イロト イヨト イヨト イヨト

э

1/29

Definition and modelisation of the DigSLAM Problem

V. Radwan

LIRMM

Introduction	Modeling	Resolution	Discussions
•000	00000	000000000	000000000

Contents

1 Introduction

2 Modeling

3 Resolution

- Operators
- Representation

4 Discussions

- Improvements
- Other models
- Difficulties

Introduction	Modeling	Resolution	Discussions
0●00	00000	000000000	000000000
Definition			

The DigSLAM problem is a SLAM (Simultaneous Localization And Mapping) problem

Aim:

Localize, i.e. get knowledge over the state $x(\cdot)$ Map, i.e. get knowledge over the map $\mathbb M$

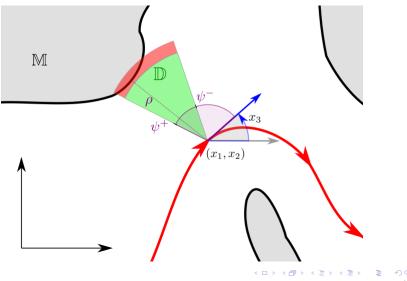
Tools:

Range only sensor (ultrasonic rangefinder): gives the range of the closest obstacle within scope (cone)

Proprioceptive sensors: gives an enclosure of the derivative of the state $\dot{\bm{x}}(\cdot)$

Introduction	Modeling	Resolution	Discussions
0000			

Illustration of one observation



4 / 29

Introduction	Modeling	Resolution	Discussions
0000	00000	000000000	000000000
Variables and par	ameters		

- $oldsymbol{x}(\cdot)$: trajectory/state of the robot
- $\bullet~\ensuremath{\mathbb{M}}$: 2D Cartesian occupancy map of the cave
- $\mathbb{D}(t_i)$: 2D area guaranteed free from obstacles at observation i expressed in Cartesian system,
- $(\rho,\theta)(t_i):$ polar coordinates of detected obstacle at observation i
- $[\psi](t_i)$: opening angle of the sensor at observation i
- $([\rho], [\![\psi]\!])(t_i)$ the information given by the sensor at observation i
- $[\boldsymbol{u}](\cdot)$: approximation of the control $\boldsymbol{u}(\cdot)$ (proprioceptive sensors)
- X_0 : set of initial conditions

Introduction	Modeling	Resolution	Discussions
0000	●0000	000000000	000000000

Contents

Introduction

2 Modeling

3 Resolution

- Operators
- Representation

Discussions

- Improvements
- Other models
- Difficulties

Introduction	Modeling	Resolution	Discussions
0000	o●ooo	000000000	00000000
The DigSLAM P	roblem		

Modeling as a dynamical system:

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \\ (\rho(t_i), \theta(t_i)) \in \boldsymbol{g}_{\boldsymbol{x}(t_i)}(\mathbb{M}) & \forall t_i \in \mathbb{T} \\ \boldsymbol{x}(0) \in \mathbb{X}_0 \end{cases}$$

where:

- \mathbb{T} is the set of timestamps of observations
- $\bullet~{\bf f}$ is the evolution function
- g_x is the observation function:
 a change of basis from Cartesian to polar centered in x

Introduction	Modeling	Resolution	Discussions
0000	00●00	000000000	00000000

Constraint Network

Modeling as a CSP (Constraint Satisfaction Problem):

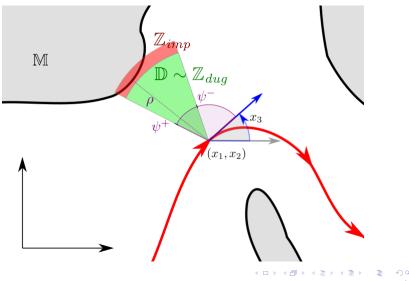
Variables: $\boldsymbol{x}(\cdot), \mathbb{M}, \mathbb{D}(t_i), \rho(t_i), [\psi](t_i)$ Constraints:1. $\dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t), \boldsymbol{u}(t))$ (\mathcal{L}_{evo}) 2. $\mathbb{Z}_{imp}(t_i) \cap \mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{M}) \neq \emptyset$ $\forall t_i \in \mathbb{T}$ 3. $\mathbb{Z}_{dug}(t_i) = \mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{D}(t_i))$ $\forall t_i \in \mathbb{T}$ 4. $\mathbb{D}(t_i) \cap \mathbb{M} = \emptyset$ $\forall t_i \in \mathbb{T}$ 5. $\boldsymbol{x}(0) \in \mathbb{X}_0$ Domains: $[\boldsymbol{x}](\cdot), [\mathbb{M}], [\mathbb{D}](t_i), [\rho](t_i), [\psi]](t_i)$

where:

