Soutenance de thèse pour obtenir le grade de Docteur en électronique de l'Université de Montpellier

Bouclier acoustique pour robot d'exploration karstique

Mohammad ALARAB

15 Octobre 2021

ALEYIN

Philippe ROUX	Professeur, ISTerre, Université Grenoble Alpes	Rapporteur
Jérôme FORTINEAU	Professeur, INSA Centre Val de Loire	Rapporteur
Christophe LAOT	Professeur, IMT Atlantique Bretagne-Pays de la Loire, Brest	Examinateur
Franck AUGEREAU	Maître de conférences, IES, Université de Montpellier	Encadrant de thèse
Didier LAUX	Maître de conférences, HDR, IES, Université de Montpellier	Co-Directeur de thèse
Lionel LAPIERRE	Maître de conférences, HDR, LIRMM, Université de Montpellier	Directeur de thèse
Emmanuel LE CLEZIO	Professeur, IES, Université de Montpellier	Invité

Contexte : Crise d'eau douce et besoin d'exploration karstique

NÜMEV

Réseau karstique

Contexte : L'exploration karstique

- 1982 1988
- Quatre robots
- Collaboration avec Renault
- Télécommandé par câble ombilical

- 2003
- 46 x sonars
- Sponsorisé par la NASA
- Autonome

DepthX

- 2014
- 2 x profilomètres
- Sponsorisé par 4 programmescadres UE
- Guidé par des plongeurs

- Ulysse
 - Caméra acoustique
 - Sonar profilométrique
 - DVL (Doppler Velocity Log)

Contexte : Le Bouclier Acoustique

Plan

- Compréhension du milieu
 - Effet de la turbidité
 - Caractérisation des sédiments en suspension
- Conception du système
 - Architecture du système
 - Choix des capteurs
 - Choix de l'électronique
 - Architecture Software
- Validation
 - Banc de test
 - Caractérisation des performances
 - Evaluation contre surfaces rocheuses
 - **Conclusion générale**

Compréhension du milieu

Conception du système

Validation

Conclusion générale

- Effet de la turbidité sur la propagation des ondes ultrasonores
- Caractérisation des sédiments par mesure du coefficient d'atténuation
- Conclusion

Effet de la turbidité

Caractérisation des sédiments : Echantillons d'expérimentation

NUMEV

➢ Billes de verre 100-200 µm (image optique x200)

 Poudre d'argile tamisée 40 μm (image optique x200)

 Dv_{50}

 Dv_{10}

13

 Dv_{90}

Caractérisation des sédiments : Résultats sur les billes de verre

NUMEV

ies

Caractérisation des sédiments : Résultats sur la poudre d'argile

NUMEV

Conclusion : Effet des sédiments et caractérisation de l'eau turbide ies

Checklist

NUMEV

Sélection du modèle

Outil de prédiction du niveau de pertes

Banc de caractérisation de sédiments

Approche simple et efficace pour la mesure de l'atténuation

Traitement simple pour l'estimation

Preuve de faisabilité d'un dispositif embarqué

Compréhensio

Conception du

Validation

du milieu

⊆

système

Compréhension du milieu

Conception du système

Validation

Conclusion générale

- Architecture du système
- Choix des capteurs
- Sélection de l'électronique
- Architecture Software
- Conclusion

Architecture du système : Chaîne d'acquisition

19

Architecture du système : Chaîne d'acquisition

21

Choix de l'électronique : Pour une mesure automatique de distance

- Signal :
 - Faible
 - Bruité
- Information utile :
 - Fortement atténuée
 - Difficilement localisable

Tout en prenant compte des contraintes de l'application embarquée !

Choix de l'électronique : Les composants TDC

• Avantages :

- Couvre les plages de portée / fréquence visées
- Conditionnement du signal à l'émission
- Conditionnement à la réception jusqu'au calcul du TOF (temps de vol)
- Composants programmables offrant une possibilité de modification dynamique des paramètres de mesure

Choix de l'électronique : Difficultés liées à la détection

Nombre d'échos détectés :

> Seuil ?

