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Definition

The DigSLAM problem is a SLAM (Simultaneous Localization And
Mapping) problem

Aim:
Localize, i.e. get knowledge over the state x(·)
Map, i.e. get knowledge over the map M

Tools:
Range only sensor (ultrasonic rangefinder): gives the range of

the closest obstacle within scope (cone)
Proprioceptive sensors: gives an enclosure of the derivative of

the state ẋ(·)
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Illustration of one observation
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Variables and parameters

x(·): trajectory/state of the robot

M: 2D Cartesian occupancy map of the cave

D(ti): 2D area guaranteed free from obstacles at observation
i expressed in Cartesian system,

(ρ, θ)(ti): polar coordinates of detected obstacle at
observation i

[ψ](ti): opening angle of the sensor at observation i

([ρ], JψK)(ti) the information given by the sensor at
observation i

[u](·): approximation of the control u(·) (proprioceptive
sensors)

X0: set of initial conditions
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The DigSLAM Problem

Modeling as a dynamical system:
ẋ(t) = f(x(t),u(t))

(ρ(ti), θ(ti)) ∈ gx(ti)(M) ∀ti ∈ T
x(0) ∈ X0

where:

T is the set of timestamps of observations

f is the evolution function

gx is the observation function:
a change of basis from Cartesian to polar centered in x
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Constraint Network

Modeling as a CSP (Constraint Satisfaction Problem):

Variables: x(·), M, D(ti), ρ(ti), [ψ](ti)
Constraints:

1. ẋ(t) = f(x(t),u(t)) (Levo)

2. Zimp(ti) ∩ gx(ti)(M) 6= ∅ ∀ti ∈ T (Limp)

3. Zdug(ti) = gx(ti)(D(ti)) ∀ti ∈ T (Lg=)

4. D(ti) ∩M = ∅ ∀ti ∈ T (L∩=∅)
5. x(0) ∈ X0

Domains: [x](·), [M], [D](ti), [ρ](ti), JψK(ti)

where:

Zimp = (ρ, [ψ]) is the impact zone in polar coordinates

Zdug = ([0, ρ], [ψ]) is the dug zone in polar coordinates

8 / 29



Introduction Modeling Resolution Discussions

Illustration of the problem
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Domains of variables

Variables Domains
Real number x ∈ R Interval [x] ∈ IR
Vector x ∈ Rn Box [x] ∈ IRn

Trajectory x(·) ∈ F(R,Rn) Tube [x](·) ∈ IF(R,Rn)
Set X ∈ P(Rn) Thick set [X] ∈ IP(Rn)

[X] = [X−,X+] s.t. X− ⊂ X ⊂ X+

δ

·

[x](·)

tf

t1 t3
t0

x(·)

δ

·

[x](·)

tf

t1 t3
t0

x(·)

output gate of [[x]](2)

slice [[x]](2)

Figure: Tube
Figure: Thick set
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Operators

Contractor for Levo

Levo : ẋ(t) = f(x(t),u(t))

Cevo contracts [x] with guaranteed integration

Example of methods to compute guaranteed integration: Picard
iterations, Lohner method
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Operators

Contractor for Limp

Limp : Zimp(ti) ∩ gx(ti)(M) 6= ∅

Cimp

 [x]

[M]

[Zimp]

 =


[
projx

{
([x]×M+) ∩ g−1(Z+

imp)
}][

M−, projM
{
([x]×M+) ∩ g−1(Z+

imp)
}]

[Zimp]



Basic operations: Thick set inversion (g−1(Z+
imp)), thick set

intersection
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Operators

Contractor for Lg=

Lg= : Zdug(ti) = gx(ti)(D(ti))

Cg=

 [x]

[D]
[Zdug]

 =


[x]

[D] u [g−1[x] ](Zdug)

[Zdug] u [g[x]](D)



Basic operations: Thick set inversion, thick set squared intersection
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Operators

Contractor for L∩=∅

L∩=∅ : D(ti) ∩M = ∅

C∩=∅

(
[D]
[M]

