , an initial
box [x], a paving accuracy ε ∈ R and a set Y that can be for instance
abstracted by a box (see Algorithm 1).

Algorithm 1: SIVIA algorithm.
Input: f ,Y, [x] , ε
Output: L−,L+

1 L = {[x]},L− = ∅,L+ = ∅;
2 while L 6= ∅ do
3 pop L into [x];
4 if [f] ([x]) ⊂ Y then
5 L− ← L− ∪ [x];
6 L+ ← L+ ∪ [x];
7 else if [f] ([x]) ∩ Y 6= ∅ then
8 if w ([x]) < ε then
9 L+ ← L+ ∪ [x];

10 else
11 L ← L ∪ L [x] ∪R [x];
12 end
13 end
14 end

Remark 2.111. When the constraints of a CN are inequalities, the set Y is
the non-negative orthant of Rm. Figure 2.41 illustrates the algorithm in the
case where a box is finally bisected. If the set X has no volume, as in the
case of the limit cycle of the Van Der Pol system in R2 (see Example 2.25),
no inner approximation will be obtained (i.e. boxes).

Example 2.112. We consider the pendulum Example 2.39 where we found
V (x) = a (1− cosx1) + 1

2
x2

2. We can bracket the level-set V (x) ≤ l with
the SIVIA algorithm. For a = 1 and l = 2, we obtain Figure 2.42. We have
also applied a separator technique (Jaulin and Desrochers, 2014), to obtain
this figure. This allows to reduce the number of bisections required. The
main idea is to contract boxes while bisecting. This is why we do not have a
regular paving here.

Example 2.113. In this second example, we apply the SIVIA algorithm to
the example of Section 2.3.2.3 along with the visibility contractor. We use the
SIVIA algorithm to build a subpaving where the constraint is “the box should

2.3. CONSTRAINT PROGRAMMING 71

X

[f] ([x])

[x]

Case [f] ([x]) ∩ Y 6= ∅

X

L [x]
R [x]

Bisection

Y

Figure 2.41: Example of the bisection with the SIVIA algorithm in the case
where [f] ([x]) ∩ Y 6= ∅. On the left top: the initial subpaving. On the right
top: the subpaving after bisection.

belong to A = {x | x2
1 + x2

2 ≤ 22}”. We simultaneously apply the visibility
contractor to each box of the subpaving to fulfill the visibility constraint.
Figure 2.43 shows, projected in the space of A, the outer subpaving LX+ in
yellow.

We can notice that it is more efficient to contract boxes using the visibil-
ity constraint than to add the visibility constraint in the SIVIA algorithm.
Indeed, the SIVIA algorithm only checks if a box validate the constraints
and otherwise may apply a bisection. Using contractors helps to reduce the
size of the boxes before bisection (Chabert and Jaulin, 2009).

We can also see that even with a simple example, it is difficult to build
dedicated contractors on sets of Rn to deal with simple paths (in our case
straight lines).

Remark 2.114. The SIVIA algorithm can be viewed as a function ϕ that from
a set of constraints associate a subpaving. In the previous example, a set of
Rn is abstracted by a set of constraints which are abstracted by a subpaving.

2.3.3.2 Dealing with datasets

This section deals with the issue of working with datasets such as marine
currents. The idea is to show how a contractor approach can be used to
efficiently evaluate the boundaries of a large dataset for any given range.

72 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x1

x2

Figure 2.42: Subpaving associated to the level-set l = 2 of the pendulum
example using the SIVIA algorithm.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x1

x2

BA

[v]

Figure 2.43: Set characterization with the SIVIA algorithm of the visibility
problem. A and B are the two circles and the yellow subpaving corresponds
to the position in A from where the bounding box of B is visible.

2.3. CONSTRAINT PROGRAMMING 73

Definition 2.115. (Jaulin, 2006) A staircase function φ associated to a
paving Q of Rn is a function from Rn to Rm which has a constant value for
each box of Q.

An interval staircase function Φ = [φ−, φ+] is a pair of two staircase
functions such that φ− ≤ φ+ (see Figure 2.44).

A function f : Rm → Rn is said to belong to the interval staircase function
Φ if

∀ [x] ∈ Q, ∀x ∈ [x] , f (x) ∈
[
φ− ([x]) , φ+ ([x])

]
.

Remark 2.116. The definition of interval staircase functions relies on the
property that the set of all staircase functions equipped with the natural
partial order is a complete lattice: φ− ≤ φ+ ⇔ ∀ [x] ∈ Q, φ− ([x]) ≤ φ+ ([x]).

Interval staircase functions can enclose datasets such as current velocities
or bathymetry. Such data are mainly available on regular grid pattern that
makes interval staircase functions well suited to deal with such data.

Proposition 2.117 (Dataset contractor). Given an interval staircase func-
tion [Φ] from Rn to Rm, associated to a paving Q of Rn, and a box [x] of
Rn×m, the dataset contractor Cdataset is the operator defined by:

[x]
Cdataset7−→ [{x ∈ [x] | projRm (x) ∈ Φ (projRn (x))}]

Remark 2.118. The use of a regular paving for Rn allows to use an efficient
tree structure. An illustration of the contractor is given Figure 2.44. In
practice, one of the critical point is to design correctly the interval stair-
case function when, in particular, only discrete data are given. A correct
interpolation must be undertaken to guarantee that no solution will be lost.

Example 2.119. Ocean currents are given as a discrete data grid where, at
each geographical position (R2), a north and east velocity of the water (R2)
are associated. To build an interval staircase function, we have to choose an
interpolation method between points to guarantee that the function encloses
correctly the currents (see Figure 2.45). The smaller the boxes of the paving
are, the more accurate the interval staircase function will be. A special case
must be taken into account when there is no data available for a box of the
paving: the value of the interval staircase function will be set to a value that
is relevant for the model. It could be either [−∞,+∞]m, or the boundaries
of maximum possible values, or 0m. In the case of ocean currents, we can
choose 02 when the box corresponds to a position on the land.

We give here a simple implementation of the contractor as a recursive
algorithm which uses the tree structure of the dataset (see the example of a

74 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

Rn

Rm

φ+

φ−

[x]

Figure 2.44: Illustration of the staircase contractor for a box [x] in Rn×m.
An interval staircase function Φ, in gray, has been built on a paving of Rn.

φ+

φ−

R2

R2

Figure 2.45: Illustration of the interpolation of a grid of current. • are
discrete value of currents at a given position, − is a chosen interpolation of
data which is used to build an interval staircase function Φ.

2.3. CONSTRAINT PROGRAMMING 75

tree in Figure 2.29 on page 56). For each node N of the tree, we can associate
a box [y] for the projection of Φ on Rn, denoted N[y], and an associated box
[v] for the projection on Rm, the data, denoted N[v]. We have therefore
[x] = [y]× [v]. Algorithm 2 shows how to compute the contraction.

Algorithm 2: Dataset contractor algorithm (Cdataset).
Input: N , [y] , [v]
Output: [y] , [v]

1 [y]← [y] ∩N[y];
2 [v]← [v] ∩N[v];
3 if [v] and [y] are not empty then
4 [yR] , [vR] = Cdataset (R (N) , [y] , [v]);
5 [yL] , [vL] = Cdataset (L (N) , [y] , [v]);
6 [y]← [yR] ∪ [yL];
7 [v]← [vR] ∪ [vL];

Example 2.120. To illustrate Remark 2.119, let us take a simple example
of dimension 1×1 represented in Figure 2.46 of an interval staircase function
associated to data and the associated tree structure built on the subpaving.

Let us assume we have an initial box [x] = [6, 11]× [3.5, 7]. We apply the
Cdataset contractor with N1 and [x]. Figure 2.47 shows how Algorithm 2 is
recursively applied and outputs [x] = [7, 11]× [3.5, 6].

Remark 2.121. The dataset contractor Cdataset can be used to evaluate the
hull of currents (or outer approximation of all currents) in a given area. Let
us assume we have a paving of our area Q of R2 and an interval staircase
function Φ of the currents associated to Q. We want to compute a hull
of the current in an area [a] ∈ R2. We build the interval vector of R2×2,
[x] = [a] × [−∞,+∞]2 meaning that we do not know the current in the
area. We can then apply the contractor Cdataset to [x] to obtain an over
approximation of the current. This contractor can be viewed as a tool which
replaces the evaluation of an inclusion function. Indeed, inclusion functions
are usually built with an analytical expression which is not the case here as
we have discrete datasets.

The contractor can also work the other way: if we do not know our
position, but we have a measure of the velocity of currents, we can contract
the position.

76 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

R1

R1

1

2

3

4

5

1 4 7 10 12

{
y = [1, 4]

v = [2, 5]

{
y = [4, 7]

v = [1, 3]

{
y = [7, 10]

v = [1, 4]

{
y = [10, 12]

v = [3, 6]

{
y = [1, 7]

v = [1, 5]

{
y = [7, 12]

v = [1, 6]

{
y = [1, 12]

v = [1, 6]

6 φ+

φ−

N1

N2 N3

N4 N5 N6 N7

[x]

Figure 2.46: Example of a dataset and its tree representation using an interval
staircase function on a subpaving.

2.4. CONCLUSION 77

[1, 4]× [2, 5]
→ ∅

[4, 7]× [1, 3]
→ ∅

[7, 10]× [1, 4]
→ [7, 10]× [3.5, 4]

[10, 12]× [3, 6]
→ [10, 11]× [3.5, 6]

[1, 7]× [1, 5]
→ [6, 7]× [3.5, 5]
→ ∅

[7, 12]× [1, 6]
→ [6, 11]× [3.5, 6]
→ [7, 11]× [3.5, 6]

N1

N2 N3

N4 N5 N6 N7

[x] = [6, 11]× [3.5, 7]
→ [x] = [7, 11]× [3.5, 6]

[1, 12]× [1, 6]
→ [6, 11]× [3.5, 6]
→ [7, 11]× [3.5, 6]

Figure 2.47: An illustration of how the Cdataset is applied on the box [x] of
Figure 2.46 using Algorithm 2.

2.4 Conclusion

The aim of this chapter was to provide the tools to guarantee that the path
assigned to a robot is safe. We recall that such a path can be more complex
than a geographical path (x, y) and can include any relevant states of the
robot (energy, velocity, . . .). We have presented the dynamical system theory
which will be used to model the behavior of our robot. We have also defined
feasible paths in such systems. In addition, we have seen how particular sets
of paths, the invariants sets, can handle the behavior of dynamical systems.
As we want to analyze global properties of such systems, we have proposed
to adopt an Eulerian approach which is consistent with the study of paths
instead of trajectories.

Two main questions were then raised: how to handle complex object
such as paths, in a computer, and how to validate that a path fulfills a set
of constraints. For the first question, we have introduced the framework of
Abstract Interpretation (AI) that aims to study how complex objects can be
represented in a simpler form, i.e. can be abstracted, and therefore handled
in a computer. We have presented several classic abstract domains such as
intervals, convex polytopes and subpavings of boxes. For the second ques-
tion, we have introduced the framework of Constraint Programming (CP)
that formalizes how a problem can be solved by applying constraints to do-
mains. For both questions, we have highlighted how tools from different
communities could be gathered to efficiently address our problem. We have

78 CHAPTER 2. TOOLS TO HANDLE DYNAMICAL SYSTEMS

tried to draw parallels between the communities of Abstract Interpretation,
Constraint Programming and Interval Analysis. Finally, we have provided
some additional tools such as the dataset contractor that will be helpful to
handle discrete data such as the outputs of ocean currents forecasts.

However, we have seen that working with paths of dynamical systems is
very complex. Indeed, there exists no dedicated abstract domain to han-
dle paths or invariant sets. Classic abstract domains are not well suited for
applying constraints such as “the path should not collide the ground”. There-
fore, the next chapter will be dedicated to the presentation of a new domain
dedicated to paths. This point is crucial as it will allow to formalize much
more efficiently safety problems.

Chapter 3

Mazes: a new abstract domain for
paths

Contents
3.1 Definitions and problem statement 82

3.2 Mazes . 83

3.2.1 Roads . 84

3.2.2 Inclusion and lattice 85

3.2.3 Door consistency 87

3.3 Method and algorithm 88

3.3.1 Computing an outer approximation for Inv+
f (X) . 89

3.3.2 Computing an inner approximation for Inv+
f (X) . . 91

3.3.3 Main Algorithm 97

3.3.4 The Van Der Pol example 103

3.3.5 Parameters that affect the speed of convergence . . 103

3.4 Toward an implementation 108

3.4.1 The sliding issue 108

3.4.2 Using abstract domains without the ACC 114

3.4.3 Constraint propagation heuristic and multithread-
ing capabilities . 114

3.4.4 Using existing libraries 116

3.5 Differential inclusion & system with input 119

3.5.1 Outer approximation 119

3.5.2 Inner approximation 120

79

80 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

3.5.3 The example of the reverse Van Der Pol system
with an input . 122

3.6 Conclusion . 123

81

S
S+

S−

P (Rn)

S

S+

S−

P (Rn)

S

S+S−

P (Rn)

Figure 3.1: Applying constraint techniques to obtain a bracket of a solution
set: S− ⊂ S ⊂ S+.

To validate the safety of a robot’s path, we need to be able to handle
sets of paths in a computer. We have seen from the previous chapter that
classic abstract domains were not suited to handle sets of paths. Indeed, ap-
plying constraints such as “the path should stay forever inside a set” appears
to be complex using classic domains. This is why, this chapter focuses on
presenting a new abstract domain for paths that will be called a maze.

Along with their formalization, we will show how mazes can be used
to solve the problem of bracketing largest positive invariant sets. We have
chosen to focus on this problem as largest positive invariant sets can be the
cornerstone of a set of classic problems which deal with the validation of
dynamical systems properties. This will allow to apply complex constraints
on sets of paths.

More formally, we want to bracket the largest positive invariant set1
S = Inv+

f (X) (see Definition 2.26 on page 27) of a set X associated to an
autonomous dynamical system S of the form ẋ = f (x). This set exists and
is unique as positive invariant sets have a lattice structure (see Remark 2.24
on page 26). We recall that solving this problem means to find two sets S+

and S− such that S− ⊂ Inv+
f (X) ⊂ S+ (see Definition 2.104 on page 62). The

overall idea of this chapter is to apply constraint techniques to two sets S+

and S− until a bracket of S is obtained, as illustrated in Figure 3.1.

In the literature, corresponding methods to compute invariant sets are
generally restricted to linear dynamics (Rakovic et al., 2005; Tahir and
Jaimoukha, 2012).

1In this chapter, we will shorten for ease of clarity positive path in path as we will only
focus on bracketing largest positive invariant sets.

82 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

S

State spacePath space

S
(i)

(ii)
(ii) (i)

(iii)

feasible

(iii)

(iv)

(iv)

Rn

valid

(v)
(v)

Xdead

Figure 3.2: Example of paths in the path space and their abstraction in the
state space. Valid paths correspond to paths that are solution of ẋ = f (x)
and that belong to S.

3.1 Definitions and problem statement

Valid and dead paths We have defined in Section 2.1.2 the notion of
feasible path associated to a dynamical system. As we now consider the
problem of finding paths that belong to the largest positive invariant set of
a set X, we will give a name to such paths.

Definition 3.1 (Valid and dead paths). Let us consider a feasible path (see
Definition 2.10 on page 20). It is valid if all its points belong to X, otherwise
it is dead.

Example 3.2. We will illustrate here the notion of valid paths. We first
recall that the set S belongs to Rn, the state space. To know if a path is
valid, we have to use both the evolution function (feasibility) and the set X
(membership). Figure 2.10 (left) represents the two conditions in the path
space. Note that this space is of infinite dimension as there exists an infinite
number of paths for every initial condition in Rn. In this representation,
every point in this space corresponds to a unique path.

We will consider now several examples. The paths (i), (ii) and (v) are
valid as they are feasible and are included in S. The path (iii) is feasible but
is dead as it does not belong to X. The path (iv) belongs to X but is not
feasible.

We can see that the only knowledge of the set S is therefore not sufficient
to determine if a path is valid as we have also to take into account the
evolution function. Inv+

f (X) is indeed an abstraction in Rn of valid paths.

3.2. MAZES 83

Constraint network The main idea we will develop in this chapter, to
bracket from inside and outside the set S, is to build two complementary
constraint networks respectively H and H. An element x of the domain
of the CN will be therefore either a solution of H or a solution of H. By
applying a constraint propagation alternatively on H and H, we will be able
to build an inner and an outer approximation of the solution set.

For our problem, to apply a constraint approach, we need to define the
constraint network H:

• The variables V are the paths which are consistent with S : ẋ (t) =
f (x (t)).

• The unique constraint is the following: “the path is valid”, i.e. it should
belong to X.

The complementary CN, H, has the same variables as H except that the
constraint is on the contrary: “the path is dead”, i.e. it does not strictly
belong to X.

We have now defined the variables and the constraints, it remains to
define the domains for paths which is the goal of the next section.

3.2 Mazes
In the literature, no type of domains has been proposed to enclose paths.
We propose here a new domain called maze. Ideally, a domain should be
representable in the memory of a computer which means that it has a finite
number of states. It should also have a lattice structure in order to allow
intersections and convergence proofs of algorithms (see Theorem 2.98 on
page 59). Moreover, choosing a domain that verifies the ACC will avoid the
use of a widening operator.

In this section, we will give the definitions of the different objects that
form a maze and we will look at the basic properties of this new domain.

Definition 3.3 (Maze). A maze L of Rn is composed of:

• a paving P , i.e., a union of non overlapping boxes which covers Rn;

• a set of non-overlapping doors between adjacent boxes. A path is al-
lowed to go from one box to another adjacent box by crossing a door.
Formally, a door D is defined as an abstract domain in a subspace of
dimension n−1 included in the intersection between two adjacent boxes
of dimension n.

84 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

∈

Figure 3.3: Illustration of the path membership: the path (left) belongs to
the maze (right). In this illustration, the maze contains 5 boxes and 7 doors.

Remark 3.4. The abstract domain should preferably be chosen on the set of
domains that fulfills the ACC such as boxes (see The choice of an abstract
domain, Section 2.2.3 on page 56). Polytopes can also be used but they
require a widening operator as they do not verify the ACC.

Definition 3.5 (Path membership). A path is said to belong to a maze L
if it crosses the boundary between two adjacent boxes of the paving through
a door D.

Example 3.6. This set-membership property is illustrated by Figure 3.3. In
all our figures, doors are shown as holes between brown painted walls.

Definition 3.7 (Doors and walls). For [x] ∈ P , we define:

• Doors ([x]) (or D) is the union of all doors D associated to [x].

• Walls ([x]) (or W) is the set of all points of the boundary of [x] that
are not inside a door of [x].

Remark 3.8. In a computer, a maze can be represented by a set of boxes
{[x] (1) , [x] (2) , . . . , [x] (n)} and doors {D (1) ,D (2) , . . . ,D (n)}. Each box
[x] (i) is linked with the set D (i) of all doors it intersects (see Figure 3.4 on
the next page).

3.2.1 Roads

Definition 3.9 (Road). The pair 〈[x] ,D〉 is called a road.

3.2. MAZES 85

D(1)

[x](2)

[x](3)

[x](1)

D(2)

D(3)

[x](1) [x](2) [x](3)

D(4)
D(4) D(1) D(2) D(3)

D (1) D (3)D (2)

Figure 3.4: Left: A maze made with three roads, Right: the machine repre-
sentation of the links between boxes and doors of the maze.

Remark 3.10. For a given box [x], the set of possible roads 〈[x] ,D〉 is a
complete lattice with respect to the inclusion:

• For the largest element 〈[x] ,>〉, all points of the boundary of [x] belong
to a door. We say that all doors are open or equivalently that there is
no wall.

• For the least element 〈[x] ,⊥〉, D is empty and we say that all doors
are closed.

Definition 3.11 (Convex hull). Given a road 〈[x] ,D〉, we define Conv (D)
as the polytope corresponding to the convex hull of D.

Example 3.12. In Figure 3.3 the yellow polytopes correspond to Conv (D)
for each road of the maze. Figure 3.4 depicts a maze with three roads:
〈[x] (1) , {D (1) ,D (4)}〉, 〈[x] (2) , {D (1) ,D (2)}〉, 〈[x] (3) , {D (2) ,D (3)}〉.
We have Doors ([x] (1)) = D (1) ∪ D (4), Doors ([x] (2)) = D (1) ∪ D (2)
and Doors ([x] (3)) = D (2) ∪ D (3).

3.2.2 Inclusion and lattice

Definition 3.13 (Inclusion). Given two mazes La and Lb. We say that La
is included in Lb, denoted by La ⊂ Lb, if

(i) the boxes of La are sub-boxes of the boxes of Lb and

(ii) all paths in La also belong to Lb.

86 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

⊂

La Lb

Figure 3.5: Inclusion between two mazes.

Example 3.14. An illustration of this definition is given by Figure 3.5 where
the left maze contains less paths than the right maze. Indeed, the left maze
La is included in the right maze Lb, since (i) the 5 boxes of La are all sub-
boxes of the 3 boxes of Lb and (ii) all doors of La are tighter than those of
Lb. Moreover, it is trivial to check that if La ⊂ Lb then all paths in La are
also in Lb, but there is no equivalence.

Definition 3.15 (Operations). Given two mazes La and Lb,

• the meet La∩Lb is define as the largest maze (with respect to ⊂) which
is included in both La and Lb;

• the join La ∪Lb is define as the smallest maze which contains both La
and Lb.

It is trivial to check that the set of mazes of Rn is a lattice.

Remark 3.16. Given a maze L of Rn and a set X ⊂ Rn, L ⊂ X if the
projection on Rn of all paths of L are included in X. Similarly, X ⊂ L if all
paths included in X and consistent with S are included in L.
Remark 3.17. In practice, for two mazes built on the same subpaving, the
meet, respectively the join, operator corresponds to the meet, respectively
the join, operator of corresponding doors. With a door represented by an
abstract domain such as boxes or polytopes, the join operator at the level
of each door will be the convex hull operator. In that case, we will use the
symbol t for the join operation where La ∪ Lb ⊆ La t Lb. The same rule
can be applied if we only have an over approximation of the meet operator
for the abstract domain: La ∩ Lb ⊆ La u Lb.

3.2. MAZES 87

(a) (b) (d)(c)

Figure 3.6: The roads (b), (c), (d) are door-consistent. The polygon
Conv (D) is painted yellow.

3.2.3 Door consistency

Definition 3.18 (Door consistency). The road 〈[x] ,D〉 is said to be door-
consistent with the system S if all paths in [x], that are consistent with the
doors D and with the state equation, remain inside Conv (D).

Remark 3.19. This property means that inside [x] a trajectory cannot leave
Conv (D) and then come back. The concept is illustrated by Figure 3.6. The
road (a) is not door-consistent since some trajectories which are consistent
with the two doors of D may leave Conv (D). The left door of road (a) may
be contracted into road (b) to make the road door-consistent. It may also be
inflated into roads (c) or (d) to get the door-consistency. We can notice that
the inflation proposed by road (c) is more accurate than that of road (d).

Remark 3.20 (Implementation). We do not memorize the yellow polytope
associated with the road 〈[x] (i) ,D (i)〉, but only the doors, since it can be
obtained geometrically by using as a first estimate the outer approximation
of the vector field [f] ([x]) in the box.

The yellow polytope corresponds to the set of all point a ∈ [x] such that
there exists a ray starting from a of direction v ∈ [f] ([x]) that intersects
Doors ([x]). Figure 3.7 illustrates the principle. The visibility contractor
presented in Section 2.3.2.3 on page 65 can be used to obtain the yellow
polytope.

