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Abstract— This paper presents an Autonomous Underwater
Vehicle (AUV) with a dynamic configuration of its actuation.
The AUV is able to modify its configuration online (at each
sampling time) during its missions. A procedure to optimize
the dynamic configuration with respect to energy-like criterion
is introduced. The simulation results are shown to prove
the efficiency of a dynamic management of the actuation
configuration.

I. INTRODUCTION

Nowadays, ocean researches have tremendously pro-
gressed because of new technologies, such as sensor tech-
niques, electronic devices, machine learning algorithms.
Many models of Remotely Operated Vehicle (ROV), Au-
tonomous Underwater Vehicle (AUV) have been developed
in order to discover underwater environments [1] [2], from
under-actuated vehicles, i.e. torpedo shape for long-range
missions, to over-actuated vehicles [3] [4], i.e. symmetrical
shape for station keeping or local environment observation.
However, all these underwater robots have fixed configura-
tions and their controllers have been designed to follow spec-
ified configurations. To increase the versatility of underwater
vehicles, the idea of reconfigurable robots has appeared.
The early studies on dynamically reconfigurable system on
mobile robot were introduced in [5]. These reconfigurable
robots were designed as modular parts which can connect or
disconnect to main body with respect to mission’s require-
ments. Readers can found a brief review and challenges of
reconfigurable mobile robots in [6] [7].

In the domain of underwater robots, a guidance and control
approach for an Unmanned Underwater Vehicle (UUV), with
a dynamic configuration, was introduced in [8]. However, the
dynamic configuration has been not analyzed clearly. In [9], a
robotic fish with undulating fins was developed, nevertheless,
it does not have a reconfigurable capability during its oper-
ation, just varying design parameters to achieve an another
version of the robot. Another reconfigurable robotic fish was
introduced in [10] and it was designed as waterproofed mod-
ules combination separately. This can help to build robotic
fish in different morphologies. But, this is just also a static
reconfigurable configuration. An Autonomous Underwater
Vehicle for Intervention (RAUVI project) was presented in
[11]. This is an AUV equipped with one manipulator which
allows to perform manipulation tasks. The robot, inherited
from Girona 500 AUV [12], is statically reconfigured with
respect to different tasks. A prototype of a reconfigurable
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underwater robot with bioinspired electric sense was in-
troduced in [13]. A static reconfigurable underwater robot,
namely SeaDrone, was proposed in [14]. Four configurations
of the robot corresponding with four underwater tasks were
shown. However, this configuration is chosen before and
remains static during the mission. An AUV/ROV for man-
robot underwater cooperation was depicted in [15]. This is
actually a ROV and is possible to change into an AUV by
dropping the cable and it is also a static actuation system.
Moreover, it can be mechanically changed to six possible
layouts. The studies to find static optimal configuration by
heuristic optimization was introduced in [16] [17]. A genetic
algorithm was used to search a static optimal configuration
which takes into account specified missions. A ROV from
SubseaTech [18] can modify the actuator’s angles but this
mechanism is not shown clearly. Bio-inspired robots can
be also considered as self-reconfigruable robots, i.e. snake
robots [19]. In order to increase the versatility and reduce
the cost of building underwater vehicles (one robot can carry
out several tasks with different configurations), a dynamically
reconfigrable configuration of robots is needed and attractive.

In general, the control diagram of an underwater robot
is shown in Figure 1(a). The separation of control law and
control allocation is useful to exploit the advantages of actu-
ator redundancy [20]. For dynamically reconfigurable robots,
challenging questions arise and concern: control allocation,
control law adaptation and adaptation to modification of
dynamic properties (e.g. modification of the meta-center).
For simplicity, in this paper, we assume that centers of mass
and buoyancy are not changing during the mission. The
control system outputs a desired force, also called actuation
demand (FdB , expressed in the body-frame) which explicitly
considers system dynamics and kinematic properties. It is
then the role of control allocation to compute actuators
inputs (Fm) whose resulting action (FB) should realize
the actuation demand (FB = FdB). The relation between
controller’s output (FdB) and the actuation inputs (Fm) of a
system is described by a mapping, called control allocation.
This mapping is described by a configuration matrix. Our
paper focuses on the question of the optimal adaptation of the
actuation configurations with respect to energy-like criterion.

