

Coordinated motion control of underactuated autonomous underwater vehicles

Xianbo XIANG

Supervisors: Mcf. Lionel Lapierre Prof. Bruno Jouvencel

24/02/2011, Montpellier

Scenario : black box recovery

Scenario : black box recovery

cenario : black box recovery

Background

Key issues

- Autonomous vehicles
- Underactuation / Isoactuation
- Constrained communication
- Coordinated path-following
- Formation keeping and RDVs
- Centralized / decentralized control

Background

Closed-loop marine control system

Motivation

Why Autonomous underactuacted vehicle

Background

Motivation

Motion control of underactuated vehicles

Side-slip (V \neq 0), but no sway actuator

Motivation

Motion control of unicycle wheeled system

No side-slip (V =0)

Modeling

Unicycle V.S. AUV

Modeling

Unicycle V.S. AUV

Conclusion •

Modeling

Unicycle V.S. AUV

Current motion control strategies

Current motion control strategies

Current motion control strategies

Trajectory Tracking VS. Path Following

Trajectory Tracking (TT)

•Time dependant reference (The target flies with time, no matter the current situation of the vehicle)

Trajectory Tracking VS. Path Following

Trajectory Tracking (TT)

Time dependant reference (The target flies with time, no matter the current situation of the vehicle)
Actuators are easily pushed to saturation

Trajectory Tracking VS. Path Following

Trajectory Tracking (TT)

- •Time dependant reference (The target flies with time, no matter the current situation of the vehicle)
- •Actuators are easily pushed to saturation
- Aggressive maneuvers
- (The vehicle may turn back in its attempt to be at a specific point at a prescribed time)

Conclusion •

Trajectory Tracking VS. Path Following

Trajectory Tracking (TT)

•Time dependant reference (The target flies with time, no matter the current situation of the vehicle)

•Actuators are easily pushed to saturation

Aggressive maneuvers

(The vehicle may turn back in its attempt to be at a specific point at a prescribed time)

•Risk of Stalling

(loosing efficiency of the surfaces of control)

AUV Vel/water = $V_d - V_c = 0$!

Control

Trajectory Tracking VS. Path Following

Path Following (PF)

•Time free reference (closest point)

Trajectory Tracking VS. Path Following

- •Time free reference (closest point)
- Decoupled control u / r
- (U arbitrarily chosen)

Trajectory Tracking VS. Path Following

- •Time free reference (closest point)
- -Decoupled control $u\/\/r$
- (U arbitrarily chosen)
- •Smoother convergence

Trajectory Tracking VS. Path Following

Trajectory Tracking VS. Path Following

Path Following (PF)

- •Time free reference (closest point)
- Decoupled control u / r
- (U arbitrarily chosen)
- Smoother convergence
- r is driven w.r.t a guidance strategy
 Non singular virtual target principle

Virtual Target Principle : $\dot{s} = v_t \cos \theta + K_s s_1$

Trajectory Tracking VS. Path Following

Path Following (PF)

Trajectory Tracking (TT)

- •Time free reference
- Decoupled control u / r
- •Smoother convergence
- r is driven w.r.t a guidance strategy
 Non singular virtual target principle

- •Time dependant reference
- •Actuators are easily pushed to saturation
- •Aggressive maneuvers
- Risk of Stalling
- •Better Convergence rate

Conclusion •

Mathematical framework: unicycle

Trajectory Tracking (TT)

Mathematical framework: unicycle

Mathematical framework: unicycle

Path Following (PF)

Backstepping dynamics

$$M = \left(\begin{array}{cc} m & 0\\ 0 & I \end{array}\right)$$

Virtual control inputs

$$z = \begin{pmatrix} z_u \\ z_r \end{pmatrix} = \begin{pmatrix} u - \alpha_u \\ r - \alpha_r \end{pmatrix}$$

$$V_{dyn} = V_{kin} + \frac{1}{2} z^T M z \implies \begin{cases} F = m\dot{u} = m\dot{\alpha}_u - k_3 z_u = m\dot{u}_d - k_3 (u - u_d) \\ N = I\dot{r} = I\dot{\alpha}_r - (\psi_e - \delta) - k_4 z_r \end{cases}$$
29

Background

Mathematical framework: AUV

Path Tracking (PT)

Mathematical framework: AUV

PT: Backstepping

Background

Conclusion •

Mathematical framework: AUV

Smooth transition between underactuated to fully-actuated

$$\pi \qquad \qquad 0 \le f(v_t) \le 1$$

$$\tau_v = f(v_t)\tau_{v1} + (1 - f(v_t))\tau_{v2}$$

Background
 Motivation
 Modelling
 Control
 Coordination
 Conclusion

Control examples: Path Following

Control examples: Path Tracking

Motion control of single vehicle

1. Problem pose - analyze the main methods

- 2. Novel control design
- 3. From unicycle to AUV (simple to complex)
- 4. Smooth transition from under to fully actuated AUV