We will see in next sections that after reaching a fixed point, all roads
will be door-consistent. Therefore Conv (D) will be an over approximation
of the road, which is not the case if the road is not door consistent. For
simplicity, we will use Conv (D) to represent the roads in our Figures even
if it might be an over approximation.

88 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

a ∈ [x]

v ∈ [f] ([x])

Doors ([x])

Figure 3.7: Illustration on how the polytope associated to an arbitrary road
can be rebuilt from the doors and the state equation.

3.3 Method and algorithm

As stated in the introduction, to bracket the largest positive invariant set
S included in a set X, we propose to build two complementary constraint
networks. The first one defines the valid paths (i.e., the paths that satisfy
the state equation and that stay in X) and the second one defines the dead
paths (i.e., the paths that satisfy the state equation and that leave X).

Recall that, since the system S is deterministic, there exists a one-to-one
correspondence between each path and the corresponding initial state. This
point is important as it justifies that to characterize a valid path, we can
work with a paving in the space Rn of all initial states rather than in the
set of paths. Indeed, the latter has an infinite dimension and cannot thus be
handled in a computer. In other words, paths of S can be soundly abstracted
by their initial condition2.

We will use mazes as domain of the CN. To bracket S = Inv+
f (X), we

want to obtain two mazes LS+ and LS− representing respectively S+ and S−
such that:

LS− ⊂ S ⊂ LS+ . (3.1)

We will apply contractor or inflator techniques (see Section 2.3.2 on page 62)
such that from an initial state of the domain, i.e. of the maze, we reach a
fixed point that verifies Equation 3.1.

Sections 3.3.1 and 3.3.2 present the method to bracket, respectively the

2Lagrangian methods use a different abstraction as they have to additionally bisect in
the time space which appears to be not necessary for our problem.

3.3. METHOD AND ALGORITHM 89

L0
S+,P = >

S

⊥

L∞
S+,P = gfp

L1
S+,P

Figure 3.8: Lattice representation of mazes with a given paving P and con-
tractions towards a gfp. The grey polygon corresponds to the set of fixed
points.

outer and the inner approximation, of the set S with a given paving3 P .
Section 3.3.3 combines the two subsections and adds the notion of paving
bisection.

3.3.1 Computing an outer approximation for Inv+
f (X)

To compute an outer approximation LS+,P for a given paving P , we will use
a contractor approach by removing dead paths without removing any valid
paths (first strategy of Section 2.3.2 on page 62). LS+,P will be initialized to
top, i.e. all roads equal to 〈[x] ,>〉.

Figure 3.8 illustrates the contractions of the maze starting from an initial
maze L0

S+,P that reaches a gfp.
We need now to define the contractors that will remove dead paths from

the domain. We introduce therefore the two following contractors: the bound-
ary condition contractor and the flow contractor.

Boundary condition contractor (BoundaryContractX (L)) For
each road of the maze, if the corresponding box [x] has an empty intersection
with X then we contract the road to 〈[x] ,⊥〉, i.e. we close all doors linked
to [x].

3In practice, we will assume that the paving P is built such that there exists at least
one box [x] of the paving that is included in X in order to avoid a particular case.

90 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

(a) (b) (c)

a

v

Figure 3.9: Illustration of the flow contractor; the road is contracted back-
ward and the eliminated zones are in blue.

Flow contractor (FlowContractBwdf (L)) We contract each road
〈[x] ,D〉 of the maze with respect to the constraint ẋ = f (x). To do this, we
contract the doors without loosing any point in the set of all a ∈ Doors ([x])
such that there exists a ray starting from a of direction v ∈ [f] ([x]) that does
not intersect Walls ([x]). The contractor4 should be applied only if the
doors are not linked with a box [x] where 0 ∈ [f] ([x]).

The flow contractor operates a backward contraction as a door is con-
tracted in function of the future of the possible trajectories. It also removes
only dead paths and none of the valid paths as the vector flow is over ap-
proximated by [f] ([x]).

Example 3.21. An illustration of the corresponding contractor is given by
Figure 3.9. (a) illustrates a road with the vector field f (x), three doors,
and Conv (D) (the yellow polytope). In (b) an external event comes to
contract the right door (black arrows facing each other). The vector field is
now represented by the gray cone [f] ([x]) computed using interval arithmetic
(see Section 2.2.2.1). The contraction of the bottom and left doors, and the
updated polytope Conv (D) are represented in (c). We can check that after
the contraction, the road is door-consistent since no trajectory can enter in
Conv (D).

Remark 3.22. The constraint is purely geometrical and do not use any time
integration. It can be seen as a zero order approximation of the vector flow.
We here focus on the path and not on the trajectory. Indeed, we do not need

4Details about how the implementation of such contractor can be performed is given
later in Section 3.4.4.

3.3. METHOD AND ALGORITHM 91

to know at what time the trajectory will cross or will never cross a door but
only if there exists an intersection for any time in the future.

Propagation We then combine both contractors by applying the boundary
condition contractor and the flow contractor several times to each road until
a fixed point is reached.

Example 3.23. Figure 3.10 illustrates an example of the propagation. In
Sub-figure (1), all doors of all roads are assumed to be open. Since the blue
box in Sub-figure (2) is outside X (dashed line) all corresponding doors are
closed. In Sub-figures (3)-(6) the propagation contracts backward the roads
without eliminating any valid path, which are all trapped inside the yellow
zone representing the current maze.

Algorithm 3 summarizes the steps to compute the outer approximation
of the largest invariant sets of the set X.

Algorithm 3: Computing the outer approximation
(ComputeOuter).
Input: P , f ,X
Output: S+

1 S+ ← ∅;
2 LS+,P ← {〈[x] ,>〉 | [x] ∈ P};
3 BoundaryContractX (LS+,P);
4 repeat
5 FlowContractBwdf (LS+,P);
6 until fixed point reached ;
7 foreach 〈[x] ,D〉 ∈ LS+,P do
8 S+ ← S+ ∪Conv (D);
9 end

Remark 3.24. Both contractors are monotonic functions and the domain is
a complete lattice. If we chose a domain for the doors that fulfills the ACC
condition then the gfp, i.e. L∞S+,P , can be reached after a finite number of
steps. This is the case for instance with boxes on floating-point numbers IFn.

3.3.2 Computing an inner approximation for Inv+
f (X)

To compute the inner approximation, we want to obtain a maze LS−,P such
that it contains no dead paths and only valid paths. Similarly to the outer

92 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

(5) (6)

[c] [b] [a]

[f]

[e]

[d]

(1) (2)

(3) (4)

X

Figure 3.10: Outer contraction from step (1) to (6). At each step, the yellow
area is contracted and is necessary a superset of S, even if we have not reached
the fixed point yet.

3.3. METHOD AND ALGORITHM 93

approximation, we could have used contraction techniques by removing all
dead paths (second approach of Section 2.3.2 on page 62). The flow contractor
condition would have been changed to “the set of all a ∈ Doors ([x]) such
that all rays starting from a of direction v ∈ [f] ([x]) does not intersect
Walls ([x])”.

However, this contractor is difficult to implement because of the con-
straint “all rays”. We have chosen instead to use the complementary con-
straint network. This amounts to compute an over approximation S+ of the
complementary set S which is equivalent to compute an inner approximation
S− of S where:

S = Inv+
f (X) = {x (0) ∈ Rn | ∃t ≥ 0,x (t) /∈ X} .

To compute LS+,P for a given paving P , we will consider dead paths as the
solution instead of valid paths. We will use an inflator approach which will
add all dead paths (third strategy of Section 2.3.2 on page 62) to the domain.
LS+,P will then be initialized to bottom, i.e., all roads equal to 〈[x] ,⊥〉.

Figure 3.11 illustrates the inflation of the maze starting from an initial
maze L0

S+,P
and which reaches a lfp. The complementary of the lfp is then an

inner approximation of S, i.e. L∞
S+,P
⊂ S, as all dead paths will be enclosed

by L∞
S+,P

. In this case, the fixed point must absolutely be reached to prove
that we have an inner approximation contrary to the outer approximation
case. In the contrary, we do not have any proof that S ⊂ L∞

S+,P
.

Similarly to the outer approximation, we will define inflators that will
add dead paths to the domain. We will introduce therefore two inflators: the
boundary condition inflator and the flow inflator.

Boundary condition inflator (BoundaryInflateX (L)) For each
road of the maze, if the corresponding box [x] intersects X then we inflate
the road to 〈[x] ,>〉, i.e. we open all doors linked to [x].

Flow inflator (FlowInflateBwdf (L)) We inflate each road 〈[x] ,D〉
of the maze with respect to the constraint ẋ = f(x). To do this, we inflate
the doors to enclose all points of the set of all a ∈ Walls ([x]) such that
there exists a ray starting from a of direction v ∈ [f] ([x]) that intersects
Doors ([x]).

As for the flow contractor, we obtain a backward inflation.

Example 3.25. An illustration of the corresponding contractor is given by
Figure 3.12. (a) illustrates a road with the vector field f (x), two doors, and

94 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

L0

S+,P
= ⊥

S

L∞
S+,P

= lfp

>

L∞
S+,P

S

Figure 3.11: Lattice representation of mazes with a given paving P and
inflation towards a lfp. The grey polygon corresponds to the set of fixed
points.

Conv (D) (the yellow polytope). In (b) an external event comes to inflate
the door on the right (opposing black arrows). The inflation of the bottom
and left doors, and the updated polytope Conv (D) are represented in (c).
We can check that after the contraction, the road is door-consistent since no
trajectory can enter in Conv (D).

Propagation Similarly to the outer approximation computation, we com-
bine both inflators by applying the boundary condition inflator and the flow
inflator several times to each road.

Example 3.26. Figure 3.13 illustrates the principle up to a fixed point.
In Sub-figure (1), all doors of all roads are assumed to be closed. Since the
yellow box in Sub-figure (2) intersects X (dashed line) all corresponding doors
are open. In Sub-figures (3)-(5) the propagation inflates backward the roads
by adding all dead paths. Gray areas have not been processed yet. Once the
fixed point is reached, we can conclude that the remaining area, is outside S
(painted in magenta), or equivalently that the magenta area corresponds to
an inner approximation S− of S.

Algorithm 4 summarizes the steps to compute the inner approximation
of the largest invariant sets of the set X.

3.3. METHOD AND ALGORITHM 95

(a) (b) (c)

a

v

Figure 3.12: Illustration of the flow inflation; the road is inflated backward.

Algorithm 4: Computing the inner approximation (ComputeInner).
Input: P , f ,X
Output: S−

1 S− ← ∅;
2 LS+,P ← {〈[x] ,⊥〉 | [x] ∈ P};
3 BoundaryInflateX

(
LS+,P

)
;

4 repeat
5 FlowInflateBwdf

(
LS+,P

)
;

6 until fixed point reached ;
7 foreach 〈[x] ,D〉 ∈ LS+,P do
8 S− ← S− ∪ ([x] \Conv (D));
9 end

96 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

[c] [b] [a]

[f]

[e]

[d]

(1) (2)

(3) (4)

(5) (6)

X

Figure 3.13: Inner inflation from step (1) to step (6). Once the fixed point
is reached at step (6), we conclude that the magenta zone is inside S.

3.3. METHOD AND ALGORITHM 97

3.3.3 Main Algorithm

We can now combine the computation of the inner and outer approximation
to bracket the set S. To reduce the number of operations required, we will
also add a strategy to bisect gradually the paving P . Similarly to the SIVIA
algorithm, we will refine the maze only where it is necessary.

3.3.3.1 Paving bisection

The goal of paving bisection is to reduce the over approximation of the vector
field which is evaluated for each box [x].

Let us take LP , a maze associated to a given paving P , and β, a bisector
(see Definition 2.89 on page 55), we can define a sequence of paving P (k)
such that P (k) = Bisect (P (k − 1)) where Bisect is an operator that
bisects chosen boxes of P using β.

In our case, we will chose to bisect only boxes [x] that verify [x] 6⊂ S−∪S+.
In other words, we will not bisect boxes that have been proven to be com-
pletely outside S (blue area) or completely inside S (magenta area). Algo-
rithm 5 bisects the paving according to this constraint.

Algorithm 5: Bisection of the paving associated to a maze (Bisect).
Input: P (k − 1) ,S−,S+

Output: P (k)
1 P (k)← {∅};
2 foreach [x] ∈ P (k − 1) do
3 if [x] 6⊂ S− ∪ S+ then
4 P (k)← P (k) ∪ β ([x]);
5 else
6 P (k)← P (k) ∪ {[x]};
7 end
8 end

Remark 3.27. Bisecting the paving will intuitively improve the approxima-
tion of the set S. Indeed, if we have a convergent inclusion function [f] for
the system (see Definition 2.76 on page 48), smaller boxes will produce a
more accurate evaluation of the vector field inside the box. Given an ini-
tial box [x] and using β to obtain two bisected boxes [x1] , [x2], we have
([f] ([x1]) ∪ [f] ([x2])) ⊆ [f] ([x]). However, the use of Bisect will multiply
at most by two the number of boxes to consider, at each iteration. This will
result in an exponential growth.

98 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

A more bisected paving would reduce under some conditions the loss
of information largely due to a better evaluation of the system inclusion
function. However, we shall verify that we can correctly set the new created
doors such that the new bisected maze represents the same set of paths.

Proposition 3.28. Let us take 〈[x] ,D〉 a consistent road, and let us consider
[x1], [x2] the two boxes resulting from the bisection of [x]. If Conv (D)∩∂ [x1]
and Conv (D) ∩ ∂ [x2] are representable in the abstract domain of D, then
we can set D1 and D2 as respectively the doors of 〈[x1] ,D1〉 and 〈[x2] ,D2〉
such that we do not add nor remove paths, i.e. Conv (D1) ∪ Conv (D2) =
Conv (D).

Proof. The proof is straightforward. We set D1 = Conv (D) ∩ ∂ [x1] and
D2 = Conv (D) ∩ ∂ [x2] which is possible as they are both representable
in the abstract domain of D. We then have Conv (D1) ∪ Conv (D2) =
Conv (D).

Example 3.29. To illustrate Proposition 3.28, let us consider several exam-
ples. If intervals are used in 2D, then the intersection of Conv (D) with a
door, which is a degenerated box, is also a degenerated box. In 3D we have
to consider polytopes because the use of boxes does not anymore work. To
illustrate the issue, let us consider the example of Figure 3.14 where we use
boxes as the abstract domain of D. Conv (D) (in grey) is a polytope and
the intersection (in red) with a plane of bisection (in blue) is not anymore
a box. In that case, we cannot have Conv (D1) ∪ Conv (D2) = Conv (D).
Indeed Conv (D)∩ ∂ [x1] and Conv (D)∩ ∂ [x2] are not representable in the
domain of the door. The use of the convex hull operator would be required:
[Conv (D) ∩ ∂ [x1]].

Remark 3.30. Another point concerns the bisection heuristic which is critical
in our problem. The more the paving will be bisected, the greater the number
of operations will be, as more boxes will have to be considered. Bisecting the
right boxes is therefore important. Characterizing a set, such as S, amounts
to characterize its boundary. This is why we have chosen to only bisect
doors that are on the boundary of the set S to save computation time (see
the condition [x] 6⊂ S− ∪ S+).

We can see that the bisection increases the number of different distinct
sets of paths that can be represented. This can be seen as a refinement of
the abstraction. To illustrate this point, Figure 3.15 shows the process of
bisection in the state space (top line) and in the powerset space of feasible
paths (bottom line). On the left, we have the initial maze; in the middle,
the box is bisected and doors are set accordingly to Proposition 3.28; finally,

3.3. METHOD AND ALGORITHM 99

[x1]

[x2]

plane of bisection

Conv (D)

Conv (D) ∩ ∂ [x1]

Figure 3.14: Example of bisection in 3D with a closed intersection issue.

on the right, the two roads are contracted. We can see on the powerset
space of feasible paths that we have more distinct sets of paths that can
be represented by the domain. In fact, the bisection added what could be
seen as a new degree of freedom. Therefore, adding doors allows to represent
a more accurate approximation of the set S or at least to obtain the same
approximation.

3.3.3.2 An algorithm to bracket the largest positive invariant set

We can now combine the paving bisection and the computation of the outer
and inner approximation for a given paving. We propose Algorithm 6 to
bracket the largest positive invariant set included in X.

The algorithm is initialized with a paving P and computes the outer and
the inner approximation associated to this paving. If the result is accurate
enough it returns the sets S+ and S−, otherwise it bisects the paving and
recomputes the outer and the inner approximation. The number of time the
algorithm loops will be called the number k of iterations.

Remark 3.31. Note that to simplify the presented algorithm, the mazes are
reset at each loop. In fact, the states of the doors computed at step k − 1

100 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

>

⊥

S

S ⊥

>

S

S ⊥

>

S

S

Figure 3.15: Bisection of the paving P associated to a maze. Top: the maze,
bottom: the associated powerset space of feasible paths.

Algorithm 6: Bracketing the largest positive invariant set.
Input: f ,X
Output: S−,S+

1 P (0)← {Rn};
2 k ← 0;
3 loop
4 S+ ← ComputeOuter (P (k) , f ,X);
5 S− ← ComputeInner (P (k) , f ,X);
6 if not accurate enough then
7 P (k)← Bisect(P (k − 1) ,S−,S+);
8 k ← k + 1;
9 else

10 return S−,S+;
11 end
12 end

3.3. METHOD AND ALGORITHM 101

could be taken into account for the step k (see lines 2 and 2 of respectively
Algorithms 3 and 4).

Most of the time, the end condition is driven by a number of iterations to
achieve, instead of an accuracy condition. This guarantees that the algorithm
will stop (see later Remark 3.34 on convergence issue).

3.3.3.3 Computed enclosure

Proposition 3.32. We have L∞S+,P(k) ⊆ L∞S+,P(k−1) and L∞S+,P(k)
⊇ L∞

S+,P(k−1)
.

Proof. This proposition is only true in the case where the abstract domain
verify the hypothesis of Proposition 3.28. Indeed, given a maze L∞S+,P(k−1), we
can build a maze L0

S+,P(k) such that for each room we verify Proposition 3.28.
As contractions remove non solutions, we will have L∞S+,P(k) ⊆ L∞S+,P(k−1).
This is the same for L∞

S+,P(k)
⊇ L∞

S+,P(k−1)
.

Example 3.33. To illustrate the algorithm, we show on Figure 3.16, for
the outer approximation, the evolution of the maze LS+,P subjected to con-
tractions. The gfp for each paving are represented by black disks • while
the contractions are represented by circles ◦. The blue lines correspond to
one iteration and the red lines to the contractions presented in Section 3.3.1.
At each new iteration, the new gfp is then a subset of the previous gfp, i.e.
L∞S+,P(k) ⊆ L∞S+,P(k−1).

Remark 3.34. Proving that the two sequences
(
L∞S+,P(k)

)
k
and

(
L∞

S+,P(k)

)
k

converge toward S has not been done in this work which is not trivial nor
true in all cases. We only have that L∞

S+,P(k)
⊂ S ⊂ L∞S+,P(k) and also that

L∞S+,P(k) ⊂ L∞S+,P(k−1) and L∞S+,P(k)
⊂ L∞

S+,P(k−1)
. An uncertainty layer could in

fact subsist in the case where we do not have a convergent inclusion function
(see Definition 2.76 on page 48). This can be also the case if we do not have
an exact fixed point transfer (see Section 2.3.1.2).

3.3.3.4 Complexity

Due to the paving bisection, for a given required accuracy, the algorithm has
an exponential complexity with respect to the dimension of the state space.
This is one of the strongest drawback of this algorithm.

However, the algorithm brackets any non specific and not necessarily con-
vex nD5 set using facets which is a problem exponential w.r.t. the dimension.

5n-dimensional

102 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

S

L∞
S+,P(0)

>

L∞
S+,P(1)

L∞
S+,P(k)

Figure 3.16: Paving refinement and associated gfp when computing an outer
approximation under hypothesis of Proposition 3.28.

3.3. METHOD AND ALGORITHM 103

3.3.4 The Van Der Pol example

Largest positive invariant set In this section, we will apply the algo-
rithm on the Van Der Pol system. We recall the evolution function of this
non-linear system:

f (x) =

(
x2

(1− x2
1)x2 − x1

)
.

We want to bracket the set S = Inv+
f (X). Let us take X = [−3, 3]×[−3, 3].

Figure 3.17 shows6 the two sets S− (in magenta) and S+ (magenta and yellow)
at different steps k. We can note that we need to reach step 11 to obtain
a non-empty inner approximation of the set S. We can verify that there is
always a yellow boundary between the states that have been proved to be
outside S (in blue) and states that have been proven to be inside S (magenta).
This boundary is called the uncertainty layer.

Computation time For each iteration step, we can measure the compu-
tation time and the volume of the uncertainty layer. Figure 3.18 shows the
result with a logarithm scale. As expected, the computation time is expo-
nential with the iteration because of bisections. We clearly see the effect of
the non empty inner approximation after step 11 that considerably reduces
the volume of the uncertainty layer. This also allows to reduce the number
of boxes considered by the algorithm as shown on the right figure. Indeed,
boxes that are completely inside S no longer need to be considered again.

Largest negative invariant set We can compute easily the largest nega-
tive invariant associated to the Van Der Pol system, with the same algorithm,
by using Remark 2.28: Inv−f (X) = Inv+

−f (X). The result is shown in Fig-
ure 3.19.

3.3.5 Parameters that affect the speed of convergence

We will deal here with the parameters that have been found to have an effect
on the speed of convergence, i.e. the speed of the decrease of the uncertainty
layer. We also give for each of these parameters some perspectives that would
improve the computations.

6All computations in this document, unless otherwise stated, have been conducted on
an i5-3320M processor with 8GiB of RAM.

104 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

(a) k = 1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

(b) k = 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

(c) k = 8

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

(d) k = 11

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

(e) k = 14

Figure 3.17: Bracket of Inv+(f ,X) at different iteration steps.

3.3. METHOD AND ALGORITHM 105

0 3 6 9 12 15 18
Iteration

10-3

10-2

10-1

100

101

It
e
ra

ti
o
n
 p

ro
ce

ss
in

g
 t

im
e
 (

in
 s

e
c)

10-1

100

101

102

U
n
ce

rt
a
in

ty
 l
a
y
e
r

v
o
lu

m
e

(a)

0 3 6 9 12 15 18
Iteration

10-3

10-2

10-1

100

101

It
e
ra

ti
o
n
 p

ro
ce

ss
in

g
 t

im
e
 (

in
 s

e
c)

100

101

102

103

104

105

N
u
m

b
e
r

o
f

b
o
x
e
s

(b)

Figure 3.18: Volume of the uncertainty layer (3.18a) and number of boxes
considered (3.18b) along with the processing time at each iteration (standard
deviation for 30 samples per iterations).

106 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

Figure 3.19: Largest negative invariant set of the Van Der Pol System (k =
13).

3.3. METHOD AND ALGORITHM 107

Vector field approximation The more the approximation of the vector
field in a box is accurate, the better the contraction will be. Providing to
the algorithm a minimal inclusion function (see Definition 2.76 on page 48)
or at least an efficient one reduces the number of bisections needed.

For higher space dimension, the use of at least a first order vector field
approximation could improve the approximation. All contractors and infla-
tors would have to be rewritten. The drawback is that the use of a better
approximation of the vector field requires more complex computations and
costs therefore more time.

Bisection heuristic The bisection heuristic is crucial. We could, for in-
stance, focus the effort of bisection to the boxes where the vector field ap-
proximation is the less accurate. However, most of the time it is difficult
to predict the effect of such heuristic as large areas of the state space, with
poor vector field approximation, can be eliminated after the propagation of
constraints from an other part of the state space.