The contributions of the paper are as followings:

1) Investigate the effects of dynamic configuration matrix
on control allocation methods

2) Propose an optimal algorithm to reduce the energy of
dynamically reconfigurable robot during its operations

The paper is organized as follows. The notations is shown
in section II. Backgrounds of underwater robots and reconfig-
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urable ability of our robot is presented in section III. Section
IV depicts the control allocation problem with dynamic con-
figuration. The optimal reconfigurable configuration problem
is deliberated in section V. Optimal online algorithm is
presented in section VI . Simulation results are shown in
section VII. Finally, conclusion is in section VIII.

II. NOTATIONS

This section depicts the notations used in the whole paper.
However, further notations will be introduced when needed.

A Configuration matrix
uBi (3× 1)- unit vector of direction of

the ith thruster w.r.t body-frame
rBi (3 × 1)- unit vector of position of

the ith thruster w.r.t body-frame
Fm (m×1)- Force vector of m thrusters
Fm,i Force magnitude of the ith thruster
FdB (6 × 1)- Desired force (force and

torque) w.r.t body frame
FB =

(
f
τ

)
(6 × 1)- actuator resulting force
(force and torque) w.r.t body frame

⊗ Cross product
‖ · ‖ Euclidian norm
m the number of thrusters
n the number of degree of freedoms

(DOFs)

III. BACKGROUND

An autonomous underwater robot with dynamic configura-
tion is being developed at LIRMM and Polytech, Montpellier
university, France, called Umbrella Robot (UmRobot) for
karst exploration, as in Figrue 1(b). The robot can change
configurations corresponding with its missions, i.e. path
following, surface survey. The UmRobot carries 7 thrusters
with 3 in foreward branch and 4 in backward branch. We
can modify the positions and directions of these thrusters
by changing two angles (αF and αB) as in Figure 1(c).
Therefore, the actuation configuration of UmRobot is dy-
namic and its versatility can be achieved by the dynamical
configuration (e.g. from an under-actuated system to an over-
actuated system and vice versa).

A. Robot model

In general, the kinematic and dynamic model of a marine
vehicle are as follows [21]:

η̇ = J(η)ν (1)
Mν̇ +C(ν)ν +D(ν)ν + g(η) = FB (2)

where state vector η = [x y z φ θ ψ]T , veloc-
ity vector ν = [u v w p q r]T as in Figure 1(c),
and M, C, D, g are Mass, Coriolis-Centrifuge, Damp-
ing, Gravity-buoyancy matrices respectively. FB consists
of forces/torques applied on robot by its actuation system
(external factors such as wind or/and wave are neglected).

The dynamic parameters of the robot can be approximately
computed by a numerical software, i.e. ANSYS and real
tests.

(a) A general control loop

(b) UmRobot at LIRMM/Polytech

(c) General notations

Fig. 1: General control loop and Umbrella robot

B. Model of dynamic configuration matrix

The relation between forces vector, including force and
torque elements, in body-frame FB and force vector applied
on each thrusters is described through the configuration
matrix, denoted as A, which describes the geometric orga-
nization of thrusters in body-frame:

FB = A(αF , αB)Fm =

(
f

τ

)
(3)

where FB = [Fu Fv Fw τp τq τr]
T ∈ R6, A ∈

R6×m, and Fm = [Fm,1 Fm,2 ... Fm,m]T ∈ Rm, m
is the number of thrusters, m = 7 > 6, since the system
has 6 DOF with 7 actuators, the actuation system is said
to be redundant. From the scheme of the Umbrella Robot
(UmRobot), the configuration matrix is as follows:

A =

(
uB1 uB2 · · · uBm

rB1 ⊗ uB1 rB2 ⊗ uB2 · · · rBm ⊗ uBm

)
=

(
uB1 uB2 · · · uBm
τB1 τB2 · · · τBm

)
=

(
A1

A2

) (4)

where m = 7 and uB1 , . . . ,u
B
7 and rB1 , . . . , r

B
7 are shown

in the Appendix. The basic idea for computing matrix A is
to use transformation matrices between coordinate systems.
Because of page limitation, this computation is not shown in
this paper. When two angles, αF and αB (Figure 1(c)), are
varied, the UmRobot’s configuration is changed.
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C. Control allocation methods

With a given configuration matrix, A, and desired actua-
tion demand FdB , how to find the control forces of actuators
Fm which satisfy Equation (3) and constraints of actuators
(saturation and dead-zone). That is control allocation prob-
lem.