- $\mathbb{Z}_{\textit{imp}} = (\rho, [\psi])$ is the impact zone in polar coordinates
- $\mathbb{Z}_{dug} = ([0, \rho], [\psi])$ is the dug zone in polar coordinates

Introduction	Modeling	Resolution	Discussions
0000	00000	000000000	000000000

Illustration of the problem

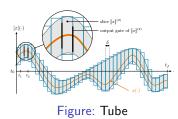


9/29

Introduction	Modeling	Resolution	Discussions
0000	0000●	000000000	000000000

Domains of variables

Variables		Domains	
Real number	$x \in \mathbb{R}$	Interval	$[x] \in \mathbb{IR}$
Vector	$oldsymbol{x} \in \mathbb{R}^n$	Box	$[oldsymbol{x}]\in\mathbb{IR}^n$
Trajectory	$oldsymbol{x}(\cdot)\in\mathcal{F}(\mathbb{R},\mathbb{R}^n)$	Tube	$[m{x}](\cdot)\in\mathbb{I}\mathcal{F}(\mathbb{R},\mathbb{R}^n)$
Set	$\mathbb{X}\in\mathcal{P}(\mathbb{R}^n)$	Thick set	$[\mathbb{X}] \in \mathbb{I}\mathcal{P}(\mathbb{R}^n)$
$\overline{[\mathbb{X}] = [\mathbb{X}^-, \mathbb{X}^+]} \text{ s.t. } \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+$			



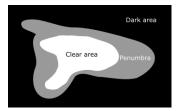


Figure: Thick set

Introduction	Modeling	Resolution	Discussions
0000	00000	••••••	000000000

Contents

- Modeling
- 3 Resolution
 - Operators
 - Representation

4 Discussions

- Improvements
- Other models
- Difficulties

Introduction 0000	Modeling 00000	Resolution ○●00000000	Discussions 00000000
Operators			
Contractor	for \mathcal{L}_{evo}		

$$\mathcal{L}_{evo}: \quad \dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t), \boldsymbol{u}(t))$$

 \mathcal{C}_{evo} contracts [x] with guaranteed integration

Example of methods to compute guaranteed integration: Picard iterations, Lohner method

Introduction 0000	Modeling 00000	Resolution	Discussions 00000000
Operators			
Contractor f	for \mathcal{L}_{imp}		

$$\mathcal{L}_{imp}: \quad \mathbb{Z}_{imp}(t_i) \cap \mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{M}) \neq \emptyset$$

$$\mathcal{C}_{imp} \begin{pmatrix} [\boldsymbol{x}] \\ [\mathbb{M}] \\ [\mathbb{Z}_{imp}] \end{pmatrix} = \begin{pmatrix} [\operatorname{proj}_{\boldsymbol{x}} \{ ([\boldsymbol{x}] \times \mathbb{M}^+) \cap \mathbf{g}^{-1}(\mathbb{Z}_{imp}^+) \}] \\ [\mathbb{M}^-, \operatorname{proj}_{\mathbb{M}} \{ ([\boldsymbol{x}] \times \mathbb{M}^+) \cap \mathbf{g}^{-1}(\mathbb{Z}_{imp}^+) \}] \\ [\mathbb{Z}_{imp}] \end{pmatrix}$$

Basic operations: Thick set inversion (g^{-1}(\mathbb{Z}_{\textit{imp}}^+)), thick set intersection

Introduction 0000	Modeling 00000	Resolution	Discussions 00000000
Operators			
Contractor	for $\mathcal{L}_{\sigma=}$		

$$\mathcal{L}_{\mathbf{g}=}: \quad \mathbb{Z}_{dug}(t_i) = \mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{D}(t_i))$$

$$\mathcal{C}_{\mathbf{g}=}egin{pmatrix} [m{x}] \ [\mathbb{D}] \ [\mathbb{Z}_{dug}] \end{pmatrix} = egin{pmatrix} [m{x}] \ [\mathbb{D}] \sqcap [m{g}_{[m{x}]}^{-1}](\mathbb{Z}_{dug}) \ [\mathbb{Z}_{dug}] \sqcap [m{g}_{[m{x}]}](\mathbb{D}) \end{pmatrix}$$

