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A B S T R A C T   

In this paper an approach-angle-based three-dimensional path-following control scheme has been proposed for 
underactuated Autonomous Underwater Vehicle (AUV) which experiences unknown actuator saturation and 
environmental disturbance. First, the path-following error dynamic model is derived based on the principle of 
relative motion which was followed by the design of approach-angle-based guidance law in both horizontal and 
vertical profiles of AUV to transform the three-dimensional tracking errors into heading angle and elevation 
angle tracking errors. The kinematic control law is designed based on the Lyapunov theory and backstepping 
technique. Second, the kinetic controller is designed based on the Lyapunov theory, backstepping technique and 
fuzzy logic system approximation method. The indirect adaptive fuzzy logic system is applied to approximate 
unknown smooth functions which are composed of coupled AUV hydrodynamics and complex differentials of 
desired pitch and yaw velocities. Moreover, the application of fuzzy control completely free from dependence on 
accurate AUV kinetic model. Considering a disturbance-like term, which is comprised of fuzzy logic system 
approximation error and bounded ocean disturbance, an adaptive law is designed to estimate the bound of it. 
Finally, two sets of comparative numerical simulations, including straight path following with different initial 
posture and spatial helix path following with sudden disturbance, are studied to illustrate the effectiveness and 
robustness of the proposed control scheme.   

1. Introduction 

Advancement in development of smart maneuvering marine vehicles 
offer scientists a large flexibility to conduct ocean exploration and 
exploitation (Chang et al., 2019; Lapierre and Soetanto, 2007). In 
particular, development of intelligent control system of marine vehicles 
greatly expands applicability in oceanic research (Cui et al., 2017; Peng 
et al., 2018; Yu et al., 2020; Zhang et al., 2018). A broad range of 
intelligent controllers has been proposed for the motion control of 
various types of marine vehicles such as Autonomous Underwater 
Vehicle (AUV), Remotely Operated Vehicle (ROV), Autonomous Surface 
Vehicle (ASV) and marine glider (Chu et al., 2019; Hussain et al., 2011; 
Mǐsković et al., 2016; Sun et al., 2014; Wang et al., 2021; Yu et al., 
2017b). During the last decade, extensive research has been carried out 
to design marine vehicle motion controllers based on advanced methods 

which mainly include point stabilization, trajectory tracking and 
path-following methods. Among the said methods, path-following is 
considered a leading method in which a marine vehicle is forced to 
follow a reference spatial path and thus path-following and 
three-dimensional adaptive trajectory tracking are considered the most 
common methods for AUVs motion controllers (Chu et al., 2019; Sho
jaei, 2016) and underactuated stratospheric airships (Zuo et al., 2019). 
The actuator configuration of AUVs is designed according to the prac
tical applications and typical underactuated configuration can satisfy 
the requirements of general scientific investigations such as 
high-speed-demanded applications (Chen and Zhu, 2019), scientific 
sampling and mapping (Sarda and Dhanak, 2019). Moreover, actuator 
configuration of the REMUS-100 AUV is considered classical in which 
the AUV is controlled with a main propeller, a pair of horizontal & 
vertical planes (cross-type stern rudders) which are placed on the tail 
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side of the AUV (Sarda and Dhanak, 2019). Ocean exploration requires 
wide range of areas of research such as near-bottom sea search for which 
the AUVs are required to perform challenging maneuvers and navigate 
with better accuracy and efficiency. In order to meet these challenges, 
AUVs are to be designed accordingly such as Delphin 2 AUV and HURV 
(Xiang et al., 2020). Apart from typical actuator configuration, the 
MBARI AUV is actuated by an articulated ring wing and partially ducted 
thruster (Do and Pan, 2009; McEwen and Streitlien, 2001). 

Fuzzy Control Adaptive fuzzy logic control methods mainly include 
direct adaptive fuzzy control and indirect adaptive fuzzy control. The 
former method aims to estimate and identify the unknown parts of the 
system model. Comparatively, the latter one is designed to approximate 
the unknown nonlinear terms and functions, hence to achieve Lyapunov 
stability (Peng et al., 2017; Yu et al., 2020). The indirect fuzzy logical 
system is allied to neural network systems in terms of unknown function 
approximation (Cui et al., 2017; Shojaei, 2016). Uncertainties and 
nonlinearities which includes uncertain parameters, uncertain dynamics 
and external interference are inevitable in a practical control system 
especially for marine vehicles with multiple uncertainties. Fuzzy logical 
control has shown great robustness and effectiveness for such uncertain 
nonlinear marine vehicles (Chu et al., 2019; Yu et al., 2020). In Liu et al. 
(2019), an adaptive semiglobally finite-time controller is designed for a 
class of uncertain strict-feedback nonlinear systems by using fuzzy logic 
control method, backstepping technique and prescribed performance 
function. It is proved that not only all states converge to a predefined 
zone in bounded time, but also all signals of the closed-loop systems are 
semiglobally finite-time stable. Besides, there are a variety of hybrid 
control methods which are composed of fuzzy logic control and con
ventional control methods, such as PID control (Chu et al., 2019; Tang 
et al., 2001), sliding mode control (Vijay and Jena, 2017), 
neural-networks control (Shojaei, 2016; Wang and Mendel, 1992) and 
so on. 