Nevertheless, choosing a bisection ratio different than 0.5 or prioritizing
the bisection of certain areas of the state space shall be studied in certain
specific cases.

Constraint propagation heuristic The order in which constraints are
resolved has a significant impact on the processing time. This point will be
developed later in Section 3.4.3.

Abstract domain of doors The choice of the abstract domain of doors
is obviously important. The abstract domain should limit as far as possible
any loss of information but it should also limit too costly computations and
too import memory footprint. A compromise need to be found between the
two objectives. This point is one of the major limitations of the method to
be scaled up to high-dimensional systems.

Choosing different abstract domains for different areas of the state space
could be an interesting idea to explore.

Contractor and inflators The efficiency of contractor and inflators can
be improved. For instance the boundary conditions can be studied at the
scale of the door rather than at the box level.

108 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

3.4 Toward an implementation

In this section, we will focus on advanced properties and issues of mazes that
are required to be studied when the method is implemented in a computer.
We have chosen to present them in this second stage for the sake of clarity.

3.4.1 The sliding issue

The sliding issue is a geometrical problem that appears due to the paving.
It degrades the performances of the set approximation using mazes. We
present here the phenomenon and we propose a very first approach to handle
the issue. A more detailed study shall be undertaken in future works, in
particular a general formalization of the problem along with theorems and
proofs.

3.4.1.1 Problem statement

Similarly to the problem of infinite time integration with a Lagrangian ap-
proach, an issue of infinite transitions occurs with an Eulerian approach.
This effect appears when the flow contractor is used. Indeed, some dead
paths may be kept which produces a larger over approximation than what
could have been obtained.

Example 3.35. Let us consider the example of Figure 3.20. The initial state
of the maze is on the left of the figure and the expected contracted road is
on the right. If we use the FlowContractBwd operator as presented
previously, none of the roads are contracted.

Indeed, roads are only considered individually. Indeed, if we consider [x1],
then for all a ∈ D (3) there exists a ray v starting from a that does not cross
any wall. Indeed, it can escape through the bottom. This is the same if we
only consider [x2]. No contraction can therefore be accomplished.

However, from a global point of view, we know that a path starting from
a will ultimately cross a wall: in our case the left one. It requires here to look
at what the path become after living [x1] which means to study the sequence
of next transitions. Unfortunately, the path may ultimately cross an infinite
number of time the door between [x1] and [x2] before reaching the wall: it is
then impossible to study all the transitions.

The phenomenon described by Example 3.35 appears when the path can
carry out a sliding between two boxes before leaving them. This can be seen
as a Zeno problem. More formally, the sliding phenomenon appears when we

3.4. TOWARD AN IMPLEMENTATION 109

a

[x1]

[x2]

D (1)

D (2)D (4)

D (3)

D (5)

D (6)

D (7)

Figure 3.20: A sliding issue example between two 2D boxes.

have for a door:
0 ∈ {n · v | v ∈ [v]} (3.2)

where n is the normal vector space of the door and [v] is the union of all
boxes vector fields the door is part of.

Example 3.36 (Example in higher dimension). In 3D, sliding paths can have
a helicoidal pattern. In Figure 3.21 we have represented four boxes associated
to a green vector field with two zeros in its component (horizontally). We
want to contract the yellow doors according to the red walls. We know that
paths, as the orange-painted one, will reach a wall at the end. Similarly to
the 2D case, the simple FlowContractBwd cannot contract the doors. In
this case the path can slide for instance between four boxes with a helicoidal
pattern.

3.4.1.2 Graph model of Mazes

Mazes can be modeled as a directed graph G. The vertexes are the doors and
the directional edges correspond to the existence of a possible path between
two doors of the same box.

Example 3.37. Figure 3.22 represents the directed graph of the maze of
Figure 3.20. Each door is represented by a circle. The possible paths between
doors, according to the vector flow, are shown through a directional arrow.
We have separated the edges in two categories: the blue ones that correspond
to paths inside [x1] and the red ones that correspond to paths inside [x2].
The blue and red edges correspond also to a different vector flow.

110 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

Figure 3.21: Helicoidal sliding trajectories in a 3D maze. The vector field is
represented by the set of green arrows. Doors are in yellow and walls in red.
An example of path is orange painted.

D (4)

D (1)

D (2)

D (3)

D (7)

D (6)

D (5)

[x1]

[x2]

Figure 3.22: Maze and graph G1 representation of Figure 3.20.

3.4. TOWARD AN IMPLEMENTATION 111

Definition 3.38 (Positive neighbors). A door D2 is positively linked to a
door D1 if there exists a path starting from D1 that reaches D2 without
crossing any other doors nor any walls.

We define the set N+ (D) of all doors which are positively linked with D.
N+ (D) will be called the positive neighbors of D.
Example 3.39. In Figure 3.22, we have N+ (D (3)) = {D (4) ,D (7) ,D (3)}.
Remark 3.40. The graph should be carefully interpreted. It is not because
D (5) is linked to D (3) and D (3) to D (4), that there will exist a valid
path that starts from a point of D (5) and reaches D (4). Indeed, G1 a one
transition graph that over approximates the system dynamics. It is analog to
an adjacent matrix for a graph. A two transitions G2 would have given, for
instance, the link between two doors if there exists a path that starts from
the first one, crosses a door, and reaches the second one without crossing
any wall. Algorithm 6, which is used to solve the CN, works only with a
one transition graph as we study paths from one door to the eventually next
door they will cross.

In the general case, some loops that do not exist in the dynamical system
appear due to an over approximation of the vector flow. The bisection of
the paving usually solves this issue. However, in the sliding case, this will
not happen as the loop is due to the door geometrical orientation which is
collinear with the vector flow.

Example 3.41. In our 2D example a geometrical loop artifact appears for
D (3). In the 3D case of Figure 3.21, we have the same phenomenon but
between four doors and not only a single door.

3.4.1.3 Graph rebuilding

To avoid any loop artifacts, we will modify locally the graph while keeping
all valid paths. This aims to modify the abstract domain to limiting a loss
of information. The operation can also be seen as a new contractor.

Example 3.42. If we take back the example of Figure 3.22, we know that
paths will at the end cross D (4) or D (7). We can then study how paths
starting from D (3) will leave both [x1] and [x2] instead of considering them
individually. We here adopt a door centered paradigm instead of a box
centered paradigm as shown in Figure 3.23. We do not study how the path
will evolve between [x1] or [x2] but only if it will leave the union.

More generally, let Ds be a door where we have a sliding issue. We want
to find a modified set N+ (Ds) where there is no loop artifacts. The steps are
the following:

112 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

D (4)

D (3)

D (7)

[x1]

[x2]

Figure 3.23: Graph rebuilding for the FlowContractBwd operator.

Ds
Ds

N+ (Ds) N+
s (Ds)

Figure 3.24: Update of the graph neighbors in case of sliding paths for a
simplified version of Figure 3.21.

1. We find the set C of all doors that are part of directed cycles which
includes Ds. This set can be easily computed using classic graph algo-
rithms such as the Tarjan’s strongly connected components algorithm
limited to the strongly connected component that contains Ds.

2. We define the new positive neighbors as:

N+
s (Ds) =

{
D ∈ N+ (DC) ,DC ∈ C | D /∈ C

}
.

N+
s (Ds) corresponds to the doors that can be reached from the cycles but

that do not belong to the cycles. It means that paths starting from Ds will
not be trapped into any cycles. This operation can be seen as an operator
that modify the graph. We will call it the graph rebuilder.

Example 3.43. In Figure 3.24, we present a simplified version of the graph
of the 3D helicoidal example of Figure 3.21. The red vertexes correspond
to the walls (or the closed doors) and the yellow vertexes to the doors. We
painted in blue the cycle which contains the door we want to contract. On
the right of the figure, we can see the new set N+

s (Ds) which avoids any loop
artifacts.

Remark 3.44. In some cases, large cycles may appear due to the form of the
vector fields. In that case, the graph rebuilder has no effect. Indeed, we have

3.4. TOWARD AN IMPLEMENTATION 113

Ds

N+
s (Ds)

Ds

N+
s2 (Ds)

Ds

Ds

N+ (Ds)

Figure 3.25: A simple example of graph where using the G2 to compute the
neighbors improves the contractions.

to use the union of all vector fields that can be encountered by paths. In
Figure 3.25 we have chosen a very simple and specific example to illustrate
a way to deal with large cycles.

There are several ways to improve the algorithm, we can for instance
compute the G2 for Ds to remove some vertexes that cannot be reached by
a cycle starting from Ds. In the bottom of Figure 3.25, we have represented
the following sets: N+ (Ds), N+

s (Ds) and N+
s2 (Ds) where the last one takes

into account the G2 for Ds.
Remark 3.45. In our implementation, that is available online (see Sec-
tion 1.3), we did not fully implement the sliding issue in dimension greater
than two. This is why we will mainly focus on 2D examples in the following
chapters.

114 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

3.4.2 Using abstract domains without the ACC

We consider here domains that do not fulfill the ACC such as polytopes.
In that case, we have no guarantee that a fixed point can be reached by
the abstract domain. This implies that the algorithm will never converge
to a fixed point and so will never stop. Unfortunately, we have seen that
polytopes were necessary in dimensions greater than two (see Section 3.3.3.3
on page 101).

The problem is slightly different if we deal with the inner or the outer
approximation. Indeed, to compute an inner approximation a fixed point
must be reached. At the opposite, to compute an outer approximation, we
can stop at any time the algorithm as an outer approximation is obtained at
every steps7.

To tackle the issue in the case of the inner approximation, a widening op-
erator has to be used. The idea is to over approximate the inflations in order
to overshoot the lfp, i.e. L∞

S+,P
, and to stop to an over approximation L∞,

`

S+,P
.

To improve the result, we can apply a finite number of contractions that will
help to obtain a better over approximation of the lfp. This will reduce the
effect of the widening operator. This operation is called a narrowing in the
AI community.

Example 3.46. Figure 3.26 illustrates the principle. The red arrow corre-
sponds to the inflation of the maze up to an overshoot of the lfp (L∞

S+,P
).

We recall that the lfp may not be representable, in a computer, by the maze.
We therefore have reached an other lfp under widening (L∞,

`

S+,P
⊇ L∞

S+,P
).

The blue arrow corresponds to a finite number of contractions that reduce
thereafter the uncertainty using the FlowContractBwd operator. The
complementary of the obtained maze is then taken to obtain an inner ap-
proximation of S.

3.4.3 Constraint propagation heuristic and multi-
threading capabilities

Propagation heuristic The number of roads to process depends mainly
on the heuristic of constraint propagation. By heuristic we mean to decide,
given a set of roads to process, how we schedule the computation. In the case
where we process roads one by one, we can define a set of optimal heuristics
that reaches the fixed point in a minimum number of operations. Finding

7In practice, we allow for each road a maximum number of contractions, when using
polytopes.

3.4. TOWARD AN IMPLEMENTATION 115

L0

S+,P
= ⊥

S L∞
S+,P

= lfp

>

L∞,5
S+,P

Figure 3.26: Computing the inner approximation with a widening opera-
tor. The grey area corresponds to the fixed points of the operator without
widening.

these optimal heuristics seems however difficult as it depends mainly on the
shape of the vector field.

Example 3.47. To illustrate the choice of a heuristic, let us consider the
simple example of Figure 3.27. We have been using two different heuristics:
one for the top mazes and one for the bottom mazes. In the top case, we start
by contracting (3) → (2) → (5) → (4), then (6) → (5) → (4) → (8) → (7)
and finally (9) → (8) → (7). In the bottom case, we use a different order
which is more efficient: (3) → (6) → (9), then (2) → (5) → (8) and finally
(4) → (7). In both cases we reached the fixed point. However, in the first
case, 12 operations were needed whereas only 8 in the second case. In fact,
the second case has here an optimal heuristic where we chose to process boxes
“perpendicularly” to the vector field.

Link to multithreading One of the benefits of the graph maze structure
is that the constraint resolution for each door or road can be multithreaded.
We can update in parallel all the doors to a new state according to the
previous state of their neighbors. Using multithreading not only increases
the number of parallel processing capabilities, but it also helps to better find
an optimal heuristic. In the example of Figure 3.27, the optimal heuristic is
here sequential: parallel computation is not needed. However, as it is difficult
to guess the optimal order, exploring different heuristics simultaneously will
improve the computation time.

116 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.27: Propagation of constraint in a maze using two different heuris-
tics.

Example 3.48. Figure 3.28 shows the result of the computation time of the
Van Der Pol example using from one to four threads. We clearly see the
performance gain between a unique thread and two threads that might be
explained by the heuristic of constraint propagation.

3.4.4 Using existing libraries

In this section, we will look at the implementation of the
FlowContractBwd and FlowInflateBwd operators.

In the 2D case, we can use the visibility contractor (see Section 2.3.2.3) to
implement the FlowContractBwd and FlowInflateBwd operators.

In a more nD general case, we will discuss here how the Parma Polyhedra
Library (PPL) can be used to implement both operators. We have chosen in
PPL the convex closed polytopes to be the abstract domains of doors.

PPL defines and implements a time-elapse operator (Halbwachs, Proy,
and Roumanoff, 1997) denoted↗ which for two non necessarily closed (NNC)
polytopes P,Q in Rn, computes P ↗ Q as the smallest NNC polytope
containing the set:{

p + λq ∈ Rn | p ∈ P,q ∈ Q, λ ∈ R+
}
.

3.4. TOWARD AN IMPLEMENTATION 117

11 12 13 14 15 16 17 18
Iteration

0

2

4

6

8

10

It
e
ra

ti
o
n
 p

ro
ce

ss
in

g
 t

im
e
 (

in
 s

e
c)

1 thread
2 thread
3 thread
4 thread

Figure 3.28: Multithreading on the Van Der Pol example of Section 3.3.4
(standard deviation for 30 samples). The difference between one thread and
two threads could be explained by a better heuristic of constraint propaga-
tion.

118 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

D (3)

D (2)D (4)

D (1) ⋃
D∈{D(1),D(2)} (D ↗ (− [v]))

Figure 3.29: The time-elapse operator with the FlowContractBwd op-
erator.

Let us take 〈[x] ,D〉, a road composed of a set of doors {D (0) , . . . ,D (l)}.
We denote D> (·) the largest possible state of a door, i.e. a completely open
door. We set [v] as the outer approximation8 of the vector field in [x]. We
recall that the intersection of a closed polytope with a NNC polytope is a
closed polytope.

The FlowContractBwd can be written for each door as:

D (k) = D (k) ∩
⋃

D∈N+(D(k))

(D ↗ (− [v])) . (3.3)

The FlowInflateBwd can similarly be written as:

D (k) = D (k) ∪
⋃

D∈N+(D(k))

(
(D ↗ (− [v])) ∩ D> (k)

)
. (3.4)

Example 3.49. Figure 3.29 illustrates equation (3.3) with a 2D example.
The door D (4) is contracted using the FlowContractBwd operator.

Remark 3.50. In the case of sliding paths, we use the modified version of the
neighbors N+

s (D (k)) for the FlowContractBwd. The vector field [v] is
changed to the union of all the boxes vector fields the path can cross. This
is not necessary for the FlowInflateBwd.

We can note that the implementation of the FlowContractBwd and
FlowInflateBwd are relatively closed. This also justifies the use of a com-
plementary approach to compute the inner approximation (see Section 3.3.2).

8[v] is a box and so a particular type of polytope.

3.5. DIFFERENTIAL INCLUSION & SYSTEM WITH INPUT 119

3.5 Extension to differential inclusion and sys-
tem with input

In this section, we will focus on extending the previous results about bracket-
ing a largest positive invariant set to the bracket of a largest positive viable set.
The dynamical system will be defined by a differential inclusion or an evolu-
tion function with an input. The set S is now defined as S = Viab+

f (X,U),
and we will try to compute an outer S+ and an inner S− approximation of S.

The dynamical system will be modeled by the following state equation:

ẋ = f (x,u)

where x ∈ Rn is the state vector, f the evolution function and u ∈ U an
input function or a noise function.

We will show that mazes and their dedicated algorithms, presented pre-
viously, can be directly extended to compute the outer approximation and
require only some adjustments to compute the inner approximation.

Remark 3.51. Definition 3.1 of valid paths can be extended to the case where
the system has an input. An initial condition is considered valid or viable if
it is associated to an input function u ∈ U such that the path is feasible and
all its points belong to X.

3.5.1 Outer approximation

We recall, that to compute an outer approximation LS+,P for a given paving
P , we use a contractor approach by removing dead paths without remov-
ing any valid paths (see Section 3.3.1 on page 89). This means that a
state x ∈ Rn is outside S+ if: ∀u ∈ U ,∃t ≥ 0, ϕf ,u (x, t) /∈ X. We
then must update the FlowContractBwdf (L) but we can keep the
BoundaryContractX (L).

The update constraint is the following: doors are contracted without
loosing any point in the set of all a ∈ Doors ([x]) such that there exists
a ray starting from a of direction v ∈ [f] ([x] , [u]) that does not intersect
Walls ([x]), where [u] = [{u (x) | ∀x ∈ [x] ,∀u ∈ U}].
Remark 3.52. The only difference in the algorithm is the way the over ap-
proximation of the vector field is computed. We use the box hull of the union
of all vector fields associated to all the possible inputs.

Example 3.53. Figure 3.30 shows, similarly to Figure 3.9, the
FlowContractBwdf (L) version with an input. We have drawn the vec-
tor field for two examples of input (in green): u1 and u2 which both belong

120 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

(a) (b) (c)

a

v

u1
u2

u1

u2

[f] ([x] , [u])

Figure 3.30: The flow contractor with an input.

to U . The large gray cone corresponds to [f] ([x] , [u]) and we can see that
[f] ([x] ,u1) and [f] ([x] ,u2) are subsets of this cone. Doors will be contracted
for the states x if for any input u ∈ U , the path reaches a wall.

3.5.2 Inner approximation

The inner approximation is more difficult to obtain. The principle is still to
add all dead paths to the maze. We keep the complementary approach and
the idea of an inflation of the doors with a FlowInflateBwdf (L) operator.

The new constraint is the following: we inflate the doors to enclose all
points of the set A of all a ∈Walls ([x]) such that for all u ∈ U , there exists
a ray starting from a of direction v ∈ [f] ([x] ,u) that intersects Doors ([x]).

Example 3.54. To illustrate the inflator, let us consider the simple example
in Figure 3.31. We have a box where the set U is composed of only two con-
stant input functions u1 and u2, i.e. U = {u1,u2}. Similarly to Figure 3.12,
the right door is inflated after an external event (middle maze). For the state
a, we can chose the input u1 in order to be sure to not cross a door. This is
the same for the state c but with the input u2. Both states should not then
be added at that stage to LS+,P . This is not the case for the state b as we
cannot find an input u such that there does not exist a ray v ∈ [f] ([x] ,u)
that might intersect a door. Indeed, we do not know if the path will finally
cross the door but there is a risk due to the over-approximation of the vector
field.

From the previous example, we can see that computing the set A amounts
to compute the intersection for all u ∈ U of the FlowInflateBwdf oper-

3.5. DIFFERENTIAL INCLUSION & SYSTEM WITH INPUT 121

u1

u2

a

b

c

Figure 3.31: Illustration of the flow inflate with a set of two input functions.

ator. Indeed, we have:{
a ∈Walls ([x]) | ∀u ∈ U ,∃v ∈ [f] ([x] ,u) ,∀t ≥ 0,

ϕf ,u (a, t) ∈ Doors ([x])
}

=
⋂
u∈U

{
a ∈Walls ([x]) | ∃v ∈ [f] ([x] ,u) ,∀t ≥ 0,

ϕf ,u (a, t) ∈ Doors ([x])
}

=
⋂
u∈U

{FlowInflateBwdf (Walls ([x]))}

Remark 3.55. If we compute the previous intersection for a subset of U in-
stead of for all u ∈ U , we will obtain an over approximation of the set that
will give an under approximation of S−. This point is important as it justifies
that we can choose a finite set of input functions to compute the inner ap-
proximation.9 This is indeed required to be able to implement the algorithm.
Note that for the outer approximation the whole set U is considered as we
take its convex hull.

In practice, we will choose to define U as the set of piecewise functions
that have a constant value {u1, . . . ,ul} for each box. The more the number of
possible constant values will be taken into account in each box, the more the
inner approximation will be accurate. To be efficient, each constant value
should be chosen in order to provide a boundary behavior: for example a
maximum left or right turn for a car.

Remark 3.56. To avoid any issues with sliding paths, we shall verify that
9For instance the edges of the convex hull of U

122 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

there is no zero component in the union of all the inputs. The test condition
of Equation 3.2 becomes:

0 ∈ {n · v | v ∈ [f] ([x] , [u])} .
Remark 3.57. Similarly to Section 3.4.4, the FlowInflateBwdf is imple-
mented using the PPL with the following equation:

D (k) = D (k) ∪
⋂

u∈{u1,...,ul}

 ⋃
D∈N+(D(k))

(
(D ↗ (− [u])) ∩ D> (k)

) . (3.5)

Note that the union operator, which is usually a convex hull operator,
produces an over-approximation and thus should be applied as late as possi-
ble. We can improve Equation 3.5 through a simple re-factorizing:

(Du1,1 ∪ Du1,2 ∪ . . .) ∩ (Du2,1 ∪ Du2,2 ∪ . . .) ∩ . . . = (Du1,1 ∩ Du2,1 ∩ . . .) ∪
(Du1,1 ∩ Du2,2 ∩ . . .) ∪

We then have:

D (k) =D (k) ∪
⋃

{(D1,...,Dl)|D1,...,Dl∈N+(D(k))}

(
⋂

〈u,D〉∈{〈u1,D1〉,...,〈ul,Dl〉}

(
(D ↗ (− [u])) ∩ D> (k)

))
. (3.6)

However, more operations will be generated with Equation 3.6 as the
number of operations will be exponential with the number of ul considered.

3.5.3 The example of the reverse Van Der Pol system
with an input

To illustrate this extension to dynamical systems with an input, we will
consider a reverse Van Der Pol system with an input. This system has a
stable equilibrium point in 0 and an unstable cycle. We choose the following
evolution function:

f (x,u) = −
(

x2 + u1

(1− x2
1)x2 − x1 + u2

)
where u ∈ U = [−0.2, 0.2] × [−0.5, 0.5]. We want to compute Viab+

f (X,U)
for X = [−3, 3] × [4, 4] \ {x | x2

1 + x2
2 ≤ 1}. It means that we remove the

3.6. CONCLUSION 123

s -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x2

Figure 3.32: Example of the largest viable set for the reverse Van Der Pol
system with an input.

stable equilibrium point. Therefore, the system is unstable for a constant
input function.

We chose four different inputs to compute the inner approximation
that are the edges of the convex hull of U : u1 = (−0.2,−0.5)ᵀ ,u2 =
(−0.2, 0.5)ᵀ ,u3 = (0.2,−0.5)ᵀ ,u4 = (0.2, 0.5)ᵀ. Figure 3.32 shows the re-
sult of the algorithm.

3.6 Conclusion

In this chapter, we have been focusing on bracketing the largest positive
invariant sets of a non linear dynamical system. The problem has been
formalized through the CN framework. We have proposed a new domain
called maze that abstracts paths. We have also presented tools such as
inflators and contractors that enable to take into account constraints on

124 CHAPTER 3. MAZES: A NEW ABSTRACT DOMAIN FOR PATHS

paths. Finally, a general algorithm was proposed to obtain the bracket of
the largest positive invariant.