Normally, there are two classes of control allocation (CA)
methods. The first one is based on the Moore-Penrose
pseudo inverse including direct method, daisy chain method
[22], cascade general inverse (CGI) [23], and the second
one is based on optimization techniques such as sequential
least square, minimal least square, and fixed-point method,
nonlinear programming method [24]. However, one class of
CA methods based on neural network [25] has been proposed
recently. Many studies have been published to solve the
control allocation problem. Readers can refer to [20] and
references therein for more details.

IV. DYNAMIC CONTROL ALLOCATION-THE
SINGULARITIES

As aforementioned, there are many approaches to solve
CA problem. However, in all these cases, the configuration
matrix is constant and remains unchanged during robot’s
operation. For our robot, the configuration matrix is varying
and the properties of this matrix has to be studied carefully,
because it yields to a singular configuration or nearly-
singular configuration, i.e. the actuation is redundant but
results in an under-actuated system (some DOFs are not
controllable). The case of nearly-singularity, the minimum
singular value of configuration matrix is too small. This
yields that the pseudo-inverse is too big (it is easy to
see with the SVD decomposition of the matrix A) and
causes the big error if the pseudo-inverse based CA methods
are used. One solution is that we can avoid the nearly-
singular situation by neglecting too small singular values.
However, this causes the error and not suitable for dynamic
configuration because configuration matrix can move from
singular to nearly-singular configuration. We can verify this
problem by an example of our robot. At αF = αB = 450,
the configuration matrix A1 is singular and the robot can
only go along x-axis, and at αF = αB = 45.020 the
configuration matrix changes to A2, a nearly-singular matrix,
and the robot is also controlled along x-axis. We investigate
the errors of control allocation problem of two configurations
with different control allocation methods including pseudo
inverse based and nonlinear programming based approaches
[24].

From Figure 2, when two angles αF and αB change a
small value, the errors grow significantly for control alloca-
tion methods which based on pseudo-inverse. The errors also
remain for CA methods based on nonlinear programming,
however, these values are quite small because these methods
avoid nearly-singularity of configuration matrix. It is easy to
see that the nonlinear programming based control allocation
methods are suitable for the reconfigurable Umbrella Robot.
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Fig. 2: Errors of pseudo-based CA method and nonlinear
programming based one

V. DYNAMIC CONFIGURATION PROBLEM

In this section, we consider a dynamic configuration
problem with respect to an energy-like criterion which is
defined as the norm of force vector, Fm, applied on thrusters.
This is reasonable thanks to the nearly-linear characteristics
of motors. The problem is formulated as:

min
αF ,αB ,Fm

J = ‖Fm‖2 (5a)

s.t 450 ≤ αF , αB ≤ 900 (5b)
Fm ∈ F (5c)

FdB −A(αF , αB)Fm = 0 (5d)

where FdB is desired forces vector (from the controller), F
is a feasible set of thrusters forces. The constraint (5b) is
mechanical limitations of the Umbrella robot.

The objective is to find two angles, αF , αB , and force
vector Fm in order to minimize an energy-like function
J and satisfy constraints. This is a nonlinear optimization
problem and is solved for each sampling time (online)
because the desired force vector FdB is changed in each time
step in general case. In our problem, the configuration matrix
A is dynamic and belongs to two angles, αF and αB .

VI. PROPOSED SOLUTION

This section proposes an approach to solve online the
problem (5). The constraint (5d) is strictly and not easy to
solve, therefore we relax this constraint by adding it to the
objective function with a weighting matrix. This problem can
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be rewritten as:

min
αF ,αB ,Fm

J = w1‖Fm‖2 + w2‖(FdB −A(αF , αB)Fm)‖2

(6a)

s.t 450 ≤ αF , αB ≤ 900 (6b)
Fm ∈ F (6c)

where w1 and w2 are weighting scalars.
By denoting a vector x = [αF αB Fm]T , the problem

can be formulated as:

min
x
f(x) = w1‖x‖2 + w2‖(F

d

B −A(x)x)‖2 (7a)

s.t x ∈ X (7b)

where X is a box-constraint including limitations of
two angles and saturations of thrusters, A(x) =

[0n×1 0n×1 A], F
d

B = [0 0 (FdB)
T ]T .

The problem (7) can be rewritten in a compact form as:

min
x
f(x) (8a)

s.t cTi x ≤ bi, i = 1...m (8b)

where ci is a proper vector, m is the number of constraints.
In this paper, we propose a A-SQP (Accelerating-

Sequential Quadratic Programming) algorithm to solve on-
line our problem. This is based on active-set SQP approach
which is an efficient method for small and medium nonlinear
problem [26].