Basic operations: Thick set inversion, thick set squared intersection

Introduction 0000	Modeling 00000	Resolution	Discussions 00000000
Operators			
Contractor f	for $\mathcal{L}_{\cap=\emptyset}$		

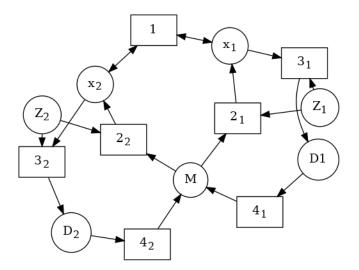
$$\mathcal{L}_{\cap=\emptyset}:\quad \mathbb{D}(t_i)\cap\mathbb{M}=\emptyset$$

$$\mathcal{C}_{\cap=\emptyset}\begin{pmatrix} [\mathbb{D}]\\ [\mathbb{M}] \end{pmatrix} = \begin{pmatrix} [\mathbb{D}^-, \ \mathbb{D}^+ \setminus \mathbb{M}^-]\\ [\mathbb{M}^-, \ \mathbb{M}^+ \setminus \mathbb{D}^-] \end{pmatrix} = \begin{pmatrix} [\mathbb{D}] \sqcap ([\mathbb{D}] \setminus [\mathbb{M}])\\ [\mathbb{M}] \sqcap ([\mathbb{M}] \setminus [\mathbb{D}]) \end{pmatrix}$$

Basic operations: thick set squared intersection, thick set difference

Introduction	Modeling	Resolution	Discussions
0000	00000	○0000●0000	00000000
Operators			

Constraint graph with 2 observations



<ロト < 回ト < 巨ト < 巨ト < 巨ト < 巨 の へ () 16 / 29

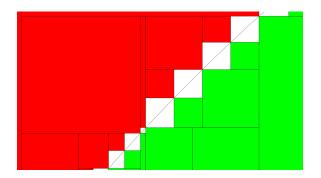
Introduction 0000	Modeling 00000	Resolution ○00000●○○○	Discussions 00000000
Operators			
Discussion of	on the contraint	graph	

There are loops of contractions on this simple graph. Hence, heuristics play a big role on the resolution.

Introduction 0000	Modeling 00000	Resolution ○○○○○○●○○	Discussions 00000000
Representation			
Sets			

- Let $\mathbb X$ be a set
- $\bullet~\mathbb{X}$ represented as a paving, implemented as a binary tree
- Nodes represent a part of the search space as a box $[\boldsymbol{x}]$, and give them a state
- 3 states are possible:
 - "in" if $[x] \subset \mathbb{X}$
 - "out" if $[x] \subset \overline{\mathbb{X}}$
 - "maybe" otherwise

Introduction 0000	Modeling 00000	Resolution ○○○○○○○●○	Discussions 00000000
Representation			
Vigualization	of a cot		



Only the leaves are represented. The inside leaves are green, the outside ones are red, while the leaves that contains the frontier are white.

Introduction 0000	Modeling 00000	Resolution	Discussions 00000000
Representation			
Thick sets			

- \bullet Let $[\mathbb{X}] = [\mathbb{X}^-, \, \mathbb{X}^+]$ be a thick set
- $\bullet~[\mathbb{X}]$ represented as a paving, implemented as a binary tree
- Nodes represent a part of the search space as a box $[\boldsymbol{x}]$, and give them a state
- States are determined with 3 Booleans:
 - in = true iff $[\boldsymbol{x}] \cap \underline{\mathbb{X}^-} \neq \emptyset$
 - out = true iff $[x] \cap \overline{\mathbb{X}^+} \neq \emptyset$
 - maybe = true $\quad {
 m iff} \; [{m x}] \cap ig(\mathbb{X}^+ \setminus \mathbb{X}^- ig)
 eq \emptyset$
- States can also be expressed as words of 3 bits, hence 8 different words

Introduction	Modeling	Resolution	Discussions
0000	00000	000000000	••••••

Contents

Introduction

2 Modeling

3 Resolution

- Operators
- Representation

4 Discussions

- Improvements
- Other models
- Difficulties

Introduction	Modeling	Resolution	Discussions
			00000000
Improvements			

Contractions on the measures

Possibility to contract the measures $[\rho], \llbracket \psi \rrbracket$

Since the measures sets \mathbb{Z}_{imp} , \mathbb{Z}_{dug} are thick boxes, contractors for \mathcal{L}_{imp} , $\mathcal{L}_{g=}$ can be tuned to contract the measures