Approach: the state-of-the-art

Behavioral-based [Balch&Arkin 1998]

Background

36

Approach: the state-of-the-art

Leader-follower [Desai 2001]

Approach: the state-of-the-art

Artificial potential [Leonard&Fioerelli 2001]

Approach: the state-of-the-art

Virtual structure [Kang&Yeh 2002]

Approach: the state-of-the-art

Approaches	Advantage	Disadvantage	Control design
Behavioral-based [Balch&Arkin, 1998]	Intuitive	Behavior description	Algorithmic
Leader-follower [Desai 2001]	Unique reference	Single-point failure	Formal
Artificial potential [Leonard&Fioerelli 2001]	Collision-free	Local minimum	Formal*
Virtual structure [Kang&Yeh,2002]	Rigid	Not flexible	Formal

Approach: new proposition

1. Leader-follower

2. Virtual Structure: Formation Reference Point (FRP)

Virtual target embedded

Touch the objective: Coordinated Paths Following (CPF) Coordinated Paths Tracking (CPT)

What's the detailed strategy ? How to implement the approach?

Conclusion •

Strategy:

'Shared information is a necessary condition for coordination' [Ren 2005]

Strategy:

Q1) What kind of information should be shared?Q2) Which one should share information with?

Strategy: Coordinated Paths Following (CPF)

Q1) What kind of information should be shared?

Coordination variable : the virtual target

(along path distance)

Background

Strategy: Coordinated Paths Following (CPF)

Q1) What kind of information should be shared?

Coordination variable : the virtual target

(along path distance)

Shifted paths:

$$\Delta s = s_2 - s_4$$

Adapt U_2 and U_4 :

$$\Delta s
ightarrow \Delta_s^d$$

Strategy: Coordinated Paths Following (CPF)

Q1) What kind of information should be shared?

Coordination variable : the virtual target

(normalized along path distance)

Parallel paths (but feasible) $\Delta s_i = s_i - s_i^d$

> Adapt U_i, such that:

 $\Delta s_i \rightarrow \Delta^d_{s_i}$

Strategy: Coordinated Paths Following (CPF)

Q1) What kind of information should be shared?

Coordination variable : the virtual target

(normalized along path distance)

Adapt U_i, such that:

Arbitrary paths

(but feasible)

$$\Delta s_i
ightarrow \Delta^d_{s_i}$$

Strategy: Coordinated Path Tracking (CPT)

Q1) What kind of information should be shared?

Strategy:

Q2) Which one should share information with?

Communication Topology: graph representation

Strategy:

Q2) Which one should share information with?

Communication Topology: graph representation

Summary the strategy for Q1&Q2:

Q1: What kind of information should be shared?A1: Normalized along path distance (CPF)Along path position (CPT)

Q2: Which one should share information with?A2: all-to-all, broadcasting, neighborhood communication...

Ready for starting the control design!!!

Control design: Coordinated paths following

Methods: formation leaded by virtual targets

Leader-follower

Objective: $s_i = s_i^d$ $s_i^d = s_j^d$ $V_s = \frac{1}{2}\Delta S_{LFi}^2$ Speed adaptation:

$$u_{F1}^d = u_L^d + \frac{2}{\pi} k_u \arctan(\Delta s_{LF1})$$

Control design: Coordinated paths tracking

1) Centralized control via FRP

Control design: Coordinated paths tracking

2) Centralized control via individual vehicle(not the FPR) Objective:

1) Geometric assignment 2) Temporal assignment $\lim_{t \to \infty} \|P_{eiB}\| = 0 \qquad \lim_{t \to \infty} |\tau_i(t) - \tau_0(t)| = 0$ CLF: $V = \frac{1}{2} \sum_{i=1}^{n} [x_{ei}^2 + y_{ei}^2 + \frac{1}{\gamma} (\theta_{ei} - \delta_i)^2] + \frac{1}{2} \sum_{i=1}^{n} k_\tau (\tau_i - \tau_0)^2$ Control input: $\begin{bmatrix}
u_i \\
\omega_i \\
\dot{\tau}_i
\end{bmatrix} = \begin{bmatrix}
k_1 x_{ei} + \bar{u}_{ri} \dot{\tau}_0 \cos \theta_{ei} \\
\bar{\omega}_{ri} \dot{\tau}_0 - \dot{\delta}_i + \gamma y_{ei} \bar{u}_{ri} \dot{\tau}_0 \frac{\sin \theta_{ei} - \sin \delta_i}{\theta_{ei} - \delta_i} + k_{\theta} (\theta_{ei} - \delta_i) \\
\dot{\tau}_0 - k_v \sum_{i=1}^{n} \Phi_{Ei}
\end{bmatrix}$ **Formation** $\dot{V} = \sum_{i=1}^{n} [-k_{e}x_{ei}^{2} + y_{ei}\bar{u}_{ri}\dot{\tau}_{0}\sin\delta_{i} - \frac{k_{\theta}}{\gamma}(\theta_{ei} - \delta_{i})^{2}] - k_{v}(\sum_{i=1}^{n} \Phi_{Ei})^{2}$ $\dot{V} = \sum_{i=1}^{n} [-k_{e}x_{ei}^{2} - k_{v}\Phi_{Ei}\tanh(\Phi_{Ei}) + y_{ei}\bar{u}_{ri}\dot{\tau}_{0}\sin\delta_{i} - \frac{k_{\theta}}{\gamma}(\theta_{ei} - \delta_{i})^{2}]$ (Final Action of the second feedback