Definition 6.1: An active set of (8) is a set of constraints
indices such that cTi x = bi. Specifically, A = {i|cTi x = bi}

Suppose the active set of (8) is given, we consider our
problem only with equality constraints as:

min
x
f(x) (9a)

s.t cTi x = bi, i ∈ A (9b)

The Lagrangian function of problem (9) is L(x,λ) =
f(x) +

∑
i∈A λi(c

T
i x− bi) where λ = [λi] is the vector of

corresponding multipliers. The optimal KKT (Karush-Kuhn-
Tucker) condition of this problem at local optimal point
(x,λ) can be written as:

∇xL(x,λ) = ∇f(x) +
∑
i∈A

λici = 0 (10a)

cTi x = bi, i ∈ A (10b)

The problem (10) can be rewritten as a compact form:

F (x,λ) =

[
∇f(x) +CTλ

Cx− b

]
= 0 (11)

where C = [cTi ], λ = [λi] b = [bi], i ∈ A.
Using Newton’s method, the Jacobian of (11) with respect

to (x,λ) is given by:

F ′(x,λ) =

[
∇2L(x) CT

C 0

]
(12)

The direction for the next step of problem (9) is a solution
of (11) and is computed as:[

∇2L(x) CT

C 0

] [
pxk
pλk

]
=

[
−∇f(x)−CTλ
−Cx+ b

]
(13)

At each iteration, we have an active set, called a working
set Wk. One constraint can be added or eliminated through
the working set. This can be done by checking the sign of
Lagrange multipliers λi ≥ 0 thanks to KKT conditions of (8)
which can be referred in [26]. If we correctly identify the
optimal active set then our problem will converge rapidly by
Newton’s method as the aforementioned analysis. However,
optimal active set is not easy to determine.

Thanks to the efficient and popular of convex quadratic
programming which can converge in milliseconds [27], at
step k with xk, we consider another quadratic problem:

min
p

1

2
pT∇2

xxLp+∇fTp (14a)

s.t Cp = −Cxk + b (14b)

The optimality conditions of (14) with Lagrange multipli-
ers λq:

∇2
xxLp+∇f +CTλq = 0 (15a)

Cp− b+Cxk = 0 (15b)

This is equivalent with:

[
∇2L CT

C 0

] [
p

λq − λ

]
=

[
−∇f −CTλ
−Cxk + b

]
(16)

It is easy to see that (13) and (16) are almost the same
except that:

pλk = λq − λ (17)

In order to find the direction [px pλ]
T , instead of solving

(13), we solve quadratic problem (14) and update Lagrange
multipliers as (17). Moreover, Hessian matrix ∇2L is ap-
proximated by BFGS (Broyden-Fletcher-Goldfarb-Shanno)
formula [26] to make sure it is positive definite or semi-
definite and problem (14) is quadratic convex problem in
which a local optimal solution is also a global optimal one.

The idea is extended to the problem with inequality (8)
by solving the sub-quadratic programming as follows to find
the direction:

min
p

1

2
pT∇2

xxLp+∇fTp (18a)

s.t Cp ≤ −Cxk + b (18b)

This is possible because the set of active constraints Ak
at the solution of (18) constitutes the guess of the active set
at the solution of the nonlinear program (8). Algorithm 1
shows our procedure to solve online dynamic configuration.
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Algorithm 1 A-SQP optimal configuration algorithm

Input: desired control inputs FdB (from controller)
Output: Optimal angles αF , αB and thruster forces Fm

1: Initialization: primal-dual parameters (x0,λ0), Hessian
approximation B0

2: for k = 1 <= 2 do
3: Evaluate f , ∇f at xk
4: Compute direction pk by solving (18) and have

corresponding Lagrange multipliers λqk
5: Compute direction pλk = λqk − λ
6: Choose step length αk = 1 (maximize the direction)
7: Update xk = xk + αpk and λk = λk + αpλk
8: Set sk ← αkpk and yk ← ∇xL(xk+1,λk+1) −
∇xL(xk,λk+1)

9: Update Bk+1 using BFGS formula
10: end for

Fig. 3: Simulation robot

VII. SIMULATIONS

We present the simulation results of the Umbrella robot
in which the robot dives to constant depth with desired
angular velocities, i.e. X(m) = [x y z]T = [0 0 1]T

and ωB(rad/s) = [p q r]T = [1 1 1]T . The model
of simulation robot is shown in Figure 3. The controller is
designed with quaternion techniques [28]. The simulations
include fixed and dynamic configurations. For dynamic cases,
we compare our algorithm with Fmincon function in Matlab
Toolbox. The simulation results of fixed configuration are
shown in Figure 4 in which two angles αF = αB = 900.
The simulation results of dynamic configuration are depicted
in Figure 5 and 6. Note that in simulation, we assume that all
states of robot can be measured completely. Moreover, warm
start technique is used to accelerate the computational time.
To evaluate several approaches in which saturation and dead-
zone of thrusters are also taken into account, the energy-like
criterion is computed as:

E =

∫
cm(t)dt (19)

where cm(t) is a function of Fm which is the inverse-
characteristic of thrusters.