In a second time we have highlighted the limits of mazes and we have
shown how the algorithm could be implemented in a computer. The main
drawback of mazes is that the associated algorithms are exponential with the
dimension of the state space. However, several interesting results were obtain
on different examples such as the bracket of the largest invariant set of a Van
Der Pol system. Moreover, there are several perspectives of improvement of
the algorithms in particular concerning the sliding issue. This would probably
allow to deal efficiently with problems that have a dimension greater than
two.

Finally, we have shown how we can extend, with little changes, the algo-
rithms to compute the largest viable set of a dynamical system.

We now have an efficient tool to compute positive or negative invariant
sets. We will see in the next chapter how this tool can be the cornerstone to
solve more complex problems.

Chapter 4

Applications of invariant sets

Contents
4.1 The largest positive and negative invariant sets . 126

4.1.1 The problem . 126

4.1.2 Application: the example of isobath navigation . . 127

4.2 Forward & Backward reach sets 134

4.3 Attraction basin . 141

4.4 Capture reach set 145

4.5 Eulerian state estimation 147

4.5.1 Formalism . 149

4.5.2 Invariant sets approach 149

4.6 Conclusion . 156

125

126 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

In this chapter we will show how several classic problems involving dy-
namical systems can be translated into the bracket of an invariant set. We
will successively look at the problem of bracketing the largest invariant sets,
i.e. positively and negatively, bracketing backward and forward reach sets,
bracketing attraction basins and bracketing capture reach sets. Finally, we
will propose an Eulerian state estimator that synthesizes the previous prob-
lems in a unique framework.

We will try to give throughout this chapter, practical examples that il-
lustrate how invariant sets can be used to solve robotic problems.

4.1 The largest positive and negative invariant
sets

4.1.1 The problem

A positive and negative invariant set can be computed from the positive
invariant set and the negative invariant set. Indeed, we have Invf (X) =
Inv+

f (X)∩ Inv− (f ,X) as proved in Remark 2.28. We also recall that at each
step of the Algorithm 6, we have with Sp = Inv+

f (X) and Sn = Inv−f (X):L
∞
Sp

+
,P(k)

⊆ Inv+
f (X) ⊆ L∞S+p ,P(k)

L∞
Sn

+
,P(k)

⊆ Inv−f (X) ⊆ L∞S+n ,P(k)

.

As mazes and invariant sets have a lattice structure, we have1:(
L∞

Sp
+
,P(k)
∩ L∞

Sn
+
,P(k)

)
⊆ Invf (X) ⊆

(
L∞S+p ,P(k)

∩ L∞S+n ,P(k)

)
which is equivalent by applying the De Morgan’s law2 to:(

L∞
Sp

+
,P(k)
t L∞

Sn
+
,P(k)

)
⊆ Invf (X) ⊆

(
L∞S+p ,P(k)

∩ L∞S+n ,P(k)

)
.

We can then compute at each step k the set Invf (X). This result can be
extended similarly to the largest viable set Viabf (X,U).

Remark 4.1. In practice, for the outer approximation, the intersection
between L∞S+p ,P(k)

and L∞S+n ,P(k)
can be computed during the constraint

propagation process by applying successively FlowInflateBwdf (·) and
FlowInflateBwd−f (·) to the doors. However, in the case of the inner

1see Remark 3.17 on the intersection of two mazes with the same subpaving
2The law is recalled in Remark 2.16 on page 23

4.1. THE LARGEST POSITIVE AND NEGATIVE INVARIANT SETS127

approximation, it is more efficient to delay the union operation after the fix
point as the join operator adds uncertainties.

Example 4.2. Let us consider the following system which models the mag-
netic field of a dipole: {

x1 = x1+1
(x1+1)2+x22

− (x1−1)

(x1−1)2+x22

x2 = x2
(x1+1)2+x22

− x2

(x1−1)2+x22

and let X = [−2, 2]× [−2, 2]. We want to compute the set Inv+
f (X), Inv−f (X)

and Invf (X). The system has an attractive equilibrium point in xa = (1, 0)ᵀ

and a repulsive one in xr = (−1, 0)ᵀ.
Figure 4.1 shows the largest positive invariant Inv+

f (X), the largest neg-
ative invariant Inv−f (X) and the vector field of the system. For these sets,
we use results from Chapter 3. Figure 4.2 shows the largest positive and
negative invariant Invf (X). We see that in this example, the three sets are
different from each other.

4.1.2 Application: the example of isobath navigation

In this section, we will show, by way of example, how we can use invariant
sets to guarantee the controller of a robot. The example is not directly linked
to the problem of ocean currents navigation, but we thought that it is an
interesting illustration of invariants.

The problem We consider here the problem of isobath navigation from
(Jaulin, 2018). A low-cost AUV should navigate in a known bathymetry3

map h (x, y) such as the one presented in the introduction (see Figure 1.3 on
page 8). The robot can be modeled using the following state equations:

ẋ = f (x,u) =

 x
y
ψ

 =

 cos (φ)
sin (φ)
u

The robot is assumed to be able to compute the local value of h by adding

its depth z and its altitude z−h (x, y) which is measured by an acoustic echo
sounder (see Figure 4.3). We also assume that it can measure the gradient

3an underwater Digital Elevation Model

128 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

xr

xa

(a)

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

xr xa

(b)

- 2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5
x1

- 2.0

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5

x
2

xr
xa

(c)

Figure 4.1: The largest negative invariant (a), the largest positive invariant
(b) for the dipole system and the associate vector field (c).

4.1. THE LARGEST POSITIVE AND NEGATIVE INVARIANT SETS129

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

xr xa

Figure 4.2: The largest positive and negative invariant for the dipole system.

130 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

Surface

Seabed

h(x, y)

y1

z

AUV

0

Figure 4.3: Isobath navigation with an AUV.

of h in its frame.4 The observation function of the system is:
y1 = h (x, y)− z
y2 = angle (∇h (x, y))− ψ
y3 = z

,

where y1 is the altitude, y2 is the gradient of h in the robot frame and z3 the
depth.

As it is difficult to localize robots underwater, a navigation strategy that
consists of following isobaths, i.e. underwater level curves, is proposed. For
instance, the robot can be set to follow 10 m isobaths with the controller
proposed in (Jaulin, 2018):

u = − tanh (h0 + y3 + y1) + sawtooth
(
y2 +

π

2

)
,

where h0 is the desired depth of the isobath and sawtooth (θ) =
2 arctan

(
tan
(
θ
2

))
.

We then have a closed-loop system of the form ẋ = f (x). We assume
that the robot is released in an area X ⊂ R2. Two questions can be raised:

1. Can we find the set of positions where we can release the robot such
that it will stay forever inside X?

2. Can we find the set of paths toward which the robot will converge if it
stays forever inside X?

4In practice, this data can be retrieved using a Kalman filter and the movements of
the robot.

4.1. THE LARGEST POSITIVE AND NEGATIVE INVARIANT SETS131

- 6
- 4

- 2
0

2
4

6 - 6
- 4

- 2
0

2
4

9.75

9.50

9.25

9.00

8.75

8.50

8.25

8.00

10.2

9.9

9.6

9.3

9.0

8.7

8.4

8.1

7.8

Figure 4.4: Bathymetry of the example.

The first problem amounts to bracket the largest positive invariant set
Inv+

f (X) of the system. The second problem amounts to bracket the largest
positive and negative invariant set Invf (X). Indeed, Invf (X) combines the
paths that will stay forever in the future in X and in this set, we only keep
paths that were forever in the past inside X. Therefore, if the robot is re-
leased in Inv+

f (X), it will converge toward Invf (X) as we are in a 2D system
(see the Poincare–Bendixson Theorem 2.13 on page 21).

Example Let us take the following bathymetry function (see Figure 4.4):

h (x, y) = 2e−
(x+2)2+(y+2)2

10 + 2e−
(x−2)2+(y−2)2

10 − 10,

and we set X = [−6, 6] × [−6, 6] \ {C1,C2,C3} where C1,C2 and C3

are three disks of radius 0.5, centered respectively in (1.78129, 1.78129)ᵀ,
(−1.78129,−1.78129)ᵀ and (0, 0)ᵀ. They correspond to the two summits and
the saddle point.

Figure 4.4 shows Inv+
f (X) and Invf (X) if we set h0 = 9 m. Note that

Invf (X) does not have an inner approximation as the set has no volume.
Remark 4.3. In the case of a real bathymetry dataset, we can use the dataset
contractor5, Cdataset, to efficiently evaluate the interval version of h by con-

5see Section 2.3.3.2 and in particular Example 2.120

132 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

x1

x2

(a)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

x1

x2

(b)

Figure 4.5: Bracket of (a) the Inv+
f (X), and of (b) the Invf (X) for the isobath

navigation problem.

4.1. THE LARGEST POSITIVE AND NEGATIVE INVARIANT SETS133

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

x1

x2

Figure 4.6: Bracketing of Viabf (X,W) for the isobath navigation problem
with measure uncertainties.

tracting the box [x] = [x] × [y] × [z] where [z] is the bathymetry. Here we
have a space of dimension R2×1. The contractor can be used with an initial
[z] value equal to [−∞,∞]. The interval [z] will be then contracted to an
outer approximation of the bathymetry in the area [x]× [y].

Taking into account uncertainties We can improve the model used to
describe the robot by adding uncertainties on the sensors. If we assume that
the altitude is measured with some uncertainties that are bounded inside an
interval [w], we obtain:

y1 = h (x, y)− z + w,w ∈ [w] .

We can similarly bracket the set of Figure 4.4 but using here Viabf (X,W)
where the input is the noise. Figure 4.6 shows the result. The result should
be interpreted as follows: the robot will not be able to reach, in the worst
case, a set of position thinner than the bracketed set.

134 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

4.2 Forward & Backward reach sets
Computing a forward or backward reach set can be formalized as bracketing
the solution set of an initial value problem (IVP) with uncertain initial con-
ditions. The problem can be written as finding the paths that are solution
of the following constraints:

ẋ (t) = f (x (t))

x (0) = x0

x0 ∈ T
.

Solving an IVP can either help to simulate the system or could guarantee
a proof of safety. Indeed, it can ensure that the system will never reach, for
instance, unwanted states.

There exists a vast literature that focus on this subject with associated
solvers such as CAPD6, the Tubex library7 and the ones cited in Section 1.1.3.
Two main approaches exist (Mitchell, 2007): a Lagrangian and Eulerian
one. These methods were generally restricted to linear dynamics (Girard,
Le Guernic, and Maler, 2006) and have been extended recently to nonlinear
systems (Asarin, Dang, and Girard, 2003; Asarin, Dang, and Girard, 2007).

Lagrangian approaches mainly rely on guaranteed integration (Sandretto
and Chapoutot, 2016; Wilczak and Zgliczyński, 2011; Rohou et al., 2019).
As shown in (Lhommeau, Jaulin, and Hardouin, 2011) a Lagrangian method
requires however many bisections with respect to the time line (for the inte-
gration of the state equation), but also in the state space.

On their side, Eulerian approaches can be used with nonlinear systems
(Quincampoix, 1992; Gao, Lygeros, and Quincampoix, 2006; Kaynama et
al., 2012) and try to avoid the integration of the state equation. Most of
the corresponding algorithms rely on a griding of the state space (Saint-
Pierre, 2002). To provide guaranteed results, griding methods require the
knowledge of some Lipschitz constants which are rarely available in practice
(Saint-Pierre, 1994). Lyapunov-based methods (Ratschan and She, 2010; De-
lanoue, Jaulin, and Cottenceau, 2006; Gonzaga, Jungers, and Daafouz, 2012;
Barreiro, Aracil, and Pagano, 2002), level-set methods (Mitchell, Bayen, and
Tomlin, 2001; Biemond and Michiels, 2014), or barrier functions (Bouissou
et al., 2014; Esterhuizen and Lévine, 2016) can also be considered as Eulerian
since they only check the constraints on the state space and do not need to
perform any integration through time. Few existing methods compute an
inner approximation (Goubault and Putot, 2017).

6Computer Assisted Proofs in Dynamics group (http://capd.ii.uj.edu.pl)
7https://github.com/SimonRohou/tubex-lib

http://capd.ii.uj.edu.pl
https://github.com/SimonRohou/tubex-lib

4.2. FORWARD & BACKWARD REACH SETS 135

T
x0

ϕf (t,x0)

Rn

C

Figure 4.7: Forward reach set C of an initial set condition T.

We will show how we can rewrite an IVP as a problem of bracketing
invariant sets.

Definition 4.4. The forward reach set of an initial set T ⊂ Rn is the set of
all vectors x for which there exists x0 ∈ T such that S reaches x in a finite
positive time (see Figure 4.7):

Fwdf (T) = {x | ∃x0 ∈ T,∃t ≥ 0,x = ϕf (t,x0)}

The backward reach set of a target set T ⊂ Rn is the set of initial states
x0 from which S reaches the target T in a finite negative time:

Bwdf (T) = {x | ∃x0 ∈ T,∃t ≥ 0,x = ϕf − (t,x0)}

Bracketing a forward reach set or a backward reach set can be rewritten
as the bracket of a positive invariant set.

Theorem 4.5. We have:

Fwdf (T) = Rn \ Inv+ (−f ,Rn \ T) ,

Bwdf (T) = Rn \ Inv− (−f ,Rn \ T) .

Proof. Take an element xa of Inv+ (−f ,Rn \ T), we have (see Figure (4.8)):

136 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

xa

ϕ−f (t,xa)

Fwdf (T)

Rn

Rn \ T

Rn

Inv+(−f ,Rn \ T)
−f

T T

Figure 4.8: Illustration of the proof of Theorem 4.5.

xa ∈ Inv+ (−f ,Rn \ T) ⇔ ϕ−f ([0,∞] ,xa) ⊂ Rn\T
⇔ ∀t ≥ 0,ϕ−f (t,xa) ∈ Rn\T
⇔ ∀t ≥ 0,ϕ−f (t,xa) /∈ T
⇔ ¬

(
∃t ≥ 0,ϕ−f (t,xa) ∈ T

)
⇔ ¬

(
∃x0 ∈ T, ∃t ≥ 0,ϕ−f (t,xa) = x0

)
⇔ ¬ (∃x0 ∈ T,∃t ≥ 0,ϕf (t,x0) = xa)

⇔ ¬ (xa ∈ Fwdf (T))

Remark 4.6. As for positive and negative invariant sets, forward and back-
ward reach sets are closely linked:

Fwdf (T) = Bwd−f (T) .

This is directly due to the fact that the forward reach set can be rewrite in
terms of invariant sets and because Inv−f (X) = Inv+ (−f ,X).

Example 4.7 (Van Der Pol). Let consider the Van Der Pol system with an
initial set

T =
{
x | (x1 − 1.2)2 + (x2 − 1)2 ≤ (0.3)2} .

We will bracket Fwdf (T) and Bwdf (T). Figure 4.9 shows the result of the
computation. The set T is red painted. The light red boxes around T corre-
spond to the outer approximation of T.

We can also choose the initial set T as a union of sets. For instance, Fig-
ure 4.10 shows the Fwdf (T) set for T = [0.6, 1.4]× [−0.4, 0.4]∪ [−1.0,−0.6]×
[0.3, 0.7].

4.2. FORWARD & BACKWARD REACH SETS 137

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

T

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

T

Figure 4.9: Forward and Backward reach set of the Van Der Pol system.

138 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

T

Figure 4.10: Forward reach set from a union of closed sets for the Van Der
Pol system.

4.2. FORWARD & BACKWARD REACH SETS 139

-1

-0.5

0

0.5

1

x1

g (x1)

-2 0 2 4 6 8 10 12 14 16 18

Figure 4.11: Shape of the hill.

Remark 4.8. In our implementation of the algorithms described in Chap-
ter 3, a subpaving P of the state space was used instead of a paving of the
whole space. Indeed, this is easier to implement. The consequence for the
forward and backward reach sets is that we only have a guaranteed outer
approximation if the outer approximation does not intersect the boundary
of the subpaving. Indeed, if there are an intersection of the outer approxi-
mation with the boundary, this means that some trajectories can escape and
may re-enter inside P. A solution to this issue is to consider infinite boxes
that covers the whole state space as described in (Le Mézo, Jaulin, and Zerr,
2018).

Remark 4.9. We can also extend the forward or backward reach set to systems
with inputs: Fwdf ,U (T) = Rn \Viab+ (−f ,U ,Rn \ T) and Bwdf ,U (T) = Rn \
Viab+ (f ,U ,Rn \ T) which correspond to the maximal forward or maximal
backward reach set.

Example 4.10 (Car on the Hill). Another interesting system to consider is
the case of the car on a hill system described by the following state equation
(Lhommeau, Jaulin, and Hardouin, 2011) with an input:{

ẋ1 = x2

ẋ2 = −9.81 sin (g (x1))− αx2 + u
(4.1)

where u is the input, α a damping coefficient that will be set to 0.7 and g the
shape of the hill which will be set to g (x) = 1

2
(1.1 sin (1.2x)− 1.2 sin (1.1s)).

Figure 4.11 shows the shape of the hill.
We set the input to u = 2, T = {x | x2

1 + x2
2 ≤ 1} and [P] = [−2, 18] ×

[−4, 5]. The bracket of Fwdf (T) is shown in Figure 4.12. The result can be
physically interpreted the following way: a car starts from the left part of
the hill with its engine set to produce a force equal to u. The car is then

140 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-2 0 2 4 6 8 10 12 14 16 18-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x2

T

Figure 4.12: Car on the hill Fwdf (T) set.

released inside a set of initial positions and velocities. The result shows the
set of position and velocities that can be reached by the system.

We can note that there are two stable equilibrium points around x1 ' 4.5
and x1 ' 10, with x2 = 0, which correspond to two valleys with the input
u = 2. We can also note that there are two unstable equilibrium points
around x1 ' 6.2 and x1 ' 12 also with x2 = 0 that correspond to two crests.
The position of the stable and unstable points would be different for another
input u.

If we now compute the maximal forward reach set Fwdf ,U (T) with an
input u ∈ U = [−2, 2], we obtain Figure 4.13. We can see that a larger
part of the state space can be reached compared to the case where u was
set to a constant. Note that in this case, the outer approximation is not
guaranteed as it intersects the boundaries of P at the left part of Figure 4.13
(see Remark 4.8).

Example 4.11 (3D system). We consider a Dubins car (Dubins, 1957) de-
scribed by the following state equations:

ẋ1 = −0.1 cos (x3)

ẋ2 = −0.1 sin (x3)

ẋ3 = −0.3

(4.2)

4.3. ATTRACTION BASIN 141

-2 0 2 4 6 8 10 12 14 16 18-5

-4

-3

-2

-1

0

1

2

3

4

5

x1

x2

T

Figure 4.13: Car on the hill Fwdf ,U(T) set.

with the target set T = [−0.5, 0.5]× [−0.5, 0.5]× [0, 0.5]. Figure 4.14 shows
the result with [P] = [−10, 10]× [−10, 10]× [0, 2π].

Remark 4.12. A comparison with existing methods should be undertaken in
future works. We have compared for instance the Car on the Hill example
with CAPD. However, this problem better works with Eulerian methods than
with Lagrangian methods as several different paths can be reached from the
initial state. Therefore, we obtain a better approximation of the set.

4.3 Attraction basin
For some systems, we may want to know the set of all paths that will reach
and then stay inside an area forever. The backward reach set, Bwdf (T),
presented previously is here not sufficient to solve the problem. Indeed,
paths can leave the set T after reaching it. We only have the guarantee with
Bwdf (T) that the intersection between the path and T is not empty. This is
why we introduce the attraction basin.

Definition 4.13. The attraction basin, B (T), of a set T is the set:

B (T) = {x | ∃t1 ≥ 0,∀t ≥ t1, ϕf (t,x) ∈ T} . (4.3)

142 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

T

Figure 4.14: Bracketing the backward reach set of T (the red box at the
top) for a Dubins system. On the left, the inner approximation is magenta
painted. On the right, the outer approximation is yellow painted.

4.3. ATTRACTION BASIN 143

With this definition, when the system reaches T, it will stay forever inside
T. We recall that the attraction basin is different from the backward reach
set as in the case of the latter it is only required to reach T at one time but
there is not the constraint to stay inside T (see Definition 4.4).

Theorem 4.14. We have:

B (T) = Bwd
(
Bwd

(
T
))

(4.4)

Proof. Let x be a point of B (T), we have:

x ∈B (T) ⇔ ∃t1 ≥ 0,∀t ≥ t1, ϕf (t,x) ∈ T
⇔ ∃t1 ≥ 0,¬

(
∃t ≥ t1, ϕf (t,x) ∈ T

)
⇔ ∃t1 ≥ 0,ϕ (t1,x) ∈ Bwd

(
T
)

⇔ x ∈ Bwd
(
Bwd

(
T
))

Example 4.15. Let us consider a buckling system which models the insta-
bility of an axially compressed mechanical structure. The system can be
described by the following equations:

{
ẋ1 = x2

ẋ2 = −0.1 (20x3
1 − 10x1 + 5x2)

(4.5)

and a target set T =
{
x| (x1 + 0.5)2 + (x2)2 ≤ 1

}
. The system has two stable

equilibrium points in x ≈ (−0.707, 0)ᵀ and x ≈ (0.707, 0)ᵀ, and an unstable
equilibrium point in x = (0, 0)ᵀ. Figure 4.15 shows the vector field of the
system where the target set is the red disk.

Figure 4.16 gives a bracket of Bwd (T). Figure 4.17a provides a bracket of
Bwd

(
T
)
which also corresponds to the largest positive invariant set included

in T. Figure 4.17b shows the attraction basin Bwd
(
Bwd

(
T
))

. We clearly
see the difference between the backward reach set and the attraction basin.
Note that we have been using a shared subpaving for all the mazes which
explains the bisection for Bwd(T).

144 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

Figure 4.15: Vector field of the buckling system.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

T

Figure 4.16: Backward reach set Bwd(T).

4.4. CAPTURE REACH SET 145

4.4 Capture reach set

The fourth problem we will consider, is the bracket of a capture reach set.
Solving this problem will allow us to consider constraints of the form: “the
path avoid a set of the state space” in the next section.

Definition 4.16. The capture forward reach set, Capt+C,f (T), of a set T is
the set:

Capt+
C,f (T) =

{
x | ∃x0 ∈ T,∃t ≥ 0, (x = ϕf (t,x0))

∧ (∀s ∈ [0, t] , ϕf (s,x0) ∈ C)
}
,

where T,C ⊆ Rn.

Example 4.17. Figure 4.18 illustrates a capture forward reach set. C is the
whole space except the hatched area. We can see that paths are stopped
when they intersect the boundary of C. Note that there is no need to have
T ⊆ C. Indeed, we have: Capt+

C,f (T) = Capt+
C,f (T ∩ C) and T ∩ C ⊆ C.

Theorem 4.18. We have:

Capt+C,f (T) = Fwdg (T ∩ C) (4.6)

where g (x) =

{
f (x) if x ∈ C
0 otherwise

.

Proof. Let x be a point of Capt+
C,f (T), we have:

x ∈ Capt+
C,f (T) ⇔ ∃x0 ∈ T,∃t ≥ 0,x = ϕf (t,x0) ∧ x ∈ C

⇔ ∃x0 ∈ T ∩ C,∃t ≥ 0,x = ϕg (t,x0)

⇔ Fwdg (T ∩ C)

Example 4.19. To illustrate the capture reach set, we take back the Van
Der Pol system with the same conditions as in Example 4.7. We set C ={
x | (x1 − 1.6)2 + (x2)2 ≥ (0.2)2} which corresponds to the complement of a

disk. The result is shown in Figure 4.19 where the green hatched disk is the
complement of C.