Background

Conclusion •

Control design: Coordinated paths tracking

3) decentralized controller

Objective:

1) Geometric assignment 2) Temporal assignment

 $\lim_{t \to \infty} ||P_{eiB}|| = 0 \qquad \qquad \lim_{t \to \infty} |\tau_i(t) - \tau_j(t)| = 0$

Challenge: how to embed the graph theory in the control frame

$$V = \frac{1}{2} \sum_{i=1}^{n} [x_{ei}^{2} + y_{ei}^{2} + \frac{1}{\gamma} (\theta_{ei} - \delta_{i})^{2}] \qquad \dot{\tau}_{i} = \dot{\tilde{\tau}}_{i} + v_{\tau i}$$

$$V_{aug} = V + \frac{1}{2} \Omega_{\tau}^{T} K_{1}^{-1} K_{2}^{-1} \Omega_{\tau} + \frac{1}{2} T^{T} L T \qquad \Omega_{\tau} = [\dot{\tilde{\tau}}_{1}, \dots, \dot{\tilde{\tau}}_{n}]^{T}$$

$$T = [\tau_{1}, \dots, \tau_{n}]^{T}$$

Decentralized controller:

$$\begin{cases} \dot{\tau}_{i} = \dot{\tilde{\tau}}_{i} + v_{\tau_{i}} \\ \ddot{\tilde{\tau}}_{i} = -k_{1i}[\dot{\tilde{\tau}}_{i} + k_{2i}(\sum_{j \in J_{i}}(\tau_{i} - \tau_{j}) + \phi_{i})] \end{cases}$$

Background

Conclusion

Examples:

≻ CPF:

Centralized V.S. Decentralized control

> CPT:

Decentralized Triangle formation Shrunk circle formation

Coordinated Paths Following : in line formation

Coordinate paths tracking

Triangle formation

Conclusion •

Summary:

- 1. Virtual target is the key for coordination
- 2. CPF: mathematical way to find relationship
- CPT: more flexible
 Also solve the RDV problem
- 4. Graph theory: mathematical tool for comm. topology

Conclusion and prospective

Main achievements:

- 1. Path tracking
- 2. Coordinated paths following
- 3. Coordinated paths tracking (Rendezvous)

Conclusion and prospective

Prospective/Open problems:

- 1. 2D- 3D motion control:
- 2. Output feedback control: Observer
- Communication issues
 Uni-directional communication
 Time-delays/packet loss/intermittent communication
- 4. Integration: PF/PT & Obstacle Avoidance

Demonstrations

Conclusion and prospective

Outputs– Publication lists

Journal:

>Xianbo Xiang, Bruno Jouvencel, Olivier Parodi. Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection, *International Journal of Advanced Robotic Systems*, Vol.7. No.1, 2010. pp 75-84

Book chapter:

>Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel, Guohua Xu and Xinhan Huang. Chapter: Cooperative Acoustic Navigation Scheme for Heterogenous Autonomous Underwater Vehicles. *Underwater Vehicles,* ISBN: 978-953-7619-49-7, Publisher: InTech,2009

Conferences:

>Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel. Guidance Based Collision Avoidance of Coordinated Nonholonomic Autonomous Vehicles, *Proceedings of 2010 IEEE International Conference on Intelligent Robots and Systems (IROS 2010)*.

>Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel. Guidance Based Collision Free and Obstacle Avoidance of Autonomous Vehicles under Formation Constraints, *Proceedings of 2010 IFAC 7th Symposium on Intelligent Autonmous Vehicles (IAV 2010)*.

>Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel, Olivier Parodi. Coordinated Path following Control of Multiple Nonholonomic Vehicles, *Proceedings of Oceans '09 IEEE Bremen (OCEANS09),* pp 1-7.

>Xianbo Xiang, Lionel Lapierre, Bruno Jouvencel, Olivier Parodi. Coordinated Path Following Control of Multiple Wheeled Mobile Robots Through Decentralized Speed Adaptation, *Proceedings of 2009 IEEE International Conference on Intelligent Robots and Systems (IROS 2009),* pp 4547-4552.

Thanks for your attention!