Introduction	Modeling	Resolution	Discussions
			000000000
Improvements			

Cross-observations constraints

- Small uncertainty is added between consecutive observations
- Constraints linking $x(t_i)$ and $\mathbb{Z}_{dug}(t_j)$ can be considered, with t_i, t_j close enough
- Involves $\mathbf{g}_{x,y}$: a change of basis from polar centered in x to polar centered in y

Introduction 0000	Modeling 00000	Resolution	Discussions
Improvements			
Identifiable (hstacles		

- Idea: add the angle $\theta(t_i)$ of the obstacle to the modeling
- A box enclosing the obstacle can be built
- Useful for obstacles proved to be detected several times (i.e. stalactite tip)

Introduction 0000	Modeling 00000	Resolution 000000000	Discussions
Other models			
Desrochers'	model		

Variables: $\boldsymbol{x}(\cdot), \mathbb{M}, \rho(t_i), [\psi](t_i)$ **Constraints:** $\begin{cases} \textbf{Constraints.} \\ 1. \quad \dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)) & (\mathcal{L}_{evo}) \\ 2. \quad \mathbb{Z}_{imp}(t_i) \cap \mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{M}) \neq \emptyset & \forall t_i \in \mathbb{T} \quad (\mathcal{L}_{imp}) \\ 3. \quad \mathbb{Z}_{dug}(t_i) \subset \mathbf{g}_{\boldsymbol{x}(t_i)}(\overline{\mathbb{M}}) & \forall t_i \in \mathbb{T} \quad (\mathcal{L}_{dug}) \\ 4. \quad \boldsymbol{x}(0) \in \mathbb{X}_0 \\ \textbf{Domains:} \quad [\boldsymbol{x}](\cdot), \ [\mathbb{M}], \ [\rho](t_i), \ [\![\psi]\!](t_i) \end{cases} \end{cases}$

Introduction 0000	Modeling 00000	Resolution 000000000	Discussions
Other models			
_			

Comparison between both models

In short: Desrochers' model links the observations directly to the map, without considering $\mathbb{D}(t_i)$ sets

Pros:

- Less memory space used (fewer thick sets)
- Less computing time (fewer contractors, fewer thick sets)

Cons:

• Some Cartesian data are not computed, like the *unexplored area* Possible to obtain with a second thick set \mathbb{U} and other constraints:

3'.
$$\mathbf{g}_{\boldsymbol{x}(t_i)}(\mathbb{U}) \subset \overline{\mathbb{Z}_{dug}(t_i)} \qquad \forall t_i \in \mathbb{T} \qquad (\mathcal{L}_{unex})$$

イロト 不得 トイヨト イヨト 二日

Introduction 0000	Modeling 00000	Resolution 000000000	Discussions
Other models			
With interm	ediate variables		

Alternative way to compute the $\ensuremath{\mathbb{D}}$ thick sets:

Decomposition of the constraint $\mathcal{L}_{g=}$ into:

$$\begin{cases} 3.1. \quad \mathbb{D}(t_i) = \mathcal{R}(x_3(t_i)) \,\mathbb{W}(t_i) + (x_1(t_i), \, x_2(t_i))^{\mathsf{T}} \quad \forall t_i \in \mathbb{T} \\ 3.2. \quad \mathbb{W}(t_i) = \boldsymbol{\pi}(\mathbb{Z}_{dug}(t_i)) \qquad \forall t_i \in \mathbb{T} \end{cases}$$

where:

 $\mathcal{R}(x_3(t_i))$ is the rotation matrix of angle $x_3(t_i)$, π is the Cartesian to polar function.

Introduction	Modeling	Resolution	Discussions
0000	00000	000000000	0000000000
Other models			

With intermediate variables, pros and cons

Pros:

- ullet Does not require to compute $\mathbb W$ when ${\boldsymbol x}(\cdot)$ is contracted
- Use an already built contractor (ctc polar), proved to be minimal Cons:
 - Introduce wrapping effect with the rotation matrix
 - $\bullet\,$ This problem can be prevented if 3.2 is modified to consider the heading $x_3(t_i)$
 - But, a modification of $x_3(t_i)$ leads to a contraction of $\mathbb{W}(t_i)$

Introduction	Modeling	Resolution	Discussions
0000	00000	000000000	○○○○○○●
Difficulties			

Incrementality and space/time efficiency

- Methods need to be incremental to be consistent with a conrtactor network
- Contractions on a thick set seems to be tedious...
- ... and lead to more bisection thus more boxes
- Bloating in space and time
- Methods to reduce the number of nodes of the thick set and keep the same precision are needed