146 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

T

(a) The largest positive invariant set Bwd(T) included in T.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

T

(b) Bracket of Bwd(Bwd(T)).

Figure 4.17: Attraction basin of the buckling system.

4.5. EULERIAN STATE ESTIMATION 147

Rn

T x = ϕf (t,x0)

x0

C

Capt+C,f (T)

Figure 4.18: Illustration of the capture reach set.

Remark 4.20. In our implementation, the 0 value of the vector field is im-
plemented as a special value and not as a numerical value. By this way, the
algorithm will not inflate doors with FlowInflateBwdf (L) when 0 is the
only value of the box vector field. It will similarly close all doors of a box
when using FlowContractBwdf (L).

We can also define the capture backward reach set Capt−C,f (T).

4.5 Eulerian state estimation

In order to do a synthesis of the tools presented in this chapter, we will intro-
duce here the Eulerian state estimation problem (Le Mézo, Jaulin, and Zerr,
2017b) which formalizes all the previous problems in a unique framework.

In the context of an Eulerian point of view, we would like to be able to
deal with constraints such as:

• Robot A has met robot B before the collision with robot C,

• After the robot turn in the vicinity of the buoy, its speed was always
lower than 1 m s−1.

148 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

T

C

Figure 4.19: Capture reach set for the Van Der Pol System.

4.5. EULERIAN STATE ESTIMATION 149

t1t0

−∞
t2 t3

X1 X2

Y0

X0 X3

Figure 4.20: Example of constraints for the Eulerian state estimation prob-
lem.

4.5.1 Formalism

Wemodel the Eulerian state estimation problem with the following CN where
the variables are paths of Rn, the domain is a maze and the constraints are:

ẋ (t) = f (x (t)) (evolution)
E = (t0, . . . , tl) , ti ≤ ti+1 (precedence)
x (ti) ∈ Xi ⊂ Rn (event)
C ⊂ E ,∀tk ∈ C ,∀t ∈ [tk, tk+1] ,x (t) ∈ Yk (capture)

,

where Xi and Yi are sets of Rn, E is an ascending list of l times with ti ∈
[−∞,+∞] and C is a subset of E . In this problem we do not know the ti
but only their order as we adopted an Eulerian point of view.

Example 4.21. Figure 4.20 shows an example of an Eulerian state estima-
tion problem with a sequence of 4 times: E = (t0, t1, t2, t3) and C = (t1).
Note that here t0 = −∞. Figure 4.21 shows several paths in the state space
along with the sets Xi and Yi. (i) starts from a limit cycle in X0, crosses X1

then X2 while staying in Y0 between the events t1 and t2, and finally ends
in X3 with an equilibrium point. (ii) also verifies the constraints even if it
crosses X2, between X0 and X1, which is not forbidden. (iii) does not verify
the constraints as it does not start inside X0 and does not cross X2.

4.5.2 Invariant sets approach

We define the set Zfwd
i of all state vectors x (t) inside Xi that have visited

X0,Xi, . . . ,Xi−1 in the past, i.e. before time t, in this specific order and
that verify the capture conditions. We define the following sequence as the
Eulerian filter :

Zfwd
i+1 =

{
Capt+

Yi,f

(
Zfwd
i

)
∩ Xi+1 if i ∈ C

Fwdf

(
Zfwd
i

)
∩ Xi+1 else

Zfwd
0 =

{
Inv−f (X0) if t0 = −∞
X0 else

.

150 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

X2

Y0

(i)

X0

X1

X3

(ii)

(iii)

Figure 4.21: Paths of Rn with the Eulerian state estimation problem.

Xi

Xi+2

Zfwd
0

Xi+1

Zfwd
1

Zfwd
2

Fwdf
(
Zfwd
0

)
Fwdf

(
Zfwd
1

)
Fwdf

(
Zfwd
2

)

t0
t1

t2

Figure 4.22: Illustration of the Eulerian filter.

Figure 4.22 illustrates the Eulerian filter in the case where we do not
have any capture conditions and with t0 6= −∞. The Zfwd

i are represented in
yellow. We can see that if we take a state x2 ∈ Zfwd

2 , there exist x1,x0 such
that ∃ (t2, t1, t0) , (x1 = ϕf (t1,x0)) ∧ (x2 = ϕf (t2,x0)) ∧ (t0 ≤ t1 ≤ t2).

In the case where we have a capture condition, we replace the Fwdf

(
Zfwd
i

)
set by a Capt+

Yi,f

(
Zfwd
i

)
set as presented in Section 4.4. In the case where

t0 = −∞, this means that the path has stayed for all negative times in the
set X0 which is equivalent to the largest negative invariant set.

Similarly, we define the set Zbwd
i of all state vectors x (t) inside Xi that

have visited Xl,Xl−1, . . . ,Xi+1. We define the following sequence as the Eu-
lerian smoother :

4.5. EULERIAN STATE ESTIMATION 151

Zbwd
i−1 =

{
Capt−Yi,f

(
Zbwd
i

)
∩ Xi−1 if i ∈ C

Bwdf

(
Zbwd
i

)
∩ Xi−1 else

Zbwd
l =

{
Inv+

f (Xl) if tl = +∞
Xl else

.

The solution set of the Eulerian state estimation problem is the set:

S = Fwdf

(
Zbwd

0

)
∩ Bwdf

(
Zfwd
l

)
.

Figure 4.23 illustrates the previous formula.

Remark 4.22. We could have also taken Zbwd
l = Zfwd

l to initialize the Eulerian
smoother. The Eulerian state estimator could then have been computed
with S = Fwdf

(
Zbwd

0

)
∩ Bwdf

(
Zbwd
l

)
. We have been using this approach

in the implementation. Each set Z is represented by an instantiation of the
maze which all rely on the same subpaving. To reach a fixed point, we
must guarantee that constraints are propagated to all sets: this is why a
forward propagation and then a backward propagation was preferred rather
than the intersection of the smoother and filter. Figure 4.24 shows how the
propagation was implemented.

Example 4.23. Let us consider again the Van Der Pol system
and two events E = (t0, t1) with the associated sets: X0 ={
x | (x1 − 0.8)2 + (x2 − 1.3)2 ≤ (0.4)2}, X1 = [0.74, 1.2]× [−1.5,−1.06]. We

set the capture constraint to C = {t0} with Y0 = [1.35, 1.45]× [−0.2, 0].
We search for paths that validate all the constraints. This problem can be
rewritten in terms of invariants by bracketing the set:

S = Fwdf

(
Capt−Y0,f

(X1) ∩ X0

)
∩ Bwdf

(
Capt+

Y0,f
(X0) ∩ X1

)
.

Figure 4.25 shows the result with the outer approximation in yellow and
the inner approximation in magenta.

Remark 4.24. We could have added logical disjunction to the constraints such
as: “the paths should visit X1 OR X2” which can be solved by computing the
union of sets.

Example 4.25 (Eulerian state estimator and ocean currents). Let us con-
sider a real dataset8 of ocean currents near Ouessant island that we will

8MARC_L1-MARS2D-FINIS250 model with t0 =20170709T0000

152 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

X0 X1 Xl−1 Xl

Zfwd
0 Zfwd

1 Zfwd
l−1 Zfwd

l

Zbwd
0 Zbwd

1 Zbwd
l−1 Zbwd

l

Fwdf
(
Zbwd
0

)

Bwdf
(
Zfwd
l

)

S = Fwdf
(
Zbwd
0

)
∩ Bwdf

(
Zfwd
l

)
Figure 4.23: Illustration of the Eulerian state estimator.

4.5. EULERIAN STATE ESTIMATION 153

X0 X1 Xl−1 Xl

Zfwd
0 Zfwd

1 Zfwd
l−1 Zfwd

l Zbwd
0Zbwd

1Zbwd
l−1

Zbwd
l

Xl−1 X1 X0

Fwdf
(
Zbwd
0

)
∩ Bwdf

(
Zbwd
l

)

Fwd Bwd

Figure 4.24: Propagation of constraints in the Eulerian state estimator.

suppose accurate.9 Let us assume that a profiling float10 has sent an uncer-
tain position at three uncertain times. We want to find the set of all possible
paths during the mission.

The state space here is (t, x, y) for the time (in s), the east coordinate (in
m) and north coordinate (in m). Indeed, the value of the currents is time-
dependent. In this theoretical example, we assume that the three observa-
tion sets are distributed along 10.5 hours: X0 = [0, 300] × [33250, 35250] ×
[118750, 119750], X1 = [18000, 28000]× [43100, 46100]× [122000, 125000] and
X2 = [37500, 37800] × [32250, 34250] × [117250, 119250]. Figure 4.26 shows
the outer approximation of the solution set. The dataset contractor (see Sec-
tion 2.3.3.2 on page 71) was used here to evaluate efficiently the evolution
function built on discrete data. The computation time is around 5 hours on
a 24 cores CPU. Polytopes have been chosen to be the abstract domain for
doors.

Remark 4.26. We can draw a link between Eulerian filter problems and the
temporal logic field (Huth and Ryan, 2004) such as the LTL (linear temporal
logic). For instance, a problem that verifies that there exist paths starting
from a set11 s that reach a set p, is expressed as EFp in LTL and can be
formulated as finding if the set solution of the Eulerian filter problem with
X0 = s, X1 = p, is not empty. However, the temporal logic language is suited
to work with discrete time systems and is not well suited to continuous time
systems.

Remark 4.27. The Eulerian filter is not an efficient method to find a candidate
9For this example, we do not have computed an accurate projection to a cartesian

coordinate which would have been necessary in a real application. The origin of the
coordinate system is taken at the zero of the model grid. We consider that the grid is
cartesian with a distance of 250 meters spatially and 300 seconds temporally between each
vertex.

10see the robot taxonomy in Figure 1.2 on page 7
11The notation is taken from the LTL field.

154 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

X0

Y0

X1

x2

x1

Figure 4.25: The Eulerian state estimator with the Van Der Pol system and
zoom on X0,X1 and Y0.

4.5. EULERIAN STATE ESTIMATION 155

X0

X1

X2

X0

X2

X1

Figure 4.26: Example of the Eulerian state estimator with a dataset. The
z-axis represents the time.

156 CHAPTER 4. APPLICATIONS OF INVARIANT SETS

path for the Challenge 1 presented in Section 1.1.2 on page 9. It can however
be useful to prove that no paths exist, or at least to give a set in which
candidate paths can be searched.

4.6 Conclusion
In this chapter, we have seen how positive invariant sets can be used to solve
various problems. This was allowed by the lattice structure of mazes that
enables to compute the intersection and the union of set of paths.

We have also seen through examples such as the isobath navigation prob-
lem or the problem of the Eulerian state estimator applied to ocean currents,
how the tools presented in this chapter can solve robotic problems. They
allow to prove the safety of systems which have or do not have inputs.

A perspective of this chapter would be to formalize an efficient language
that could express paths constraints along with an interpreter which could
convert the sentences of the language into a set of positive invariants sets to
bracket.

Chapter 5

Design and control of a low-cost
hybrid profiling float

Contents
5.1 Problem formalization 158

5.1.1 The mission . 158

5.1.2 The robot . 161

5.2 Float dynamics . 162

5.3 Design of a hybrid profiling float 165

5.3.1 Mechanical architecture 165

5.3.2 Electronic architecture 170

5.3.3 Software architecture 171

5.4 Depth controller . 171

5.4.1 Control law . 172

5.4.2 Estimation of unknown parameters 174

5.4.3 Experimental results 175

5.5 Validation of the depth control law 181

5.5.1 Open-loop float performances 181

5.5.2 Closed-loop system 185

5.5.3 Additional validations 187

5.6 Design loop . 189

5.7 Conclusion and future work 190

157

158 CHAPTER 5. A HYBRID PROFILING FLOAT

This chapter mainly focuses on answering the third Challenge presented
in Section 1.1.2 on page 9. We will consider the problem of designing a
mission strategy and also a robot that enables to follow ocean currents. This
chapter is less theoretical than the previous one. However, it is aimed at
showing how mazes can help in practice to the design of robots and to the
validation of their control laws.

5.1 Problem formalization

In this section we will mainly focus on formalizing the mission strategy and
we will give the main features that the robot should fulfill. We did not reach
the goal of implementing and validating the whole mission strategy due to a
lack of time. We therefore present here only a global strategy and the results
obtained so far.

5.1.1 The mission

We assume that the mission takes place in a shallow water environment.
Moreover, we also assume that the robot is designed to be low-cost.1

5.1.1.1 Use case

To answer the Challenge, we have chosen a specific strategy which is shown
in Figure 5.1. The robot is only localized at surface with a GNSS (Global
Navigation Satellite System). Indeed, underwater localization systems are
expensive and should then be avoided. The robot dives to a constant depth
where oceanic models are assumed to be valid. This implies not being near
the surface nor near the seabed. This is why a depth between 10 and 20m
was chosen as we are in a coastal environment. Finally, we will assume, to
simplify the problem, that all paths corrections are carried out only at surface
during a finite window time using auxiliary thrusters.

There are two operating modes for the robot: a waypoint following mode
at surface2, and a stabilized depth mode when diving.

5.1.1.2 Mission formalization

We propose the following global workflow for the mission (see Figure 5.2). We
assume that we work in the state space R3 with the north position (x1), the

1This is a key constraint for swarm of robots
2this mode will not be discussed in this work as it is a classic result of robotic systems

5.1. PROBLEM FORMALIZATION 159

z

t

Diving Diving Diving10 to 20m

Surface

Pose update with GNSS Path correction

Ouessant

Surface

Real trajectory

Planned trajectory

Figure 5.1: Strategy of the profiling float.

Path planning Proof of mission safety Robot mission

1 2 3

Figure 5.2: Mission planning workflow.

160 CHAPTER 5. A HYBRID PROFILING FLOAT

east position (x2) and the time (x3). We define a sequence of sets {Xi}i∈[0,k]

through which the robot has to pass, and a set of sets {Z0, . . . ,Zl} that
the robot has to avoid. We also define a set of diving time intervals XD =
{[t0] , . . . , [tk]}.

Let us consider an oceanic current v̇ = C (x), where x ∈ R3, which out-
puts the velocity of the current in function of the state in a ground coordinate
system. Let us also consider the global controller of the robot:

v̇ = h (x) =

{
g (x) if x3 ∈ XD

0 else

where g is a simple waypoint controller that outputs the north and east
velocity of the robot in function of the state in the water coordinate system3.

The robot path, in a ground coordinate system, is:

ẋ = f (x) =

(
C (x) + g (x)

1

)
.

Path planning The path planning of AUV trajectories in ocean currents
with uncertainties constraints has been the subject of several works (Rao
and Williams, 2009; Smith et al., 2010; MahmoudZadeh et al., 2018). As
stated in the introduction, due to a lack of time, we will not propose here
any new method to solve the issue. We however propose a formalization of
the constraints.

A candidate path p of R3 is generated along with a set of diving time
intervals XD. The path should verify the following constraints4:{

∀i ∈ J0, kK ,∃s ∈ R, p (s) ∈ Xi

∀s,∀i ∈ J0, lK , p (s) ∩ Zi = ∅ . (5.1)

Example 5.1. To illustrate that it may be possible to circumnavigate around
Ouessant island, Figure 5.3 shows an example of paths in the case where
there is no use of thrusters at surface. We can see that some paths achieve a
circumnavigation. In this example, 125 paths were generated inside a box of
600 m wide spatially by 600 s wide temporally. We can see that the system
is very sensitive to the initial state. Using thrusters should help to make the
chosen path more robust to model and position uncertainties. The system is
clearly chaotic.

3The thrusters modify the robot trajectory relatively to the surrounding water.
4Energy constraints could have also been added

5.1. PROBLEM FORMALIZATION 161

Figure 5.3: Monte Carlo simulation of paths, starting around t0 =
1 540 386 000 ss (POSIX) and x0 = 99 474 m, y0 = 6 845 256 m (Lambert93),
MARC_L1-MARS2D-FINIS250. Paths represent about 14 hours of mission.

Path validation The path is then validated to ensure that the mission
can be fulfilled. This validation should take into account uncertainties of
the model and uncertainties of the robot controller. This problem can be
formalized in verifying that the forward reach set (see Section 4.2) of the
system of dimension three: ẋ = f (x) with an initial set T = X0 verifies the
constraints of Equation 5.1.

A validation with a real case should be undertaken in future work. We did
not have time to implement a complete example with a field validation, how-
ever the problem is very close to the Eulerian state estimator of Example 4.25
on page 151.

Robot mission The mission is then given to the robot. We must also
ensure that low-level controllers, i.e. depth and waypoint controllers, are safe.
The validation of the depth controller will be the subject of later Section 5.5.

5.1.2 The robot

As the main mode of operation is to be stabilized at constant depths, profiling
floats (see Figure 1.2 on page 7) appear to be the most suitable kind of
underwater robots to fulfill the mission.

162 CHAPTER 5. A HYBRID PROFILING FLOAT

Profiling floats Profiling floats can only regulate their depth and are
widely used in oceanography. They are commonly equipped with instru-
ments such as temperature, pressure, conductivity or biochemical sensors
that measure the state of the water column. Most of them carry out profiles
in the open ocean and the last generation can dive up to 4000 meters (Le
Reste et al., 2016). They help to a better understanding of the ocean and
provide crucial data to oceanographic models through several years missions.
The most well-known profiling floats are those of the Argo project (Riser
et al., 2016): about 4000 floats that gather data continuously all over the
world (see Section 1.1.1 on page 6).

More recently, the oceanographic community has been focused on swarm
of profiling floats for shallow water (Jaffe et al., 2017; Bessa et al., 2017)
to better understand submesoscales dynamics (< 1 − 10km). In shallow
water, the vertical and horizontal variation of biochemical parameters can
be important. This is why oceanographers seek to increase the density of
data gathered.

A hybrid profiling float Current profiling floats cannot modify their hor-
izontal path. We will propose in this chapter a new low-cost5 hybrid profiling
float called SeaBot that can, with auxiliary thrusters, correct horizontally its
trajectory.

The remainder of this chapter will deal with the development of the robot
and the validation of a low-level depth controller. After introducing the
dynamic model of a float, a focus will be given on the design of the float. We
will then look at the depth controller where a new control law, based on a
full state feedback coupled with an Extended Kalman Filter (EKF), will be
introduced and validated with experimental trials. An additional section will
be dedicated to the application of maze tools to the system. We will finally
propose a loop iteration design that are guidance rules to build such robots.

5.2 Float dynamics
A profiling float controls its buoyancy to regulate its vertical position. There
exists several mechanical systems to perform this task that either adjust the
mass or the volume of the float. They are mainly based on hydraulic pump
or piston system. Some floats are also equipped with a passive system: they
are designed to stabilize themselves at a unique density.

5By low-cost we mean a fast design and development phase, low or no calibration steps
before using the float and obviously a low cost per unit. The cost of the whole life cycle
should be taken into account.

5.2. FLOAT DYNAMICS 163

z
Vp

Vf

0

g

Fb + Fd

mfg

Figure 5.4: Float equipped with a piston system

We will choose the case of a piston based system (see Figure 5.4) which
is simple to design and suitable for shallow water.

The principle is to adjust the volume of the float by pushing in or pulling
out a piston that will modify the density and so the buoyancy. A float
is primarily subject to gravity, buoyancy and drag forces. We make the
assumption that the float has only vertical motion, with no rotation, that it
is in thermal equilibrium with surrounding water, that the density of water
is constant and that there is no vertical water velocity. A more complex
model could be developed for more precise studies but a basic one seems to
be sufficient to achieve an effective control (see the experimental results in
Section 5.4.3 on page 175). We have:

(mf +ma) z̈ = Fb + Fd −mfg (5.2)

where Fb and Fd are respectively the buoyancy force and the drag force. mf

is the mass of the float and ma is the added mass which cannot be neglected
in the case of water (Fossen, 2011). Table 5.1 summarizes all the parameters.
The virtual mass mv = mf +ma is the sum of the two masses. We then have

mvz̈ = −ρgVt −
1

2
CdSρ |ż| ż −mfg (5.3)

where Vt is the total volume of the float composed of the sum of the piston
volume Vp and the float volume Vf . Note that the volume of the float Vf is
supposed to be equal at zero depth tomf/ρ: the float has a neutral buoyancy.
The piston volume Vp is then defined as a positive or negative volume from
neutral buoyancy at zero depth. Equation (5.3) can then be simplified to:

164 CHAPTER 5. A HYBRID PROFILING FLOAT

Parameter Description Unity Typical Seabot value
z̈ float acceleration m s−2

ż float velocity m s−1 [−0.3, 0.3]
z float depth m [0, 50]
mv virtual mass kg 18
mf float mass kg 9
ma added mass kg 9
ρ water density kg m−3 1025
g acceleration due to gravity m s−3 9.81
Vt total float volume m3 Vf + Vp
Vf float volume m3 ≈ 8.8× 10−3

Vp piston volume m3 ∆Vp = 1.7× 10−4

S float’s cross sectional area m2 4.5× 10−2

Cd drag coefficient − 1
Kw water compressibility Pa−1 4.27× 10−10

Kf float compressibility Pa−1

χ loss of volume per meter m2 2.15× 10−6

Table 5.1: Float physical parameters

mvz̈ = −ρg (Vf + Vp)−
1

2
CdSρ |ż| ż − ρVfg

z̈ = − ρg
mv

Vp −
CdSρ

2mv

|ż| ż (5.4)

A last phenomenon must be taken into account: the compressibility of
the float. While increasing external pressure, the float’s volume will de-
crease. This is also the case for water. The isothermal compressibility
KT = − 1

V

(
∂V
∂P

)
T
measures the relative change of volume as a response to

a pressure. We will assume that the water and float temperature are con-
stant which means that Kw, the water compressibility, and Kf , the float
compressibility are constants. We will also assume that the relation between
the pressure P and the depth z is linear equal to P (z) = ρgz.

We can then deduce the loss of buoyancy of the float which is explained
by the relative variation of volume δV of the float compared to the equivalent
one of water under the same pressure:

FK = ρgδV = ρg (Kf −Kw)P (z)Vf = (Kf −Kw)mfρg
2z.

Note that we have neglected the loss associated to the piston volume and we

5.3. DESIGN OF A HYBRID PROFILING FLOAT 165

have supposed that the volume of the float is constant. Equation (5.4) can
then be rewritten to take into account the compressibility:

z̈ = − ρg
mv

Vp −
CdSρ

2mv

|ż| z + (Kf −Kw)
mfρg

2z

mv

.

We set χ = mf (Kf −Kw) g, the loss of volume per meter depth, which
is homogeneous to m2. We obtain

z̈ = − ρg
mv

(Vp − χz)− CdSρ

2mv

|ż| ż.

Set A = ρg
mv

and B = CdSρ
2mv

, we obtain:

z̈ = −A (Vp − χz)−B |ż| ż. (5.5)

Remark 5.2. The sign of the χ coefficient significantly affects the stability of
the system. The float is stable for a negative χ and unstable for a positive
value. Let us take a float that is neutral buoyant for a depth z. Let us then
move the float of δz in the case of a negative χ: the variation of volume
δV will be of the same sign as δz which will produce a force in the opposite
direction of the movement. The float will then go back to its previous depth
z. In the case of a positive χ the movement is on the contrary amplified by
the variation of volume. Figure 5.5 shows the trajectory over time of two
floats with a negative and positive χ. The float is stable for z = 0 and was
moved of δz = 0.1 m. In the case of a negative χ the drag force progressively
reduces the oscillations while in the case of a positive χ the system is clearly
unstable and reaches rapidly a constant positive velocity.