It is obvious to see that the control performances are
guaranteed in static and dynamic configurations. However,
the energy-like criterion is different. Specifically, the energy-
like criterion of simulations cases which guarantee the con-
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Fig. 4: Simulation results with a fixed configuration
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Fig. 5: Simulation results with dynamic configuration (with
Fmincon)
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Fig. 6: Simulation results with dynamic configuration (A-
SQP)

trol performances is illustrated in Figure 7(a). The dynamic
configuration cases (with Fmincon and A-SQP) outperform
static configuration one.

Our algorithm shows the same performance in comparison
with Fmincon function. A comparison of computational time
between methods including A-SQP, Fmincon function at
each sampling time is shown in Figure 7(b). With the same
energy-like criterion, we can see that A-SQP outperforms in
computational time and is suitable for real test.
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Fig. 7: Energy-like criterion and computational time compar-
ison

VIII. CONCLUSIONS

In this paper, an AUV with a dynamic configuration,
called Umbrella robot, is presented. It’s an over-actuated
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system, and then relating control problems, i.e., control
allocation and dynamic configuration policy, are investigated.
First, dynamic control allocation problem is discussed and
compared. Secondly, a fast algorithm based on sequential
quadratic programming, called A-SQP, is proposed to modify
the configuration of Umrobot. The simulation results show
that A-SQP can guarantee good performances and suitable
for the real test. In the future researches, we will implement
our theory in the real UmRobot which is being developed
at Montpellier university. Furthermore, properties of A-SQP
algorithm such as contraction and convergence rate are also
further studies.
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APPENDIX

In this appendix, we will present the elements of config-
uration matrix, A, in which d and di are constant values.

uB1 =


1√
2
(sinαF+cosαF )

√
3

2
√

2
(−cosαF+sinαF )

1
2
√

2
(−cosαF+sinαF )

 rB1 =


(dF+LF )−

√
d2e+d

2.cos(αF+β1)

− dt
2

−
√

3(d2e+d
2)sin(αF+β1)

2
√

3
2
dt−

√
d2e+d

2sin(αF+β1)

2


uB2 =


cosαF+sinαF√

2
0

cosαF−sinαF√
2

 rB2 =

 (dF+LF )−
√
d2+d2ecos(αF+β2))

dt√
d2+d2esin(αF+β2)



uB3 =


1√
2
(sinαF+cosαF )

√
3

2
√

2
(cosαF−sinαF )

1
2
√

2
(sinαF−cosαF )

 rB3 =


(dF+LF )−

√
d2e+d

2.cos(αF+β3)

dt
2

+

√
3(d2e+d

2)

2
.sin(αF+β3)

√
3

2
dt−

√
d2e+d

2

2
sin(αF+β3)


uB4 =


cosαB+sinαB√

2
−cosαB+sinαB√

2
0

 rB4 =

−(dF+
√
d2+d2ecos(αB+β4))

−(
√
d2+d2esin(αB+β4))

−dt



uB5 =


cosαB+sinαB√

2
0

cosαB−sinαB√
2

 rB5 =

−(dF+
√
d2+d2ecos(αB+β5))

dt√
d2+d2esin(αB+β5)



uB6 =


cosαB+sinαB√

2
cosαB−sinαB√

2
0

 rB6 =

−(dF+
√
d2+d2ecos(αB+β6))√

d2+d2esin(αB+β6)

−dt



uB7 =


cosαB+sinαB√

2
0

−cosαB+sinαB√
2

 rB7 =

−(dF+
√
d2+d2ecos(αB+β7))

−dt
−(

√
d2+d2esin(αB+β7))


TABLE I: Elements of A matrix
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sertation, Université de Bretagne occidentale-Brest, 2016.

[18] SubseaTech, “Tortuga robot.” [Online]. Available: https://www.subsea-
tech.com/tortuga/

[19] A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Lil-
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