Furthermore, swarm optimization is a solution for conventional 
fuzzy logic controllers to optimize optimal control parameters, such as 
Mamdani-type and Takagi-Sugeno-Kang. These new-type hybrid algo
rithms are implemented by optimizing some key parameters with 
different cost functions, which include the centers and the widths of the 
Gaussian membership functions in inputs and outputs. There are some 
applications of conventional fuzzy logical controller combining with 
Particle Swarm Optimization (PSO) (Bingül and Karahan, 2010; Nobile 
et al., 2018) and Grey Wolf Optimizer Algorithm (Precup et al., 2016) in 
multi-degree-of-freedom robots and manipulators. Since, there are a 
variety of derived algorithms for PSO are available therefore, PSO is 
considered one of the most effective and succinct solutions for nonlinear, 
high-dimensional and complex problems. Moreover, PSO is also utilized 
on multi-input and multi-output control systems. In Bingül and Karahan 
(2010), 60 parameters in 15 membership functions and 25 fuzzy rules 
are optimized by PSO to control 1 manipulator joint. However, for the 
swarm optimization method, mature stability analysis and theory to 
guarantee the control system stability is lacking. 

Guidance Law There are several nice properties of traditional Line-Of- 
Sight (LOS) guidance law. Since, the LOS guidance law can synthesize 
the cross-tracking error and heading error into a virtual control variable 
and thus widely being used in two-dimensional and three-dimensional 
path following and trajectory tracking of underactuated marine vehi
cles (Chu et al., 2019; Shojaei, 2016; Yu et al., 2018). It is highlighter in 
Borhaug and Pavlov (2008) that conventional LOS guidance law has the 
drawback of being susceptible to environmental disturbances in the ki
nematic level. Whereas, Integral LOS (ILOS) is proposed to compensate 
for the irrotational and constant ocean currents (Borhaug and Pavlov, 
2008). The concept of approach angle, as another kinematic guidance 
law, was proposed on a unicycle-type and two-steering wheels mobile 
robots in 1993 (Alain and Claude, 1993) and subsequently, it was also 
implemented on a horizontal path following control of an 
under-actuated AUV (Lapierre and Soetanto, 2007). In Wang and Ahn 
(2019), a hyperbolic-tangent guidance law is designed to guide the 

heading angle for an underactuated vehicle, by defining a virtually 
desired sideslip angle of which the tangent-nonlinearity is exactly 
identified by a finite-time sideslip observer. 

Actuator saturation Saturation is a nonlinear response and common 
physical constraint for all realizable actuators and sensors. This is 
considered to be a major nonlinearity of conventional actuators such as 
main propeller and control fins. Hence, actuator saturation is exten
sively studied in the robotsmotion control which includes, point stabi
lization, path following and trajectory tracking (Cui et al., 2016; Wang 
et al., 2017b; Zheng and Sun, 2015). The research study on actuator 
saturation can be bifurcated as nonlinearity compensation and 
saturated-function approximation. Literature survey reveals that, the 
logistic sigmoid function and the hyperbolic tangent function (tanh) are 
commonly used for saturation approximation which makes smooth 
functions differentiable along the solution (Xu et al., 2016). In Zheng 
and Sun (2015), the tanh function is applied to approximate the 
non-differentiable actuator saturation function. Whereas, the difference 
between tanh function and physical saturation is bounded which facili
tates the application of the back-stepping technique. In Shojaei (2016) 
and Yu et al. (2018), actuator saturation nonlinearity is compensated 
with fuzzy logic systems and neural networks, respectively. 

The contribution of this work is three-fold:  

(1) The path-following error dynamics is derived based on the theory 
of relative velocity, which simplifies the direct differential on 
tracking errors (Breivik and Fossen, 2005; Yu et al., 2020), and 
avoids potential singularities caused by inverse trigonometric 
calculation such as arcsin function (Yu et al., 2017a). Further, the 
relative velocity-based deduction gets out of the complex co
ordinates’ transformation (Breivik and Fossen, 2005).  