5.3 Design of a hybrid profiling float
In this section we introduce a new low-cost hybrid profiling float called SeaBot
that was specifically developed to answer Challenge 3. The float is 80 cm
long and is designed for shallow water up to 50 m (see Figure 5.6). The
whole system uses as much as possible standard and on the shelf mechanical
and electronic components. We also tried to limit machining operations for
manufacturing the robot.

5.3.1 Mechanical architecture

We will give here an overview of the different design problems that have to
be considered in order to build a low-cost float. The idea is to give simple
and first step design rules.

166 CHAPTER 5. A HYBRID PROFILING FLOAT

0 100 200 300 400 500 600 700 800 900 1000-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

z

χ > 0

χ < 0

δz

Figure 5.5: Evolution of float depth for a positive and a negative χ.

5.3.1.1 Float hull

To avoid corrosion phenomenon and to facilitate the development of the
float, we have chosen to use a full plastic hull and a transparent pipe. The
caps and the piston are in polyoxymethylene (POM-C) and the pipe is in
polycarbonate (PC).

To design the thickness of the pipe and the pipe caps, we have to verify
that (Agati, Lerouge, and Rossetto, 2008; Aublin et al., 2005):

• epipe >
P ·dpipe

2σe
where epipe is the thickness of the pipe, P the external

pressure, dpipe the diameter of the pipe, σe the elastic limit,

• ecaps > rcaps

√
2
3
P
σe

where rcaps is the radius of the caps.

Example 5.3. In the case of the SeaBot, we obtain, for a 50 m depth limit
and a 120 mm pipe, using Table 5.2, epipe > 0.4 mm. We have chosen a
thickness of 5 mm that takes into account a safety coefficient and that limits
the compressibility issue which will be studied later. We obtain ecaps > 8 mm
for the caps.

Remark 5.4. Using stainless steel or aluminum would have allowed to reduce
the thickness of the pipe to few millimeters but it raises issues with the
propagation of wireless signal, with the pipe ovalization at small thickness
and with the issue of galvanic corrosion. Moreover stainless steel is more
dense than plastic materials, so the gain in thickness should be balanced
with the additional mass that reduces the payload mass.

5.3. DESIGN OF A HYBRID PROFILING FLOAT 167

Batteries

Piston

Optical wheel

Motor (hidden)

Propellers

Threaded rod

Reed switch

Electronic modules

Iridium &
GNSS antenna

Strobe

Pressure and

temperature

sensors

Figure 5.6: The Seabot float.

Material Young modulus Elastic limit Poisson’s ratio Density
E σe ν ρ

GPa MPa kg m−3

POM-C 2.8 67 0.35 1410
PC 2.3 65 0.37 1200

Stainless steel 190 170 0.3 8000
Aluminum 69 30 0.35 2800

Table 5.2: Approximate values of material mechanical properties

168 CHAPTER 5. A HYBRID PROFILING FLOAT

5.3.1.2 Float compressibility

Estimating the float compressibility is important to know if the system will
be stable or unstable. At a first approximation, we can model the pipe by
an infinite cylinder. We know from classic results (Timoshenko, 1941, p.240)
that the total radial travel for the external radius of a pressured thick-walled
pipe is:

u =
1− ν
E

a2PI − b2PE
b2 − a2

b+
1 + ν

E

a2b2(PI − PE)

(b2 − a2) b

where u is the total radial travel, ν the poisson’s ratio, E the young modulus,
a the internal radius, b the external radius, PE the external pressure and PI
the internal pressure.

If we neglect the effect of the two caps, the loss of volume can be approx-
imated by:

Vlost = π(b2 − (b− u)2)L

where L is the length of the pipe. We can then deduce an approximation of
the float compressibility:

Kf = − Vlost

VfPE

Example 5.5. In the case of the SeaBot float, we obtain a mean compress-
ibility for PE = 5 bar, PI = 0.6 bar and L = 0.6 m of Kf = 4.30× 10−9 Pa−1.
We can then deduce the loss of volume per meter χ = 7.22× 10−7 m3 m−1.
The float is found to be unstable.

The χtheory is similar to the χmeasured ' 2.14× 10−6 m3 m−1. A more
detailed study using numerical simulation should be undertaken to obtain
a better estimation of the χtheory. By comparison, a 2 mm thick aluminum
pipe would have made the float less compressible than water.

5.3.1.3 Auto-ballasting system

The auto-ballasting system (ABS) is based on a 5 cm diameter piston that
moves along a M12 steel threaded rod which is rotated with a brushed motor.
The position of the piston is given by an optical codewheel (48 counts per
revolution) and two reed switches that provide two mechanical zero position
and maximum position references. Figure 5.7 shows the mechanical design
of the system.

5.3. DESIGN OF A HYBRID PROFILING FLOAT 169

Piston
Motor

Bottom pipe caps

Pz

P0

Pipe
O-ring

Reed-switch

Magnet
Optical codewheel system

Threaded rod

Figure 5.7: Mechanical design of the ABS system.

The required torque that the motor has to deliver can be calculated clas-
sically (Agati, Lerouge, and Rossetto, 2008; Aublin et al., 2005) by the fol-
lowing equation:

T = FP rmean tan (i+ ϕ) (5.6)

where T is the torque (in N ·m), FP is the normal force applied on the piston
(in N), rmean the mean radius of the threaded rod (in m), i the thread angle
and ϕ the angle of friction that depends on the materials.

Example 5.6. In the SeaBot case, we have FP = ρgzmaxS, rmean = 6mm,
the screw thread is 1.75mm which gives i = 8◦ and if we assume a friction
coefficient of 0.4 between steel and POM-C, ϕ = 22◦. We obtain Tmax =
3.4 N m.

The SeaBot motor (MFA Como 970D1561) is a Pm = 19.8 W, of 0.015 N m
at maximum efficiency and 0.1 N m at the maximum torque, with a 156:1 re-
duction gearbox, which gives a maximum output torque between 2.34 N m
and 15.6 N m > Tmax. The output rotation speed is 93RPM so we can
compute the theoretical maximum volume variation of the piston per time:
V̇p = 5.32× 10−6 m3 s−1.

A compromise has to be found between the diameter of the piston, the
maximum torque of the motor and the maximum volume rate of the piston.

5.3.1.4 Additional systems

The SeaBot float is also equipped with two low-cost thrusters that can be
used at surface to correct its position.

In addition, the internal part of the float is maintain at a pressure of
600 mbar. This vacuum holds the two caps and the O-rings. This also pro-
vides an easy way to detect important leak issues.

170 CHAPTER 5. A HYBRID PROFILING FLOAT

Energy system

µC
Energy

Strobe

Batteries

Thrusters system

µC
Thrusters

Thrusters

PWM

Piston system

µC
Piston

Optical wheelcode

Piston motor

ILS

IMU
MPU-9250

Iridium transceiver
SBD 9602

GNSS Receiver
NEO-M8N

CPU
Raspberry Pi 3 B+

Internal T,P,H sensor
BME280

External Temperature Sensor
TSYS01

External Pressure Sensor
89BSD-006BA-A

PWM

Serial

USB

SPI

I2C

Figure 5.8: Electronic design.

5.3.2 Electronic architecture

The main electronic is based on a Raspberry Pi 3 B+ board and microcon-
trollers (µC) dedicated to real time control and hardware interfaces.

The float is equipped with a 18 cm accuracy, 0.1 mm resolution pressure
sensor, an external temperature sensor, a MEMS IMU, a GNSS receiver, an
Iridium transceiver, an optical codewheel for the piston and an internal tem-
perature, pressure and humidity sensor to detect water leak issues. Figure 5.8
shows the electronic architecture.

Remark 5.7. Monitoring the humidity level appears to be more efficient to
detect small leaks than monitoring the internal pressure which requires im-
portant water ingress to change.

The float has four 5Ah 3S LiPo batteries that provide a total of 20Ah.
This gives around 226 W h which means about one day autonomy.6 The
electronic system without the motor and thrusters consumes around 2.5 W.
The electronic energy consumption could be greatly optimized in a second
step design.

6This depends heavily on the use of thrusters and the dive curve.

5.4. DEPTH CONTROLLER 171

Iridium

Observation

Fusion and data filter

State estimator
(EKF)

Safety
observer

Control

Depth
controller

Waypoint
controller

Supervisor

Mission
state machine

Recorder

Log

Communication

Hardware

Piston
systemSensors Propellers

Figure 5.9: Software functional architecture.

5.3.3 Software architecture

The software is based on the ROS middleware. It is built around nodes that
handle specific tasks and can communicate with each other. The SeaBot
source code is available online (see Section 1.3 on page 13). Figure 5.9 shows
a simplified functional architecture of the software. Note that the robot
implements a safety observer that constantly checks the parameters of the
float (maximum depth, leak issue, etc.) and triggers an emergency surfacing
if necessary.

5.4 Depth controller

In this section, we will deal with the depth controller of the float during
diving. A key point, in the context of low-cost actuators and sensors, is to
implement an efficient control law that minimizes the energy consumption
while maintaining a low error relative to the depth set point.

Several approaches have been used in the literature: a survey of profil-
ing float controllers can be found in (Shi et al., 2017). Classic PID based
controllers are not suitable in the context of low-cost floats as underlined in
(McGilvray and Roman, 2010) because of the time required to tune exper-
imentally their coefficients. State of the art float controllers now use state

172 CHAPTER 5. A HYBRID PROFILING FLOAT

feedback (Bessa et al., 2017) or adaptive control (Berkenpas et al., 2018)
techniques. The main difficulty of those controllers is the ability to know an
accurate dynamical model of the robot. Indeed, several parameters such as
the buoyancy depend on the surrounding water properties. An online estima-
tor must therefore be implemented. To solve the problem, several techniques
have been used including fuzzy inferences (Bessa et al., 2017) and full state
observers (McGilvray and Roman, 2010).

In the following section, we will propose a new method built on a state
feedback controller and on an online estimator based on an Extended Kalman
Filter (EKF). This new method better takes into account the compressibility
of the float. It also drives the float with a velocity constraint which is new.
Indeed, from a theoretical point of view, the energy loss of the system is
mainly due to drag forces which are linked to the velocity of the float. A
precise control of the float velocity is therefore crucial.

The float system can be modeled through the following equation: ẋ =
f (x,u) where x is the state vector of the system, f the evolution function of
the system and u the input. From Equation (5.5), we obtain:

ẋ =

 z̈
ż

V̇p

 =

 −A (Vp − χz)−B |ż| ż
ż
u

 (5.7)

where u is the piston volume rate.

5.4.1 Control law

In a context of low energy consumption, we want to avoid as much as possible
any overshoot of the control which would cause unnecessary movements of
the piston. In terms of energy, the mechanical work of the piston depends of
the velocity and of the loss of volume per meter χ. If χ = 0, the float can
move from an equilibrium depth position to an other with an ε move of the
piston: the work is then directly link to the velocity of the movement and
not to the traveled depth.

To be able to limit the velocity while reaching the desired depth, we chose
to control the float with a vector field that links the velocity and the depth
error to the depth set-point (see Figure 5.10):

ż = β arctan

(
z̄ − z
α

)
where z̄ is the depth set-point and (α, β) is a pair of constant parameters.
Other functions such as sigmoids could have been chosen as long as they

5.4. DEPTH CONTROLLER 173

-10 -8 -6 -4 -2 0 2 4 6 8 10-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

δz = z̄ − z

ż

β
α

β π
2

−β π
2

Figure 5.10: Map of the set-point velocity as a function of the depth error δz

are smooth, as this is required to apply state feedback techniques. The
coefficients α and β will be chosen depending on the performances required
by the user application in particular the maximum velocity żmax = β π

2
and

the deceleration phase near the depth set-point though β
α
. The adjustment

of these parameters will be discuss in Section 5.5. Unless stated otherwise,
we will let α = 1.

To apply state feedback linearization technique (Jaulin, 2015), we chose
for the system output y = ż − β arctan

(
z̄−z
α

)
. Our system has a relative

degree of 2 which requires to derive two times the output.

ẏ = z̈ − β

α

−ż
1 + e2

= z̈ + γ
ż

D

where e = 1
α

(z̄ − z), D = 1 + e2, γ = β
α
,

ÿ =
...
z + γ

z̈D − żḊ
D2

=
...
z + γ

z̈D + 2α−2eż2

D2

as Ḋ = −2α−2eż and with ...
z = −A(u− χż)− 2B |ż| z̈,

ÿ = −Au+ Aχż − 2B |ż| z̈ + γ
z̈D + 2α−2eż2

D2
.

We then chose u such that y is solution of λ3ÿ + λ2ẏ + λ1y = 0 where
λ1, λ2, λ3 are constant coefficients. In order to avoid any overshoot we want
a single negative pole s such that the characteristic equation of the previous
equality is (1− s)2, which gives the coefficient values: λ3 = 1, λ2 = −2s and
λ1 = s2. The control law can be then expressed as:

u =
1

A
(−2sẏ + s2y + γ

z̈D + 2α−2eż2

D2
− 2B |ż| z̈) + χż.

174 CHAPTER 5. A HYBRID PROFILING FLOAT

This allows y to converge towards 0 at a speed of ∼ est. The pole s should
be chosen in function of the dynamic of the system.

Remark 5.8. The previous model is only valid when the float is completely
immersed. This is not the case at surface when antennas are emerged. This
is why a simple finite-state machine switches between a simple sinking pro-
cedure that slowly retracts the piston until a certain depth zf is reached, and
a state feedback controller that is activated below this depth.

5.4.2 Estimation of unknown parameters

The main issue, with the control law described above, is that the exact
volume Vp of the piston and the χ parameter are unknown. Concerning the
volume, we measure with a high precision the volume of the piston Vm from
a mechanical zero reference but we do not know the offset Vo such that the
float is at equilibrium for a zero depth (Vp = Vm + Vo). The parameter χ
is even more complex to estimate as it also depends of surrounding water
properties.

This is why an EKF will be used to estimate Vo and χ. Note that some
of the modeling errors would be also compensated by the estimation of both
variables. By using Equation (5.7), we can obtain a specific system for the
estimation of Vo and χ. Note that Vp is here considered as the input u. We
measure z and we assume that V0 and χ are constant over time. With the
state vector x = (ż, z, V0, χ)ᵀ, we have for the continuous system:

ẋ = fc (ẋ, u) =

−A (u− χz)−B |ż| ż

ż

0

0

y = g (x) = (z)

(5.8)

We recall the Kalman prediction and corrector equations7, in the case of
a discrete time system, with an euler integration scheme at step k, and a dt
duration between steps:

• Prediction{
x̂k+1|k = f(x̂k|k,uk) = x̂k|k + dt · fc(xk,uk) (predicted estimation)
Γk+1|k = Ak · Γk|k ·Aᵀ

k + Γαk
(predicted covariance)

7notations are taken from (Jaulin, 2015)

5.4. DEPTH CONTROLLER 175

EKF State-feedback
z, ż, χ, Vp

z, Vm V̇p

Float

z, α, β

Figure 5.11: Depth controller structure.

• Update

x̂k|k = x̂k|k−1 + Kkz̃k (corrected estimation)
Γk|k = (I−KkCk)Γk|k−1 (corrected covariance)
z̃k = yk −Ckx̂k|k−1 (innovation)
Sk = CkΓk|k−1C

ᵀ
k + Γβk (covariance of the innovation)

Kk = Γk|k−1C
ᵀ
kS
−1
k (Kalman gain)

where

• Ak =
∂f(x̂k|k,uk)

∂x
=

−2B

∣∣∣ˆ̇z∣∣∣ Aχ̂ −A Aẑ

1 0 0 0
0 0 0 0
0 0 0 0

 · dt + I4×4 is the evo-

lution matrix,

• Ck =
dg(x̂k|k−1)

dx
=
(

0 1 0 0
)
is the observation matrix,

• and Γα, Γβ are respectively the process and the observation noise co-
variance matrices. In our case we set them diagonal and constant.
Their coefficients depend on the sensors accuracy and of the dynamic
of the float.

Figure 5.11 illustrates the depth controller structure with the EKF and the
state-feedback.

5.4.3 Experimental results

Tests in a controlled environment The float system was tested in a 20 m
deep sea water basin at Ifremer8 Brest (see Figure 5.12). The state feedback
controller and the EKF were running at 5 Hz with a transition depth zf =

8Institut Français de Recherche pour l’Exploitation de la Mer

176 CHAPTER 5. A HYBRID PROFILING FLOAT

Figure 5.12: Ifremer Brest water tank with the SeaBot float. The robot is
secured along a rope guide.

0.3 m. The mission was to reach five different depth levels {1, 5, 10, 15, 18}m
with a maximum speed of |żmax| = 0.04 m s−1, α = 1 and s = −1. Figure 5.13
shows the trajectory over time and Figure 5.14 shows the piston volume
measured Vm. There is no overshoot of the control and we clearly see, on
the volume Vm plot, the compensation of the loss of volume: the deeper the
robot is, the larger the volume of the piston output must be.

Evolution of χ Measuring the volume of the piston once the float
is stabilized at every depth level gives an idea of the value of χ. From
experimental data, the loss of volume appears not to be linear with depth
z but quadratic with respect to z. However, the EKF handles this model
error and adjust the value of χ and V0 (see Figure 5.15): this is why χ is not
constant over time.9

9The deformation of the pipe is not constant but looks like an hourglass. Indeed, the
caps at the end prevent the pipe to be compressed regularly.

5.4. DEPTH CONTROLLER 177

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200
0

2

4

6

8

10

12

14

16

18

20

zf

z

t

Figure 5.13: Depth z (in meter) of the float in function of time t (in seconds).
The setpoint depth trajectory is in red and the float depth trajectory is in
black.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200
0

20

40

60

80

100

120

140

160

10−6

−Vm

t

Figure 5.14: Piston volume measured Vm in function of time t (in seconds)

178 CHAPTER 5. A HYBRID PROFILING FLOAT

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

18

19

20

21

22

23

24

25

26

27

28

t

(Vo − 1.217× 10−4)

10−6

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
-4

-3

-2

-1

0

1

2

3

4

5

t

χ
10−6

Figure 5.15: Estimation of V0 and χ by the EKF over time

5.4. DEPTH CONTROLLER 179

Figure 5.16: Last test of the Seabot depth controller in the ENSTA Bretagne
2.5m deep pool before a deployment in the Bertheaume cove. Note that we
added colored stripes to make it easier to find the robot at the end of the
mission.

Energy consumption To reduce the energy consumption during as-
cending and descending phases, we compute an interval of input [u] for an
interval of maximum velocity [żmax] and we choose the input that minimizes
|u|. A no piston movement strategy could also be adopted when the set-point
is reached in the case of a stable float but this is not the case for our system.

Depth error For this first test, the depth error after the depth set-
point is reached is of few centimeters (in most cases under 2 cm). Some
depth bias of up to 4 cm can be observed which could come from mechanical
hysteresis or error in the model. Adding an integral effect to the control law
is a solution to compensate these small bias.

Tests in real environments Ocean trials have been conducted in the
Brest bay (see Figure 5.17), in the Bertheaume cove (see Figure 5.16) and
in the Guerlédan lake (see Figure 5.18). Results are the subject of ongoing
analysis at the time these lines are written concerning sea trials.

The Guerlédan lake mission consisted of 8 identical two-hours series. The
robot had to perform 20-mintues depth stops at: {10, 17.5, 25, 17, 9.5, 2, 0}m
for a total of 17 hours mission. The mission started on the 10th of October

180 CHAPTER 5. A HYBRID PROFILING FLOAT

Figure 5.17: Two SeaBot before their mission in the bay of Brest.

Figure 5.18: A Seabot after ending its mission in the lake of Guerlédan. We
can only see the yellow antenna emerging from the surface at the center of
the picture. An air drone is filming the scene.

5.5. VALIDATION OF THE DEPTH CONTROL LAW 181

Parameter Lower bound Upper bound
[Vp] −2.148× 10−5 m3 1.503× 10−4 m3[
V̇p

]
−1.431× 10−6 m3 s−1 1.431× 10−6 m3 s−1

Table 5.3: Seabot piston parameters (experimental results, V̇p is limited by
software compare to the maximum possible values)

2019 at 15h06UTC and lasted all the night. Figure 5.19 shows the result
with a zoom on one of the stop. We can see that the depth error is relatively
low with an order of magnitude of few millimeters.10

We can also note that just after 9 hours of mission, the robot encountered
wrong pressure data that led to a return to the surface. As a result of this
event, the EKF diverged to false values which explains why there are small
overshoots on the next depth stops. The situation came back to normal
around 11 hours of mission. Additional safety checks were added to prevent
this problem from happening again.

For each surface rise, the robot sent its position through a satellite con-
nection and used its thrusters to reach a next predefined area to dive. We
will not provide additional data concerning the surface travel as the results
were not enough convincing. Indeed, the robot encountered failures of its
magnetic compass which should be corrected in future experiments.

5.5 Validation of the depth control law
In this section, we will discuss how we can use the tools of previous chapters
to validate the depth control law of the SeaBot. We will first consider the
open-loop system, then we will add the control law to deal with the closed-
loop system. Finally we will deal with advance validation issues.

The SeaBot has mechanical constraints which bounds the volume Vp ∈
[Vp] and the volume rate of the piston V̇p ∈

[
V̇p

]
. These constraints narrow

the α, β, s and z̄ possible values. The parameters for the SeaBot piston are
summarized in Table 5.3. The asymmetry between V +

p and V −p is due to the
need to have a sufficient reserve buoyancy to emerge antennas.

5.5.1 Open-loop float performances

In this section, we will study the performance of the float in regards of
maximum reachable depths and velocities.

10The implementation of the controller was improved compared to the first test.

182 CHAPTER 5. A HYBRID PROFILING FLOAT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

5

10

15

20

25

30

t

z

(a) Global mission: depth z (in meter) of the float in function of time t (in hours).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

t

δz

(b) A zoom on the fifth stop at 9.5 meters of the 4th cycle (blue circle) with t0 = 7.88 hours.
Depth error δ (in centimeters) in function of time t (in minutes). We can see an overshot of
around 1 cm.

Figure 5.19: The Guerlédan lake mission. The depth set-point trajectory is
in red and the float depth trajectory is in black.

5.5. VALIDATION OF THE DEPTH CONTROL LAW 183

The maximum depth is not only limited by the hull durability against
pressure but also by the loss of volume due to compressibility. It is equal11

to around 70 m. We have set a practical depth limit to zmax = 50 m to keep
a safety margin which covers the mechanical strength of the pipe and the
compressibility issue. Similarly, the float cannot exceed a certain velocity
żmax due to compressibility.12

Largest viable set To highlight the depth and velocity limit, we will con-
sider a simplified model of the float where the volume of the piston can be
set instantaneously, i.e. V̇p is not limited and u = Vp. This allow to work in
a 2D space as algorithms of Chapter 3 are not fully implemented in 3D. We
have the following simplified system with the state vector x = (z̈, ż)ᵀ:

ẋ = f (x,u) =

(
−A (u− χz)−B |ż| ż

ż

)
. (5.10)

An interesting set to bracket is Viabf (X,U) where we choose U =
{u (·) | ∀t,u (t) ∈ [Vp]} and X = [−20, 80] × [−0.4, 0.4]. This set will give
the limitation of performance of the float. Indeed, it represents the set of
all states such that, there exists an input, such that the robot will stay and
was forever in X (positive and negative time). Figure 5.20 gives the viability
kernel13 of the simplified system (see Section 4.1 for explanations on how the
set is computed).