NUMEV

➤ Gain ?

Détection :

- de plusieurs réflexions successives
- de réflexion diffuse

Architecture du système : Chaîne d'acquisition

25

Conclusion : Chaîne d'acquisition pour système de mesure de distance ies

Checklist

NUMEV

- Choix de capteurs (0,5-1 MHz ; 1,5-6 cm)
- Mise en place de l'électronique de
- conditionnement
- Développement d'un programme avec OS temps réel

Mise en place d'un système complet autonome et reconfigurable

Niveau de performance : jusqu'à 20 capteurs pour 1 cycle / 100 ms

Prototype opérationnel

Compréhensi on du milieu

Conception du

Validation

système

Compréhension du milieu Conception du système

Validation

Conclusion générale

- Banc de test
- Caractérisation du système
- Validation sur surfaces rugueuses
- Conclusion

Banc de test

Electronique du Bouclier Acoustique

> Interface d'acquisition

Caractérisation du système

► 180

160

Caractérisation du système : Avec trois capteurs

Validation sur surfaces rugueuses : Paroi plane et rugueuse

Plan rocheux de travertin, poreux et rugueux

Angle

36

Angle

Angle

Géométrie de la structure
5 capteurs

 Structure 5 capteurs fabriqués au laboratoire

Profil rocheux variable

Conclusion : Performances de détection

Compréhension du milieu Conception du système Validation

Conclusion générale

- Conclusion
- Perspectives

Conclusions :

*Clhorlelli*ct

Système de caractérisation

Outil de prédiction du niveau de pertes dans l'eau turbide

Approche simplifiée pour la caractérisation des sédiments

Validation sur un échantillon d'eau trouble naturelle

Bouclier Acoustique

Prototype opérationnel embarquable

Portée de quelques centimètres jusqu'à plusieurs mètres

Système autonome, reconfigurable et auto-

Gestion possible jusqu'à 20 capteurs

Efficace contre les parois rocheuses, rugueuses et irrégulières

Conclusions : Technology Readiness Level

L	Système de caractérisation	Bouclier acoustique
	Principes de base	
	Concepts ou applications de la technologie formulés	
	Fonction critique analysée et expérimentée ou preuve	e caractéristique du concept
	Validation en laboratoire du composant ou de l'artefac	ct produit
	Validation dans un environnement significatif du comp	posant ou de l'artefact produit
	Démonstration du modèle système / sous-système ou	u du prototype dans un environnement significatif
	Démonstration du système prototype en environneme	ent opérationnel
	Système réel complet qualifié à travers des tests et de	s démonstrations
	Système réel prouvé à travers des opérations / missior	ns réussies

Perspectives

Checklist

Système de caractérisation

Elargissement de l'étude sur différents échantillons de karst

	Ω
1	

Automatisation du protocole d'ajustage et d'estimation

Miniaturisation

Conception et développement du dispositif de caractérisation autonome

Bouclier Acoustique

Optimisation et miniaturisation de l'électronique

Intégration de fonctionnalités supplémentaires de traitement et de reconfiguration

Montée en nombre de capteurs

Etude de la répartition des capteurs

Mise à niveau pour une couverture multidirectionnelle

Validation du BA dans une mission réelle

Publication & congres

Mohammad Alarab, Franck Augereau, Didier Laux, Lionel Lapierre. Estimation of particle size in turbid water using ultrasonic attenuation - Application for immersed cave exploration. *Forum Acusticum*, Dec 2020, Lyon, France. pp.2303-2306, <u>(10.48465/fa.2020.0078)</u>. (hal-03240215)

e-Forum Acusticum 202

Dec 7-11, 2020

Mohammad Alarab, Franck Augereau, Didier Laux, Layal Dahdouh, Lionel Lapierre. Simplified ultrasonic approach to estimate sediments size and concentration in turbid water. Soumission en cours dans acta-acoustica