)
=

(
[D−, D+ \M−]
[M−, M+ \ D−]

)
=

(
[D] u ([D] \ [M])

[M] u ([M] \ [D])

)

Basic operations: thick set squared intersection, thick set difference
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Operators

Constraint graph with 2 observations
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Operators

Discussion on the contraint graph

There are loops of contractions on this simple graph.
Hence, heuristics play a big role on the resolution.
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Representation

Sets

Let X be a set

X represented as a paving, implemented as a binary tree

Nodes represent a part of the search space as a box [x], and
give them a state

3 states are possible:

“in” if [x] ⊂ X
“out” if [x] ⊂ X
“maybe” otherwise
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Representation

Visualisation of a set

Only the leaves are represented. The inside leaves are green, the
outside ones are red, while the leaves that contains the frontier are
white.
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Representation

Thick sets

Let [X] = [X−, X+] be a thick set

[X] represented as a paving, implemented as a binary tree

Nodes represent a part of the search space as a box [x], and
give them a state

States are determined with 3 Booleans:

in = true iff [x] ∩ X− 6= ∅
out = true iff [x] ∩ X+ 6= ∅
maybe = true iff [x] ∩

(
X+ \ X−

)
6= ∅

States can also be expressed as words of 3 bits, hence 8
different words
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Improvements

Contractions on the measures

Possibility to contract the measures [ρ], JψK
Since the measures sets Zimp,Zdug are thick boxes, contractors for
Limp,Lg= can be tuned to contract the measures
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Improvements

Cross-observations constraints

Small uncertainty is added between consecutive observations

Constraints linking x(ti) and Zdug(tj) can be considered, with
ti, tj close enough

Involves gx,y: a change of basis from polar centered in x to
polar centered in y
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Improvements

Identifiable obstacles

Idea: add the angle θ(ti) of the obstacle to the modeling

A box enclosing the obstacle can be built

Useful for obstacles proved to be detected several times (i.e.
stalactite tip)
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Other models

Desrochers’ model



Variables: x(·), M, ρ(ti), [ψ](ti)

Constraints:

1. ẋ(t) = f(x(t),u(t)) (Levo)

2. Zimp(ti) ∩ gx(ti)(M) 6= ∅ ∀ti ∈ T (Limp)

3. Zdug(ti) ⊂ gx(ti)(M) ∀ti ∈ T (Ldug)

4. x(0) ∈ X0

Domains: [x](·), [M], [ρ](ti), JψK(ti)
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Other models

Comparison between both models

In short: Desrochers’ model links the observations directly to the map,
without considering D(ti) sets

Pros:

Less memory space used (fewer thick sets)

Less computing time (fewer contractors, fewer thick sets)

Cons:

Some Cartesian data are not computed, like the unexplored area
Possible to obtain with a second thick set U and other constraints:

3′. gx(ti)(U) ⊂ Zdug(ti) ∀ti ∈ T (Lunex)
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Other models

With intermediate variables

Alternative way to compute the D thick sets:

Decomposition of the constraint Lg= into:{
3.1. D(ti) = R(x3(ti))W(ti) + (x1(ti), x2(ti))

ᵀ ∀ti ∈ T
3.2. W(ti) = π(Zdug(ti)) ∀ti ∈ T

where:
R(x3(ti)) is the rotation matrix of angle x3(ti),
π is the Cartesian to polar function.
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Other models

With intermediate variables, pros and cons

Pros:

Does not require to compute W when x(·) is contracted

Use an already built contractor (ctc polar), proved to be minimal

Cons:

Introduce wrapping effect with the rotation matrix

This problem can be prevented if 3.2 is modified to consider the
heading x3(ti)

But, a modification of x3(ti) leads to a contraction of W(ti)
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Difficulties

Incrementality and space/time efficiency

Methods need to be incremental to be consistent with a
conrtactor network

Contractions on a thick set seems to be tedious. . .

. . . and lead to more bisection thus more boxes

Bloating in space and time

Methods to reduce the number of nodes of the thick set and
keep the same precision are needed
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