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Background
Key issues 

• Autonomous vehicles

• Underactuation / Isoactuation

• Constrained communication

• Coordinated path-following

• Formation keeping and RDVs

• Centralized / decentralized control 
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Background   
Closed-loop marine control system
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Motivation   
Why Autonomous underactuacted vehicle
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Motivation   
Motion control of underactuated vehicles
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Side-slip (v ≠0) , but no sway actuator



Motivation   
Motion control of unicycle wheeled system
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Modeling
Unicycle V.S. AUV
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Modeling
Unicycle V.S. AUV
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Nonholonomic constraints (1st and 2nd order)



Modeling
Unicycle V.S. AUV
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Motion Control
Current motion control strategies

Point Stabilisation (PS)
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Motion Control
Current motion control strategies

Trajectory Tracking (TT)
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Motion Control
Current motion control strategies

Path Following (PF)
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Motion Control
Trajectory Tracking VS. Path Following

Trajectory Tracking (TT)

Huge error !

•Time dependant reference
(The target flies with time, no matter the 
current situation of the vehicle)
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Motion Control
Trajectory Tracking VS. Path Following

•Time dependant reference
(The target flies with time, no matter the 
current situation of the vehicle)

•Actuators are easily pushed to 
saturation

Trajectory Tracking (TT)

Huge error !
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Motion Control
Trajectory Tracking VS. Path Following

•Time dependant reference
(The target flies with time, no matter the 
current situation of the vehicle)

•Actuators are easily pushed to 
saturation
•Aggressive maneuvers
(The vehicle may turn back in its attempt 
to be at a specific point at a prescribed 
time)

Trajectory Tracking (TT)
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Motion Control
Trajectory Tracking VS. Path Following

•Time dependant reference
(The target flies with time, no matter the 
current situation of the vehicle)

•Actuators are easily pushed to 
saturation
•Aggressive maneuvers
(The vehicle may turn back in its attempt 
to be at a specific point at a prescribed 
time)

•Risk of Stalling
(loosing efficiency of the surfaces of 
control)

Trajectory Tracking (TT)

Current : vc

Target velocity : vd

AUV Vel/water = vd – vc = 0 !
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference
(closest point)

Path Following (PF)
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference
(closest point)

•Decoupled control u / r  
( u arbitrarily chosen)

Path Following (PF)
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference
(closest point)

•Decoupled control u / r  
( u arbitrarily chosen)

•Smoother convergence

Path Following (PF)
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference
(closest point)

•Decoupled control u / r  
( u arbitrarily chosen)

•Smoother convergence

•r   is driven w.r.t a 
guidance strategy
•Non singular virtual target 
principle

Path Following (PF)

The closest point is 
no more unique !
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference
(closest point)

•Decoupled control u / r  
( u arbitrarily chosen)

•Smoother convergence

•r   is driven w.r.t a 
guidance strategy
•Non singular virtual target 
principle

Path Following (PF)

Virtual Target Principle :
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Motion Control
Trajectory Tracking V.S. Path Following

Trajectory Tracking (TT) Path Following (PF)
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Motion Control
Trajectory Tracking VS. Path Following

•Time free reference

•Decoupled control u / r  
•Smoother convergence

•r   is driven w.r.t a 
guidance strategy
•Non singular virtual target 
principle

Path Following (PF) Trajectory Tracking (TT)

•Time dependant reference
•Actuators are easily pushed to 
saturation
•Aggressive maneuvers
•Risk of Stalling
•Better Convergence rate
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Control Design
Mathematical framework: unicycle

Trajectory Tracking (TT)
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Path Parameter Control Objective
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Control Design
Mathematical framework: unicycle

Path Following (PF)

Path Parameter
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Control Objective
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Control Design
Mathematical framework: unicycle

Path Following (PF)

Path Parameter
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Virtual control inputs

Backstepping dynamics



Control Design
Mathematical framework: AUV
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Objectives
1) Geometric assignment

2) Temporal assignment

Path Tracking (PT)

Path Parameter



Control Design
Mathematical framework: AUV

 PT: Backstepping
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Virtual control inputs

Backstepping dynamics



Control Design
Mathematical framework: AUV

 Smooth transition between underactuated to fully-actuated
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Underactated case: high speed

Fully-actuated case: low speed



Control examples: Path Following 
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Control examples: Path Tracking 
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Summary
Motion control of single vehicle

1. Problem pose - analyze the main methods

2. Novel control design

3. From unicycle to AUV (simple to complex)

4. Smooth transition from under to fully actuated AUV
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Coordination: multiple vehicles   
Approach: the state-of-the-art
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Behavioral-based [Balch&Arkin 1998]
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Coordination: multiple vehicles   
Approach: the state-of-the-art
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Leader-follower [Desai 2001]
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Coordination: multiple vehicles   
Approach: the state-of-the-art
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Artificial potential [Leonard&Fioerelli 2001]
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Coordination: multiple vehicles   
Approach: the state-of-the-art
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Virtual structure [Kang&Yeh 2002]
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Coordination: multiple vehicles   
Approach: the state-of-the-art
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Approaches Advantage Disadvantage Control design

Behavioral-based
[Balch&Arkin, 1998]

Intuitive Behavior description Algorithmic

Leader-follower
[Desai 2001]

Unique reference Single-point failure Formal

Artificial potential
[Leonard&Fioerelli 2001]

Collision-free Local minimum Formal*

Virtual structure
[Kang&Yeh,2002]

Rigid Not flexible Formal
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Coordination: multiple vehicles   
Approach: new proposition

1. Leader-follower

2. Virtual Structure:  Formation Reference Point (FRP)
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Centralized control 

Decentralized control

Virtual target embedded

Touch the objective:

Coordinated Paths Following (CPF)

Coordinated Paths Tracking   (CPT)

What’s the detailed strategy ?