The depth and velocity limitations and their link clearly appear in the
result. We also see that there is a difference of velocity between the case
where the float is at the surface and at the maximum depth. This can be
explained by the fact that, at surface, there is more positive reserve buoyancy
than negative. We can see that, at the maximum depth, the velocity is equal

11At equilibrium in the case of the maximum depth, we have from Equation (5.5):
Vp−χzmax = 0 which implies that zmax = max

(
Vp

χ

)
Vp∈[Vp]

= 70m. A stable float (χ < 0)

will not be able to go deeper whereas an unstable float (χ > 0) will not be able to go
back to a lower depth. Indeed, it will not have enough reserve buoyancy to come back to
surface, if it goes deeper than this limit.

12If we suppose that the float has stabilized its velocity to żmax, we then have from
Equation 5.5: −A (Vp − χz)−B |żmax| żmax = 0 which implies that

żmax| z =

(√∣∣∣∣AB (Vp − χz)
∣∣∣∣
)
Vp∈{V −

p ,V +
p }

. (5.9)

13The drag coefficient was not estimated accurately so the results only give an order of
magnitude.

184 CHAPTER 5. A HYBRID PROFILING FLOAT

-20 -10 0 10 20 30 40 50 60 70 80-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

z

ż

Figure 5.20: Largest viable set Viabf (X,U) for the SeaBot float. Velocity is
in mm s−1 and depth in m.

to zero. Therefore, this depth should not be reached as it will not be possible
to come back at lower depths afterwards. The paths generated by the control
law should keep the profiling float inside Viabf (X,U) to avoid any issue.

Largest positive viable set A second interesting set to bracket is
Viab+

f (X,U), which corresponds to all the states where the float can be
released in X such there exists an input, such that it will stay forever (pos-
itive time) in X. Figure 5.21 shows the result. If an input brings the float
out of Viab+

f (X,U) then it will never be able to return to X and therefore to
Viabf (X,U).

Piston velocity limitation We consider now the limitation induced by[
V̇p

]
. The speed of the loss of volume due to compressibility is linked to

the velocity of the float. Therefore, the piston should move fast enough to
compensate this loss. Otherwise, in the case of an unstable float, it will
not succeed in decelerating. In the stable case, the velocity will be limited
by: żmax = V̇p

χ
|V̇p∈{V̇ −p ,V̇ +

p }∈ {−0.66, 0.66} m s−1. Therefore
[
V̇p

]
limits the

maximum allowable velocity of the float.

5.5. VALIDATION OF THE DEPTH CONTROL LAW 185

-20 -10 0 10 20 30 40 50 60 70 80-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

z

ż

Figure 5.21: Largest positive viable set Viab+
f (X,U) for the SeaBot float.

Velocity is in mm s−1 and depth in m.

5.5.2 Closed-loop system

We now consider the closed-loop system with the depth controller. To keep
a 2D system, we can, as described in Section 5.4.1, compute a state feedback
control for the simplified system (5.10):

u =
1

A

(
λ (β arctan (e)− ż)−

(
B |ż|+ γ

D

)
ż
)

+ χz

where we set λ = 10. We also know that the piston has mechanical volume
limits which means that u is saturated (see Table 5.3 on page 181). We will
only consider a saturated system hereafter.

Sensors uncertainties The first problem we will consider is to bracket the
set of the state space for which the closed-loop system is safe, i.e. it stays
forever inside a set X. We consider here a system with uncertainties on the
sensors of the form ẋ = fw (x + w) where w ∈ W is the noise of the sensors.
We set W = [−1e−3, 1e−3] × [−5e−3, 5e−3], the targeted depth z = 15 and
X = [−0.015, 0.015]× [14.7, 15.3].

We first bracket the set Inv+
FW

(X) where we consider the differential in-
clusion FW . We will not show the result in a figure as nearly all the states of

186 CHAPTER 5. A HYBRID PROFILING FLOAT

-300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

δz

ż

Figure 5.22: Largest negative viable set Viabfw (X,W) for the SeaBot float.
Velocity (mm s−1) in function of the depth error (mm).

X are inside Inv+
FW

(X) which produces an almost all magenta figure. There-
fore, almost every states in X will stay forever inside X, except for few states
near the border of X. These states belong, in fact, to paths that re-enter in
X after escaping from it. For all initial states that belong to Inv+

FW
(X) and

for all w, the path will stay forever in the future inside X.
The second set we will bracket is Viabfw (X,W). The result is given

in Figure 5.22. We can conclude that if the system is initialized inside
Inv+

FW
(X) ⊃ Viabfw (X,W), it will not be able to reach, in the worst case, a

set of final states smaller than Viabfw (X,W).

Set-points A second interesting problem is to consider the depth set point
as the input and to study the behavior of the closed-loop system. We have
a system of the form ẋ = fz (x, z) where z ∈ Z is the set of depth set-points.
Let us take Z = [0, 50].

We can bracket the set Viabfz (X,Z) as shown in Figure 5.23. Similarly
to the previous section we have: Viab−fz (X,Z) ⊂ Inv+

FZ
(X). We can conclude

that if the system is initialized in Inv+
FZ

(X), it will not be able, in the worst
case, to evolve in a smaller set than Viab−fz (X,Z).

Remark 5.9. An interesting question to study would be to consider if in
this 2D case, every states of Inv+

FZ
(X) converge to Viab−fz (X,Z) under the

assumption that Viab−fz (X,Z) ⊂ Inv+
FZ

(X).

5.5. VALIDATION OF THE DEPTH CONTROL LAW 187

-5 0 5 10 15 20 25 30 35 40 45 50 55-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

0.25

0.3

z

ż

Figure 5.23: Largest viable set Viab−fz (X,Z). Velocity (m s−1) in function of
depth (m).

5.5.3 Additional validations

5.5.3.1 Vector field following

An other important issue is to verify that the maximum piston volume rate
V̇p is sufficient to follow the imposed trajectory, i.e. ∀t, u (t) ∈

[
V̇p

]
.

We first consider that the float is stabilized on the trajectory (Le Gallic
et al., 2018). We know that ż = β arctan

(
z̄−z
α

)
and we also know that ẏ = 0

so z̈ = γ−ż
D

which implies that Vp = 1
A

(
γż
D

+B |ż| ż
)

+ χz. We can then
compute u as a function of z, as we know ż and Vp in function of z. In order
to obtain a guaranteed evaluation of u (z) and avoid numerical errors, we will
use interval computations to bracket the value of the function and obtain two
boundaries u+ and u− such that u ∈ [u−, u+].

If we take s = −1, β = 0.05 2
π
, α = 1 and z = 0, we obtain full black curves

in Figure 5.24. We can see that the input is always inside the maximum and
minimum piston volume rate. We can clearly see that when the system is
far from the target, it needs to compensate χ. The local increase of u near
the set point is due to the deceleration. The maximum volume velocities
computed are {−1.383× 10−7, 1.383× 10−7}m3 s−1 ⊂

[
V̇p

]
.

We can also study the behavior of the controller near the desired veloc-
ity set-point. If we assume now that ż = β arctan

(
z̄−z
α

)
+ w where w ∈

188 CHAPTER 5. A HYBRID PROFILING FLOAT

-10 -8 -6 -4 -2 0 2 4 6 8 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z

V̇p
10−6

u+

u−

V̇ +
p

V̇ −
p

Figure 5.24: Outer approximation of the input in function of depth for two
configurations. The maximum bound of V̇p are in red. Dotted curves corre-
spond to the model with noise.

[−5× 10−3, 5× 10−3] m s−1, we obtain the dotted curves of Figure 5.24 and
the new maximum volume velocities: {−5.62× 10−7, 5.62× 10−7}m s−1 ⊂[
V̇p

]
.

More generally, a study of the limitation of V̇p should be done for every
states and not only in the case where the float is stabilized on the controller
trajectory. This would however require at least to study the system in a 3D
space.

5.5.3.2 Minimum piston volume increment

Defining the minimum codewheel step increment is a difficult task. A way
to estimate a minimum value is to evaluate from Equation 5.9 which error of
velocity produces a step of piston volume.

In the case of the SeaBot, if we allow a δż = 0.01 m s−1 velocity er-
ror at zero depth, we obtain an equivalent error of volume of δVp,max =
2.306× 10−7 m3. We have chosen, for the SeaBot, a 48 counts per revolution
codewheel which gives a δVp = 7.16× 10−8 m3 < δVp,max.

5.5.3.3 Energy consumption

For a given maximum velocity żm and a depth change ∆z with a zero velocity
at the beginning, and at the end, we can deduce, for the piston, the required
variation of volume. By taking into account the piston volume rate, we can
obtain the amount of motor run time if we suppose at a first approximation

5.6. DESIGN LOOP 189

a one-time movement. We can then deduce an under approximation of the
power required for the mission:

E =
∆Vp

V̇p,max
Pm =

2
(
B
A
ż2
m

)
+ |χ∆z|

V̇p,max
Pm

We assume here, to simplify, that the piston movement for the velocity
and for the loss of volume are independent. We also assume that the piston
has to first move to reach żm and then has to move to decelerate to zero
velocity.

In the case of the SeaBot, for a ∆z = 50 m and żm = 0.05 m s−1, we obtain
a run time of 83s and E = 0.457 W h.

5.6 Design loop

Similarly to the ship design loop technique from the Naval Architecture com-
munity, we propose here a low-cost float design loop. The idea is to compute
from the problem inputs, the minimum electronic and mechanical character-
istics of the float.

• Problem inputs:

– mass of the payload: mp,

– maximum float velocity required żmax, trajectory to follow and
error allowed,

– volume of the antennas Va,

– max depth: zm,

– mission duration T and number of typical depth variation ∆z.

• Design loop

1. Compute the diameter d and length L of the float (function of
mp). Choose a material for the hull and compute its minimum
thickness (function of zm).

2. Estimate the drag coefficient Cd (function of d) and the loss of
volume per meter χ.

3. Compute the interval volume of the piston [Vp] required (i) to
emerge antennas (Va), (ii) to compensate the loss of volume (χ),
(iii) and to reach the maximum velocity (function of Cd).

190 CHAPTER 5. A HYBRID PROFILING FLOAT

4. Compute the interval velocity of the piston
[
V̇p

]
required to fol-

low the trajectory and compensate χ. Set the minimum motor
specifications.

5. Compute the step increment of piston volume (δV) and choose a
depth sensor according to specifications.

6. Estimate the power consumption and choose the battery capacity.

7. Go to step 1 if energy autonomy does not comply with the maxi-
mum payload weight.

5.7 Conclusion and future work
In this chapter, we have proposed a mission strategy to answer the global
problem of using ocean currents as the main source of propulsion. First of
all, we looked at how the safety constraints on the path, which is assigned
to a robot, could be translated into a problem involving mazes. We did not
have sufficient time to develop the solution up to a real test case. Secondly,
we have been dealing with the developments of a new kind of profiling float:
a hybrid profiling float, that is able to modify its trajectory to use ocean
currents. We have proposed a new depth controller, based on an EKF and a
state feedback linearization, which was tested and validated using a hybrid
float prototype. Finally, we have summarized our results with a design loop
that could help future developments of profiling floats. This loop gives key
parameters, that should be checked, for the design of a profiling float.

We have seen that mazes can be used at a mission level but also at a
lower level with the validation, for instance, of a depth controller. We can
note that the paths at the high level mission were not of the same nature
as the ones at the low level. However, both problems can still be formalized
using mazes.

There exist numerous perspectives to this chapter. First of all, we lack
a validation of the whole system in a real environment. The limitation of
the implementation of mazes to 2D systems did not allow to validate the
complete controller in R3. Moreover, a validation of the coupling between
the EKF and the controller should be studied to guarantee the convergence
of the system.

Chapter 6

General conclusion and prospects

In this work we have been considering the problem of using oceanic currents
as the main source of propulsion of underwater robots. To answer this chal-
lenge, we have proposed several new theoretical tools and also designed a
new kind of underwater robot. Providing theoretical tools to guarantee that
the robot will be able to carry out such missions has been a crosscutting
concern of this work.

6.1 Summary of the Contributions

To answer the Challenges introduced in Chapter 1, we started by presenting
in Chapter 2 the key concepts of dynamical systems and more specifically
the notion of invariants sets. To handle these sets in a computer, we have
introduced the framework of Abstract Interpretation and tools from Interval
Analysis. We have, in addition, drawn some parallels between the two com-
munities. These tools were interesting as they enable to guarantee formally
the results of computations. We have also shown how a Constraint Pro-
gramming approach along with the two previous fields could help to solve
problems involving complex objects such as paths. Several examples have
been given and in particular a contractor on dataset that allows to efficiently
handle oceanic currents data.

To better handle paths and associated constraints, we have introduced in
Chapter 3 a new abstract domain called maze. This chapter was focusing on
bracketing the largest positive invariant sets of a dynamical system. We have
shown how a set of new algorithms can be used efficiently to bracket these
sets using mazes. We have also shown how to implement the algorithms using
existing libraries. Moreover, we have presented some problems encountered
with mazes such as the sliding problem or the limitation to low-dimensional

191

192 CHAPTER 6. GENERAL CONCLUSION AND PROSPECTS

spaces. We have applied the tools to the bracket of the largest positive
invariant set of the Van Der Pol system. Finally, we have shown how the
theory could be extended to bracket the largest positive viable set.

In Chapter 4 we have shown how the bracket of invariant sets can be a
basic tool to solve more complex problems. Several classic problems from
the literature have been studied such as the bracket of forward and back-
ward reach sets, attraction basins and capture reach sets. Finally, we have
introduced a new Eulerian state estimator that formalizes in one framework
problems involving paths. Indeed, we have shown how an Eulerian state es-
timator problem could be rewritten as the bracket of positive invariant sets.
This new tool opens up perspectives on the design of a new language that
could formalize problems involving paths.

Chapter 5 has focused on answering in practice the questions raised by the
Challenges. We have proposed solutions at a high and low level. Concerning
the high level, we have proposed a formalization of missions that should use
oceanic currents. In particular, we have shown how guaranteeing that the
robot will fulfill the mission, can be translated into an invariant sets problem.
At a low level, we have introduced a new kind of hybrid profiling float to carry
out such missions. This new kind of robot can regulate its depth with a new
depth controller and can modify its trajectory using auxiliary thrusters. We
have shown how the robot controller can be validated theoretically using
maze tools. We have also validated the robot controller with experimental
results. More generally, we have shown how tools such as mazes can help to
prove the safety of robotic systems.

6.2 Prospects

We draw here some prospects concerning maze tools and oceanic current
missions.

Mazes Mazes have appeared as a powerful tool to deal with dynamical
systems in low dimensions. There exist an important number of prospects
with their use. We will first consider ideas to improve already presented tools
and in a second time an extension of the tools to solve new problem families.

First of all, a complete nD implementation which takes into account the
sliding effect should be undertaken. More generally, the speed of convergence
of maze algorithms could be improved by providing, among other, a better
vector field approximation, a better bisection heuristic, a better constraint
propagation heuristic, and a better implementation of contractors and infla-
tors,. . . (see for more details Section 3.3.5). We have also seen that mazes

6.2. PROSPECTS 193

in dimension greater than two, rely on the use of convex polytopes. Nowa-
days, libraries that handle convex polytopes are based on rational numbers
with exact computations. These libraries are relatively slow and require
large memory space. A key work should be to implement a convex polytope
floating-point library.

We know consider the extension of the algorithms to new problems. One
of the most important perspectives is the possible extension of maze tools
to solve hybrid dynamical systems problems (Goebel, Sanfelice, and Teel,
2009). Such systems are characterized by path jumps in the state space.
These jumps occur when a guard condition is met. One of the ideas is to
consider a directional virtual door of Rn that could be added to each box
of the paving to modeled jumps. This door would act as a wormhole in the
maze. This corresponds to the addition of new edges in the maze graph.
An other interesting perspective would be the study of the coupling between
Eulerian and Lagrangian methods, such as tubes (Rohou et al., 2018). Each
method allows different kind of constraints to be addressed. This would allow
to increase the number of dynamical constraints that can be handled.

Oceanic current missions The second prospects sequence concerns
oceanic current missions. As for the previous paragraph, we will propose
short term and long term perspectives.

First of all, a complete experimental validation of the presented mission
should be undertaken. Experiments always reveal unidentified problems. In
particular, a focus should be given to an improvement of the energy con-
sumption of the float, algorithmically and mechanically. For instance, the
float piston must always counter a large pressure differential between the low
pressure inside the float and the external high pressure due to depth. For
most missions, the float need to stay at a constant depth and must apply
small corrections to the piston position. Finding a way to reduce the pressure
differential could be an interesting way to save energy. The float should also
have a compressibility closed to the water compressibility to reduce the need
to compensate for the difference. Concerning the depth control law, a bet-
ter model that takes into account the temperature profile of the water could
improve the efficiency of the stabilization. Indeed, if the float and water
compressibility are close, the temperature profile is not anymore negligible.

Concerning the long term perspectives, the main issue with missions that
use oceanic currents is the localization problem underwater. In this work, we
have chosen indeed to return to the surface for path corrections. If we use a
swarm of robots and if we measure the distance between the robots, we can
obtain the measure of the distortion of the swarm under oceanic currents.

194 CHAPTER 6. GENERAL CONCLUSION AND PROSPECTS

In some cases, this would allow to localize the swarm. Indeed, knowing the
oceanic current map, there might exist only one evolution of the distortion
that is compatible with the evolution of the position of the swarm.

Finally, oceanographers could be interested in using low cost hybrid pro-
filing float. In the ocean there are interfaces between bodies of water that do
not mix. These bodies of water do not have the same physical characteristics,
particularly in terms of temperature. In these interfaces, internal waves are
propagating. To study such waves, a swarm of robots could be deployed to
follow an isotherm instead of an isobar. The variation of depth of the swarm
would then allow the wave propagation to be reconstructed.

Bibliography

Agati, P., F. Lerouge, and M. Rossetto (2008). Résistance des matériaux -
2ème édition - Cours, exercices et applications industrielles. 2e édition.
Paris: Dunod. 512 pp. isbn: 978-2-10-051634-6.

Asarin, Eugene, Thao Dang, and Antoine Girard (2003). “Reachability Anal-
ysis of Nonlinear Systems Using Conservative Approximation”. In: Hybrid
Systems: Computation and Control. Ed. by Oded Maler and Amir Pnueli.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 20–35. isbn: 978-3-
540-36580-8.

— (2007). “Hybridization methods for the analysis of nonlinear systems”. In:
Acta Informatica 43.7, pp. 451–476. issn: 1432-0525.

Aubin, David and Amy Dahan Dalmedico (2002). “Writing the History of
Dynamical Systems and Chaos: Longue Durée and Revolution, Disciplines
and Cultures”. In: Historia Mathematica 29.3, pp. 273–339. issn: 0315-
0860.

Aubin, Jean-Pierre (2009). Viability theory. Reprint of the 1991 ed. Mod-
ern Birkhäuser classics. OCLC: 699336048. Boston, Mass.: Birkhäuser.
543 pp. isbn: 978-0-8176-4910-4 978-0-8176-4909-8.

Aublin, M. et al. (2005). Systèmes mécaniques - Théorie et dimensionnement.
Paris: Dunod. 688 pp. isbn: 978-2-10-049104-9.

Bagnara, Roberto, Patricia M. Hill, and Enea Zaffanella (2008). “The Parma
Polyhedra Library: Toward a complete set of numerical abstractions for
the analysis and verification of hardware and software systems”. In: Sci-
ence of Computer Programming. Special Issue on Second issue of experi-
mental software and toolkits (EST) 72.1, pp. 3–21. issn: 0167-6423.

Barreiro, A., J. Aracil, and D. Pagano (2002). “Detection of attraction do-
mains of non-linear systems using bifurcation analysis and Lyapunov func-
tions”. In: International Journal of Control 75.5, pp. 314–327. issn: 0020-
7179.

Bayen, Alexandre M. et al. (2007). “Aircraft Autolander Safety Analysis
Through Optimal Control-Based Reach Set Computation”. In: Journal
of Guidance, Control, and Dynamics 30.1, pp. 68–77.

195

196 BIBLIOGRAPHY

Berkenpas, E. J. et al. (2018). “A Buoyancy-Controlled Lagrangian Camera
Platform forIn SituImaging of Marine Organisms in Midwater Scattering
Layers”. In: IEEE Journal of Oceanic Engineering 43.3, pp. 595–607. issn:
0364-9059.

Bessa, W. M. et al. (2017). “Design and Adaptive Depth Control of a Micro
Diving Agent”. In: IEEE Robotics and Automation Letters 2.4, pp. 1871–
1877. issn: 2377-3766.

Biemond, J. J. Benjamin and Wim Michiels (2014). “Estimation of basins
of attraction for controlled systems with input saturation and time-
delays”. In: IFAC Proceedings Volumes. 19th IFAC World Congress 47.3,
pp. 11006–11011. issn: 1474-6670.

Blanchini, Franco and Stefano Miani (2015). Set-theoretic methods in control.
OCLC: 946766307. isbn: 978-3-319-17933-9.

Bouissou, O. et al. (2014). “Computation of parametric barrier functions for
dynamical systems using interval analysis”. In: 53rd IEEE Conference on
Decision and Control. 53rd IEEE Conference on Decision and Control,
pp. 753–758.

Chabert, G and L. Jaulin (2009). “Contractor programming”. In: Artificial
Intelligence 173.11, pp. 1079–1100. issn: 00043702.

Combastel, C. (2005). “A State Bounding Observer for Uncertain Non-linear
Continuous-time Systems based on Zonotopes”. In: Proceedings of the 44th
IEEE Conference on Decision and Control. Proceedings of the 44th IEEE
Conference on Decision and Control, pp. 7228–7234.

Cousot, Patrick (2001). “Abstract Interpretation Based Formal Methods and
Future Challenges”. In: Informatics: 10 Years Back, 10 Years Ahead. Ed.
by Reinhard Wilhelm. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 138–156. isbn: 978-3-540-44577-7.

Cousot, Patrick and Radhia Cousot (1976). “Static determination of dynamic
properties of programs”. In: Proceedings of the 2nd International Sympo-
sium on Programming, Paris, France, pp. 106–130.

— (1977). “Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints”. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL ’77. the 4th ACM SIGACT-SIGPLAN
symposium. Los Angeles, California: ACM Press, pp. 238–252.

— (1979). “Systematic design of program analysis frameworks”. In: Proceed-
ings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL ’79. the 6th ACM SIGACT-SIGPLAN
symposium. San Antonio, Texas: ACM Press, pp. 269–282.

BIBLIOGRAPHY 197

— (1992a). “Abstract Interpretation Frameworks”. In: Journal of Logic and
Computation 2.4, pp. 511–547.

— (1992b). “Comparing the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation”. In: Proceedings of the 4th In-
ternational Symposium on Programming Language Implementation and
Logic Programming. PLILP ’92. Berlin, Heidelberg: Springer-Verlag,
pp. 269–295. isbn: 978-3-540-55844-6.

Cousot, Patrick and Nicolas Halbwachs (1978). “Automatic Discovery of Lin-
ear Restraints Among Variables of a Program”. In: Proceedings of the
5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. POPL ’78. event-place: Tucson, Arizona. New York, NY, USA:
ACM, pp. 84–96.

Cousot, Patrick et al. (2005). “The ASTREÉ Analyzer”. In: Programming
Languages and Systems. Ed. by Mooly Sagiv. Red. by David Hutchison
et al. Vol. 3444. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 21–30.
isbn: 978-3-540-25435-5 978-3-540-31987-0.

Creuze, Vincent (2014). “Robots marins et sous-marins Perception, modélisa-
tion, commande”. In: Techniques de l’ingénieur Applications en robotique
base documentaire : TIB623DUO. (ref. article : s7783).

