

Solute transport experiments and modelling in terminal conduit of karst hydrosystems, Southern France

Mohammed Aliouache¹, Pierre Fischer², Pascal Brunet¹, Lionel Lapierre³, Benoit Ropars⁴, Frank Vasseur⁵ and Hervé Jourde¹

¹University of Montpellier, HydroSciences Montpellier (HSM), France ²IC2MP, University of Poitiers, Poitier, France ³Université Montpellier, LIRMM (UMR 5506 CNRS—UM), Montpellier, France ⁴REEDS, Solutions robotisées d'inspection subaquatique, Montpellier, France ⁵Association CELADON, Exploration spéléologique en plongée, Hérault, France

> May 2023 Vienna, Austria

• Understanding solute and **contaminant transport** within karst hydrosystems can be performed with the help of different approaches such as laboratory experiments, **field experiments**, and **groundwater flow** and **transport numerical simulations**.

• In this study, we performed a **solute transport experiment** in the **terminal conduit** of a **karst spring**, the Lez spring, with the objective to better assess the effect of **karst conduit morphology** and **geometry** on **transport processes**.

LEZ SPRING AND TERMINAL KARST CONDUIT

3D MAPPING OF THE TERMINAL KARST CONDUIT

EXPERIMENTAL SET UP

Map view

Vertical cross section

COMPILATION OF TRACER TESTS RESULTS

6

NUMERICAL SIMULATION - SIMPLE CONDUIT GEOMETRY

Concentration (ppb)

NUMERICAL SIMULATION - 3D MAPPED CONDUIT

COMPARISON OF DIFFERENT RESULTS

Simulated Tracer test 1 - Simple geometry

- We mapped the terminal karst conduit of Lez spring in three dimensions where we performed a solute transport experiment.
- The spatial distribution of 15 probes allowed to reconstruct the evolution of the concentration plume during the tracer test.
- Comparison between observed tracer test data and numerical simulations showed the importance of conduit morphology and geometry on controlling flow and solute transport.
- Knowing the morphology of the karst conduit as well as the exact location of the monitoring points is relevant to reproduce transport processes at the kilometric scale. Thus, further investigation (i.e. Tracer test 2 data, conduit wall asperity, ...) is required.

Thank you!

PROBES CALIBRATION

Parameter	Concentration (ppb)	
For offset	0	
Measurement 1	25	
Measurement 2	50	
Measurement 3	100	

STREAM Fluorimeter signal

Time=21600 s Slice: Velocity magnitude (m/s)

Time=21600 s Slice: Velocity magnitude (m/s)

0.06

0.05

0.04

0.03 0.02

0.01

COMPARISON OF DIFFERENT RESULTS

••••• 3H

----- 3D

----2H

----2D

----2B

----2G

----2M

—1D

-1B

—1G —1M

Simulated Tracer test 1 - 3D mapped geometry

Zone 3

	Observed data	Simple geometry	3D mapped conduit
1H	100%	100%	100%
1D	100%	100%	100%
1B	100%	100%	100%
1G	100%	100%	100%
1M	100%	100%	100%
2H	38%	6%	28%
2D	47%	119%	23%
2B	55%	5 21%	19%
2G	27%	5%	9%
2M	31%	5 1%	29%
3H	16%	37%	27%
3D	18%	51%	19%
3B	19%	20%	8%
3G	11%	13%	25%
3M	11%	6%	13%

LEZ SPRING AND TERMINAL KARST CONDUIT

1∎N