How to implement the approach?



Coordination: multiple vehicles   
Strategy:
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‘Shared information is a necessary 
condition for coordination’ 

[Ren 2005] 
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Coordination: multiple vehicles   
Strategy:
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Q1) What kind of information should be shared?  

Q2) Which one should share information with?

What ?
Coordination variable

Whom?
Graph topology



Coordination: multiple vehicles   
Strategy: Coordinated Paths Following (CPF)
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Coordination variable : the virtual target
(along path distance)

Q1) What kind of information should be shared?  
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5. Coordination: multiple vehicles   
Strategy: Coordinated Paths Following (CPF)
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s2

s4

Shifted paths:

Adapt u2 and u4: 
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Coordination variable : the virtual target
(along path distance)

Q1) What kind of information should be shared?  
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Coordination: multiple vehicles   
Strategy: Coordinated Paths Following (CPF)
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s1

s2s3
4646

Parallel paths
(but feasible)

Adapt ui,
such that: 
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Coordination variable : the virtual target
(normalized along path distance)

Q1) What kind of information should be shared?  
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Coordination: multiple vehicles   
Strategy: Coordinated Paths Following (CPF)
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Coordination variable : the virtual target
(normalized along path distance)

Q1) What kind of information should be shared?  

Arbitrary paths
(but feasible)

Adapt ui,
such that: 



Coordination: multiple vehicles   
Strategy: Coordinated Path Tracking (CPT)
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Paths formulation:
Rotation matrix Shifted vector

FRP: Formation Reference Point

Baseline

x{ I }

y

θei

θri

Γ(τi)

Γ(τ0)

Γ(τj)

θrj

XBj

Γ(τi (t0))

FRP

Γ(τj (t0))

lj

Γ(τ0(t0)) Baseline
Formation

Virtual target i

Virtual target j

li

Coordination variable : the virtual target
(along path position)

Q1) What kind of information should be shared?  



Coordination: multiple vehicles   
Strategy: Coordinated Path Tracking (CPT)
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Paths formulation:
Rotation matrix Shifted vector

FRP: Formation Reference Point

Baseline

Coordination variable : the virtual target
(along path position)

Q1) What kind of information should be shared?  



Coordination: multiple vehicle
Strategy:
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1

3

4

2

Laplacian matrix L:

Communication Topology: graph representation

Q2) Which one should share information with?



Coordination: multiple vehicles   
Strategy:

Communication Topology: graph representation

Q2) Which one should share information with?

Leader Follower
Chain

All-to-all

:
:

:
:

:
:
:

Complex
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Coordination: multiple vehicles   
Summary the strategy for Q1&Q2:

Q1: What kind of information should be shared? 

A1:  Normalized along path distance (CPF)

Along path position (CPT)

Q2: Which one should share information with?

A2:  all-to-all, broadcasting, neighborhood communication…
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Ready for starting the control design!!!



Coordination: multiple vehicle   
Control design: Coordinated paths following

Methods:  formation leaded by virtual targets

Leader-follower
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Vehicle3
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Vehicle1

Path 1

Path 2

Path 3

Speed adaptation:

Objective:



Coordination: multiple vehicle   
Control design: Coordinated paths tracking

1) Centralized control via FRP
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Coordination: multiple vehicle   
Control design: Coordinated paths tracking

2) Centralized control via individual vehicle(not the FPR)
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Objective:
1) Geometric assignment 2) Temporal assignment

CLF:

Control 
input:

Formation 
feedback



Coordination: multiple vehicle   
Control design: Coordinated paths tracking

3) decentralized controller
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Decentralized controller:

Objective:

1) Geometric assignment 2) Temporal assignment

Challenge: how to embed the graph theory in the control frame



Coordination: multiple vehicle   
Examples:

 CPF: 

Centralized V.S. Decentralized control

 CPT: 

Decentralized 

Triangle formation

Shrunk circle formation
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Coordinated Paths Following 
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leader

follower1

follower2

Coordinated Paths Following : in line formation 



Coordination: multiple vehicle   
Coordinate paths tracking

Triangle formation
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Coordination: multiple vehicle   
Coordinated paths tracking

Shrunk circle formation
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Coordination: multiple vehicle   
Summary:

1. Virtual target is the key for coordination 

2. CPF: mathematical way to find relationship 

3.   CPT:  more flexible 

Also solve the RDV problem 

4.   Graph theory: mathematical tool for comm. topology

62

 Background  Motivation                 Modelling                      Control                    Coordination           Conclusion 



Conclusion and prospective
Main achievements:

1. Path tracking

2. Coordinated paths following

3.  Coordinated paths tracking (Rendezvous)
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Conclusion and prospective
Prospective/Open problems:

1. 2D- 3D motion control:

2. Output feedback control: Observer 

3. Communication issues

Uni-directional communication

Time-delays/packet loss/intermittent communication

4. Integration: PF/PT & Obstacle Avoidance

Demonstrations 
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Conclusion and prospective
Outputs– Publication lists
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Thanks for your attention!
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