Daney, David, Yves Papegay, and Arnold Neumaier (2004). “Interval Meth-
ods for Certification of the Kinematic Calibration of Parallel Robots”.
In:

Davey, B. A. and H. A. Priestley (2002). Introduction to lattices and order.
2nd ed. Cambridge, UK ; New York, NY: Cambridge University Press.
298 pp. isbn: 978-0-521-78451-1.

Delanoue, Nicolas, Luc Jaulin, and Bertrand Cottenceau (2006). “Attrac-
tion domain of a non-linear system using interval analysis”. In: Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP’06). Nantes, France.

Desilles, Anna, Hasnaa Zidani, and Eva Crück (2012). “Collision analysis
for an UAV”. In: AIAA GUIDANCE, NAVIGATION, AND CONTROL
CONFERENCE. Minneapolis, United States, AIAA 2012–4526.

Drevelle, V. and P. Bonnifait (2013). “Localization Confidence Domains
via Set Inversion on Short-Term Trajectory”. In: IEEE Transactions on
Robotics 29.5, pp. 1244–1256. issn: 1552-3098.

Dubins, L. E. (1957). “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents”. In: American Journal of Mathematics 79.3, pp. 497–516.
issn: 0002-9327.

198 BIBLIOGRAPHY

Esterhuizen, Willem and Jean Lévine (2016). “Barriers and potentially safe
sets in hybrid systems: Pendulum with non-rigid cable”. In: Automatica
73, pp. 248–255. issn: 0005-1098.

Fossen, Thor I. (2011). Handbook of marine craft hydrodynamics and motion
control =: Vademecum de navium motu contra aquas et de motu guber-
nando. OCLC: ocn699374017. Chichester, West Sussex: Wiley. 575 pp.
isbn: 978-1-119-99149-6.

Frehse, Goran et al. (2011). “SpaceEx: Scalable Verification of Hybrid Sys-
tems”. In: Computer Aided Verification. Ed. by Ganesh Gopalakrishnan
and Shaz Qadeer. Vol. 6806. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 379–395. isbn: 978-3-642-22109-5 978-3-642-22110-1.

Gao, Yan, John Lygeros, and Marc Quincampoix (2006). “The Reachability
Problem for Uncertain Hybrid Systems Revisited: A Viability Theory
Perspective”. In: Hybrid Systems: Computation and Control. Ed. by João
P. Hespanha and Ashish Tiwari. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 242–256. isbn: 978-3-540-33171-1.

Girard, Antoine, Colas Le Guernic, and Oded Maler (2006). “Efficient Com-
putation of Reachable Sets of Linear Time-Invariant Systems with In-
puts”. In: Hybrid Systems: Computation and Control. Ed. by João P. Hes-
panha and Ashish Tiwari. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 257–271. isbn: 978-3-540-33171-1.

Goebel, Rafal, Ricardo G. Sanfelice, and Andrew R. Teel (2009). “Hybrid
dynamical systems”. In: IEEE Control Systems 29.2, pp. 28–93. issn:
1066-033X, 1941-000X.

Gonzaga, Carlos A. C., Marc Jungers, and Jamal Daafouz (2012). “Stability
analysis and stabilisation of switched nonlinear systems”. In: International
Journal of Control 85.7, pp. 822–829. issn: 0020-7179.

Goualard, Frederic. “Gaol: NOT Just Another Interval Arithmetic Library”.
In: p. 92.

Goubault, Eric and Sylvie Putot (2017). “Forward Inner-Approximated
Reachability of Non-Linear Continuous Systems”. In: Proceedings of the
20th International Conference on Hybrid Systems: Computation and Con-
trol. HSCC ’17. event-place: Pittsburgh, Pennsylvania, USA. New York,
NY, USA: ACM, pp. 1–10. isbn: 978-1-4503-4590-3.

Gouttefarde, Marc, David Daney, and Jean-Pierre Merlet (2011). “Interval-
Analysis-Based Determination of the Wrench-Feasible Workspace of Par-
allel Cable-Driven Robots”. In: IEEE Transactions on Robotics 27.1,
pp. 1–13. issn: 1552-3098, 1941-0468.

Guyonneau, R., S. Lagrange, and L. Hardouin (2013). “A visibility infor-
mation for multi-robot localization”. In: 2013 IEEE/RSJ International

BIBLIOGRAPHY 199

Conference on Intelligent Robots and Systems. 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1426–1431.

Halbwachs, Nicolas, Yann-Erick Proy, and Patrick Roumanoff (1997). “Veri-
fication of Real-Time Systems using Linear Relation Analysis”. In: Formal
Methods in System Design 11.2, pp. 157–185. issn: 1572-8102.

Huth, Michael and Mark Ryan (2004). Logic in computer science: modelling
and reasoning about systems. 2nd ed. Cambridge [U.K.] ; New York: Cam-
bridge University Press. 427 pp. isbn: 978-0-521-54310-1.

“IEEE Standard for Interval Arithmetic” (2015). In: IEEE Std 1788-2015,
pp. 1–97.

Jaffe, J. S. et al. (2017). “A swarm of autonomous miniature underwater
robot drifters for exploring submesoscale ocean dynamics”. In: Nature
Communications 8, p. 14189. issn: 2041-1723.

Jaulin, L. (2006). “Computing minimal-volume credible sets using interval
analysis; application to bayesian estimation”. In: IEEE Transactions on
Signal Processing 54.9, pp. 3632–3636. issn: 1053-587X.

— (2015). Mobile Robotics. Ed. by ISTE. Mobile Robotics.
— (2018). “Isobath Following using an Altimeter as a Unique Exteroceptive

Sensor”. In: Robotic Sailing 2018. Ed. by Sophia M. Schillai and Nicholas
Townsend. event-place: Southampton, UK, pp. 105–110.

Jaulin, L. and B. Desrochers (2014). “Introduction to the algebra of separa-
tors with application to path planning”. In: Engineering Applications of
Artificial Intelligence 33, pp. 141–147. issn: 0952-1976.

Jaulin, L. et al. (2001). Applied Interval Analysis: With Examples in Pa-
rameter and State Estimation, Robust Control and Robotics. OCLC:
853266316. London: Springer London. isbn: 978-1-4471-0249-6.

Kalies, William D., Konstantin Mischaikow, and Robert C. A. M. Vander-
vorst (2016). “Lattice Structures for Attractors II”. In: Foundations of
Computational Mathematics 16.5, pp. 1151–1191. issn: 1615-3383.

Kaynama, Shahab et al. (2012). “Computing the viability kernel using max-
imal reachable sets”. In: Proceedings of the 15th ACM international con-
ference on Hybrid Systems: Computation and Control - HSCC ’12. the
15th ACM international conference. Beijing, China: ACM Press, p. 55.
isbn: 978-1-4503-1220-2.

Khalil, Hassan K. (2002). Nonlinear systems. 3rd ed. Upper Saddle River,
N.J: Prentice Hall. 750 pp. isbn: 978-0-13-067389-3.

LaSalle, Joseph P and Solomon Lefschetz (1961). Stability by Liapunov’s
direct method with applications. OCLC: 428097379. Amsterdam: Elsevier
Science. isbn: 978-0-12-437056-2.

200 BIBLIOGRAPHY

Lazure, Pascal and Franck Dumas (2008). “An external–internal mode cou-
pling for a 3D hydrodynamical model for applications at regional scale
(MARS)”. In: Advances in Water Resources 31.2, pp. 233–250. issn: 0309-
1708.

Le Gallic, M. et al. (2018). “Tight slalom control for sailboat robots”. In:
International Robotic Sailing Conference (IRSC).

Le Mézo, Thomas, Luc Jaulin, and Benoit Zerr (2017a). “An Interval Ap-
proach to Compute Invariant Sets”. In: IEEE Transactions on Automatic
Control 62.8, pp. 4236–4242. issn: 0018-9286.

— (2017b). “Eulerian state estimation”. In: SWIM’17.
— (2018). “Bracketing the solutions of an ordinary differential equation with

uncertain initial conditions”. In: Applied Mathematics and Computation.
Recent Trends in Numerical Computations: Theory and Algorithms 318,
pp. 70–79. issn: 0096-3003.

— (2019). “Bracketing backward reach sets of a dynamical system”. In: In-
ternational Journal of Control, pp. 1–13. issn: 0020-7179.

Le Mézo, Thomas et al. (2019). “Design and control of a low-cost autonomous
profiling float”. In: 24ème Congrès Français de Mécanique. Brest, France.

Le Reste, S. et al. (2016). “"Deep-Arvor": A new profiling float to extend the
Argo observations down to 4000m depth.” In: Journal Of Atmospheric
And Oceanic Technology 33.5, pp. 1039–1055. issn: 0739-0572.

Lhommeau, M., L. Jaulin, and L. Hardouin (2011). “Capture basin approx-
imation using interval analysis”. In: International Journal of Adaptive
Control and Signal Processing 25.3, pp. 264–272. issn: 1099-1115.

MahmoudZadeh, S. et al. (2018). “Online path planning for AUV ren-
dezvous in dynamic cluttered undersea environment using evolutionary
algorithms”. In: Applied Soft Computing 70, pp. 929–945. issn: 1568-4946.

McGilvray, B. and C. Roman (2010). “Control system performance and effi-
ciency for a mid-depth Lagrangian profiling float”. In: OCEANS’10 IEEE
SYDNEY. OCEANS’10 IEEE SYDNEY, pp. 1–10.

Miné, Antoine (2006). “The Octagon Abstract Domain”. In: Higher Order
Symbol. Comput. 19.1, pp. 31–100. issn: 1388-3690.

— (2013). “Static analysis by abstract interpretation of concurrent pro-
grams”. thesis.

Mitchell, Ian M. (2007). “Comparing Forward and Backward Reachability as
Tools for Safety Analysis”. In: Hybrid Systems: Computation and Control.
Ed. by Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, pp. 428–443.
isbn: 978-3-540-71493-4.

BIBLIOGRAPHY 201

Mitchell, Ian, Alexandre M. Bayen, and Claire J. Tomlin (2001). “Validating
a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets”. In:
Hybrid Systems: Computation and Control. Ed. by Maria Domenica Di
Benedetto and Alberto Sangiovanni-Vincentelli. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 418–432. isbn: 978-3-540-
45351-2.

Montanari, Ugo (1974). “Networks of constraints: Fundamental properties
and applications to picture processing”. In: Information Sciences 7,
pp. 95–132. issn: 0020-0255.

Moore, R.E. (1966). Interval analysis. Prentice-Hall series in automatic com-
putation. Prentice-Hall.

Pelleau, Marie et al. (2013). “A Constraint Solver Based on Abstract Do-
mains”. In: Verification, Model Checking, and Abstract Interpretation.
Ed. by Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, pp. 434–454.
isbn: 978-3-642-35873-9.

Pineau-Guillou, Lucia (2013). PREVIMER. Validation des modèles hydrody-
namiques 2D des côtes de la Manche et de l’Atlantique.

Quincampoix, M. (1992). “Differential Inclusions and Target Problems”. In:
SIAM Journal on Control and Optimization 30.2, pp. 324–335. issn: 0363-
0129.

Rakovic, S. V. et al. (2005). “Invariant approximations of the minimal robust
positively Invariant set”. In: IEEE Transactions on Automatic Control
50.3, pp. 406–410.

Rao, Dushyant and Stefan B Williams (2009). “Large-scale path planning for
Underwater Gliders in ocean currents”. In: p. 8.

Ratschan, Stefan and Zhikun She (2010). “Providing a Basin of Attraction
to a Target Region of Polynomial Systems by Computation of Lyapunov-
Like Functions”. In: SIAM Journal on Control and Optimization 48.7,
pp. 4377–4394. issn: 0363-0129, 1095-7138.

Riser, S. C. et al. (2016). “Fifteen years of ocean observations with the global
Argo array”. In: Nature Climate Change 6.2, pp. 145–153. issn: 1758-6798.

Rohou, Simon et al. (2017). “Guaranteed computation of robot trajectories”.
In: Robotics and Autonomous Systems 93, pp. 76–84. issn: 0921-8890.

— (2018). “Reliable non-linear state estimation involving time uncertainties”.
In: Automatica 93, pp. 379–388. issn: 0005-1098.

Rohou, Simon et al. (2019). Reliable robot localization: a constraint-
programming approach over dynamical systems. Hoboken: ISTE Ltd /
John Wiley and Sons Inc. isbn: 978-1-84821-970-0.

202 BIBLIOGRAPHY

Rossi, Francesca, Peter Van Beek, and Toby Walsh, eds. (2006). Handbook
of constraint programming. 1st ed. Foundations of artificial intelligence.
OCLC: ocm70408044. Amsterdam ; Boston: Elsevier. 955 pp. isbn: 978-
0-444-52726-4.

Russell, Stuart J., Peter Norvig, and Ernest Davis (2010). Artificial intel-
ligence: a modern approach. 3rd ed. Prentice Hall series in artificial in-
telligence. Upper Saddle River: Prentice Hall. 1132 pp. isbn: 978-0-13-
604259-4.

Saint-Pierre, Patrick (1994). “Approximation of the viability kernel”. In: Ap-
plied Mathematics and Optimization 29.2, pp. 187–209. issn: 1432-0606.

— (2002). “Hybrid Kernels and Capture Basins for Impulse Constrained
Systems”. In: Hybrid Systems: Computation and Control. Ed. by Claire J.
Tomlin and Mark R. Greenstreet. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 378–392. isbn: 978-3-540-45873-9.

Sandretto, Julien Alexandre dit and Alexandre Chapoutot (2016). “Validated
Simulation of Differential Algebraic Equations with Runge-Kutta Meth-
ods”. In: Reliable Computing electronic edition. Special issue devoted to
material presented at SWIM 2015 22.

Schiaretti, Matteo, Linying Chen, and Rudy R. Negenborn (2017). “Survey
on Autonomous Surface Vessels: Part II - Categorization of 60 Proto-
types and Future Applications”. In: Computational Logistics. Ed. by Tolga
Bektaş et al. Lecture Notes in Computer Science. Springer International
Publishing, pp. 234–252. isbn: 978-3-319-68496-3.

Seube, N., R. Moitie, and G. Leitmann (2000). “Aircraft Take-Off in Wind-
shear: A Viability Approach”. In: Set-Valued Analysis 8.1, pp. 163–180.
issn: 1572-932X.

Shi, Y. et al. (2017). “Advanced Control in Marine Mechatronic Systems: A
Survey”. In: IEEE/ASME Transactions on Mechatronics 22.3, pp. 1121–
1131. issn: 1083-4435.

Slotine, J.-J. E. and Weiping Li (1991). Applied nonlinear control. Englewood
Cliffs, N.J: Prentice Hall. 459 pp. isbn: 978-0-13-040890-7.

Smith, Ryan N. et al. (2010). “Planning and Implementing Trajectories for
Autonomous Underwater Vehicles to Track Evolving Ocean Processes
Based on Predictions from a Regional Ocean Model”. In: The Interna-
tional Journal of Robotics Research 29.12, pp. 1475–1497.

Taha, Walid et al. (2016). “Acumen: An Open-Source Testbed for Cyber-
Physical Systems Research”. In: Internet of Things. IoT Infrastructures.
Ed. by Benny Mandler et al. Vol. 169. Cham: Springer International Pub-
lishing, pp. 118–130. isbn: 978-3-319-47062-7 978-3-319-47063-4.

BIBLIOGRAPHY 203

Tahir, Furqan and Imad M. Jaimoukha (2012). “Robust Positively Invariant
Sets for Linear Systems subject to model-uncertainty and disturbances”.
In: IFAC Proceedings Volumes. 4th IFAC Conference on Nonlinear Model
Predictive Control 45.17, pp. 213–217. issn: 1474-6670.

Tarski, Alfred (1955). “A lattice-theoretical fixpoint theorem and its applica-
tions.” In: Pacific Journal of Mathematics 5.2, pp. 285–309. issn: 0030-
8730.

Timoshenko, S. (1941). “Strength of Materials, Part II”. In: Advanced Theory
and Problems 245.

Wilczak, D. and P. Zgliczyński (2011). “Cr - Lohner algorithm”. In: Schedae
Informaticae Vol. 20, pp. 9–42.

Zereik, Enrica et al. (2018). “Challenges and future trends in marine robotics”.
In: Annual Reviews in Control 46, pp. 350–368. issn: 1367-5788.

Titre : Encadrement des plus grands ensembles invariants de systèmes dynamiques : une application aux
robots sous-marins dérivant dans les courants océaniques.

Mot clés : robotique sous-marine, systèmes dynamiques, ensembles invariants, interprétation abstraite,

programmation par contraintes, flotteurs profilers.

Résumé : La vérification de la sûreté de fonction-
nement des systèmes robotiques est une question
fondamentale pour le développement de la robo-
tique. Elle consiste, par exemple, à vérifier quune
loi de commande dun robot respectera toujours un
ensemble de contraintes. Plus généralement, nous
nous intéresserons ici à la vérification des proprié-
tés de systèmes dynamiques, ces derniers permet-
tant de modéliser lévolution dun robot.

La contribution principale de cette thèse est
dapporter un nouveau moyen dencadrer les en-
sembles invariants de systèmes dynamiques. Pour
cela, un nouveau domaine abstrait, les mazes, et
de nouveaux algorithmes sont présentés. Il est éga-
lement montré, au travers de nombreux exemples,
comment des problèmes classiques de validation
peuvent être ramenés à un problème dencadre-
ment densembles invariants. Enfin, les résultats

sont étendus à lencadrement des noyaux de viabi-
lités.

Cette thèse sappuie également sur une applica-
tion en robotique sous-marine. Lidée principale est
dutiliser les courants marins pour quun robot sous-
marin puisse parcourir avec efficience de grandes
distances. Un nouveau type de robot autonome bas
coûts a été développé pour ce type de mission. Ce
nouveau flotteur profileur hybride est capable de se
réguler en profondeur grâce à une nouvelle loi de
régulation, mais également de corriger sa trajectoire
à laide de propulseurs auxiliaires. Ils permettent au
robot de choisir la bonne veine de courant à em-
prunter. Les outils de validations précédemment in-
troduits sont utilisés pour valider la sûreté du robot
et de la mission. Des expérimentations en condi-
tions réelles ont également permis de valider le pro-
totype.

Title: Bracketing largest invariant sets of dynamical systems: an application to drifting underwater robots
in ocean currents.

Keywords: underwater robotics, dynamical systems, invariants sets, abstract interpretation, constraint pro-

gramming, profiling floats.

Abstract: The proof of safety of robotic systems is a
fundamental issue for the development of robotics.
It consists, for instance, in verifying that a robot con-
trol law will always satisfy a set of constraints. More
generally, we will be interested here in the verifica-
tion of the properties of dynamical systems, as the
latter allow to model the evolution of a robot.

The main contribution of this thesis is to provide
a new way of bracketing invariant sets of dynamical
systems. To this end, a new abstract domain, the
mazes, and new algorithms are presented. It is also
shown, through many examples, how classic valida-
tion problems can be translated into a problem of
bracketing invariant sets. Finally, the results are ex-

tended to the bracket of viability kernels.
This thesis is also based on an application in un-

derwater robotics. The main idea is to use ocean
currents so that an underwater robot can efficiently
travel long distances. A new kind of low-cost au-
tonomous robot has been developed for this type of
mission. This new hybrid profiling float is able to reg-
ulate its depth with a new regulation law, but also to
correct its trajectory using auxiliary thrusters. They
allow the robot to choose the right flow of current to
be used. The previously introduced validation tools
are applied to validate the robot and the mission
safety. Experiments in real conditions also enabled
the prototype to be validated.

	1 Introduction
	1.1 Motivation and background
	1.1.1 Using robots in the ocean
	1.1.2 The problem of drifting underwater robots
	1.1.3 Safety of robotic systems

	1.2 Contributions and Outlines
	1.3 Softwares

	2 Tools to handle dynamical systems
	2.1 Dynamical systems
	2.1.1 Definition
	2.1.2 Flow map and properties of dynamical systems
	2.1.3 Set and lattice
	2.1.4 Invariant sets
	2.1.5 Extension of the dynamical system model
	2.1.6 Lyapunov theory

	2.2 Abstract domains
	2.2.1 Abstract Interpretation
	2.2.1.1 Definitions
	2.2.1.2 Properties of abstract domains

	2.2.2 Example of abstract domains
	2.2.2.1 Intervals
	2.2.2.2 Convex Polytopes
	2.2.2.3 Paving and subpaving

	2.2.3 The choice of an abstract domain

	2.3 Constraint programming
	2.3.1 Constraint network and fixed points
	2.3.1.1 Definition
	2.3.1.2 Fixed point

	2.3.2 Bracketing the solution set of a Constraint Network
	2.3.2.1 Outer approximation
	2.3.2.2 Inner approximation
	2.3.2.3 Example

	2.3.3 Example of algorithms
	2.3.3.1 CSP and Set inversion problem
	2.3.3.2 Dealing with datasets

	2.4 Conclusion

	3 Mazes: a new abstract domain for paths
	3.1 Definitions and problem statement
	3.2 Mazes
	3.2.1 Roads
	3.2.2 Inclusion and lattice
	3.2.3 Door consistency

	3.3 Method and algorithm
	3.3.1 Computing an outer approximation for Invf+(X)
	3.3.2 Computing an inner approximation for Invf+(X)
	3.3.3 Main Algorithm
	3.3.3.1 Paving bisection
	3.3.3.2 An algorithm to bracket the largest positive invariant set
	3.3.3.3 Computed enclosure
	3.3.3.4 Complexity

	3.3.4 The Van Der Pol example
	3.3.5 Parameters that affect the speed of convergence

	3.4 Toward an implementation
	3.4.1 The sliding issue
	3.4.1.1 Problem statement
	3.4.1.2 Graph model of Mazes
	3.4.1.3 Graph rebuilding

	3.4.2 Using abstract domains without the ACC
	3.4.3 Constraint propagation heuristic and multithreading capabilities
	3.4.4 Using existing libraries

	3.5 Differential inclusion & system with input
	3.5.1 Outer approximation
	3.5.2 Inner approximation
	3.5.3 The example of the reverse Van Der Pol system with an input

	3.6 Conclusion

	4 Applications of invariant sets
	4.1 The largest positive and negative invariant sets
	4.1.1 The problem
	4.1.2 Application: the example of isobath navigation

	4.2 Forward & Backward reach sets
	4.3 Attraction basin
	4.4 Capture reach set
	4.5 Eulerian state estimation
	4.5.1 Formalism
	4.5.2 Invariant sets approach

	4.6 Conclusion

	5 A hybrid profiling float
	5.1 Problem formalization
	5.1.1 The mission
	5.1.1.1 Use case
	5.1.1.2 Mission formalization

	5.1.2 The robot

	5.2 Float dynamics
	5.3 Design of a hybrid profiling float
	5.3.1 Mechanical architecture
	5.3.1.1 Float hull
	5.3.1.2 Float compressibility
	5.3.1.3 Auto-ballasting system
	5.3.1.4 Additional systems

	5.3.2 Electronic architecture
	5.3.3 Software architecture

	5.4 Depth controller
	5.4.1 Control law
	5.4.2 Estimation of unknown parameters
	5.4.3 Experimental results

	5.5 Validation of the depth control law
	5.5.1 Open-loop float performances
	5.5.2 Closed-loop system
	5.5.3 Additional validations
	5.5.3.1 Vector field following
	5.5.3.2 Minimum piston volume increment
	5.5.3.3 Energy consumption

	5.6 Design loop
	5.7 Conclusion and future work

	6 General conclusion and prospects
	6.1 Summary of the Contributions
	6.2 Prospects