(2) Fuzzy logic system is adopted to approximate coupled kinetic 
model and high-order differential function. Particularly, the 
proposed scheme completely free from dependence on accurate 
kinetic model. Comparatively, most of fuzzy control and neural 
network-based tracking control schemes are designed based on 
partially known model parameters (Liu et al., 2016; Zheng et al., 
2018; Zheng and Sun, 2015). 

(3) A novel saturated kinetic control scheme is proposed by consid
ering unknown bound of actuator saturation. In contrast, the 
known saturation bound is required for saturated function 
approximation (Chu et al., 2019; Xu et al., 2016; Zheng and Sun, 
2015) and saturated truncation estimation (Shojaei, 2016; Yu 
et al., 2020; 2018). Further, the bound of disturbance-like term is 
compensated so that tracking errors can converge to zero. 

The rest of this paper is organized as follows: In Section 2, control 
preliminaries, notations and assumptions are introduced. Further, 
under-actuated AUV kinematic and kinetic models, path-following- 
related mission and actuator saturation are stated and formulated. In 
Section 3, the path-following error model is derived and the kinematic 
approach-angle-based guidance law is designed. The kinematic and ki
netic controllers are designed based on the Lyapunov theory, back
stepping technique. Particularly, the indirect adaptive fuzzy logic 
system approximation technique is utilized to approximate unknown 
functions. Section 4 provides two sets of comparative numerical simu
lations. Conclusion remarks are summarized in Section 5. 

2. Preliminaries and problem formulation 

Initially, some control preliminaries and notations are described in 
this section. Afterwards, kinematic and kinetic equations of under- 
actuated AUVs are derived. Finally, actuator saturation, path- 
following mission, control objectives and some assumptions are sum
marized and formulated in this section. 
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2.1. Preliminaries and notations 

The conventional fuzzy logic system, including Takagi-Sugeno-Kang 
(TSK) (Takagi and Sugeno, 1985) and Mamdani (H and Sedrak, 1993), is 
composed of fuzzification, fuzzy inference, and defuzzification. Herein, 
the inputs of the conventional fuzzy logic controller usually include 
error e and the differential ė. The output of the fuzzy logic system can be 
directly distributed to actuators, which is similar to the PID controller. 
Moreover, the commonly used IF-THEN rules which are developed from 
empirical knowledge can be described in the following way: 

Ri : IF e is Fi
e,THEN u is ϖi (1)  

where Fi
e are input fuzzy sets, and ϖi(i= 1, 2,⋯, n) are output fuzzy 

singletons. The conventional fuzzy logic controller is composed of a 
fixed number of IF-THEN rules and predefined membership functions, 
which is vulnerable for complicated, time-varying, strong coupling, and 
nonlinear systems. 

To facilitate the path-following control scheme design, two lemmas 
can be described herein. 

Lemma 1. (Universal approximation theorem of fuzzy basis functions) 
(Wang and Mendel, 1992) If an unknown continuous function f(x) is defined 
on a compact set Ω whose analytic expression is unknown, then there exists a 
fuzzy logic system ξTS(x) such that 

sup
x∈Ω

⃒
⃒f (x) − ξT S(x)

⃒
⃒ ≤ ϵ (2)  

where the fuzzy logic system approximation error ϵ > 0, ξT = [ξ1, ξ2,⋯, ξn]
T 

is the idea weight vector. S(x) and si(x) are the basis function vector and 
Gaussian function respectively, which can be formulated in the following 
way: 

S(x) =
[s1(x), s2(x),⋯, sN(x)]2

ΣN
i=1si(x)

(3)  

si(x) = exp
[
− (x − κi)

T
(x − κi)

ηT
i ηi

]

(i= 1, 2,⋯,N) (4)  

where N is the number of fuzzy rules, κi = [κi1, κi2,⋯, κiN]
T is the center 

vector, ηi = [ηi1, ηi2,⋯, ηiN]
T is the width vector of Gaussian functions (Liu 

et al., 2019). 

Lemma 2. (Barbalat’s lemma) (Popov and Georgescu, 1973; Slotime and 
Li, 1991) Consider a function f(t) : R+→R. If f(t) is differentiable and 
limt→∞

∫ τ
0 f(t)dt exist and is bounded, then limt→∞f(t) = 0. 

2.2. Problem formulation 

To describe the AUVs motion in different coordinate frames, let us 
define some notations utilized in this paper as listed in Tab. 1 and shown 
in Fig. 1. 

In the {NED} frame, the kinematic and kinetic equation of an 
underactuated AUV can be modeled as follows: 
{

η̇ = Rv
Mv̇ + Cv + Dv + g(v) = τ + τd

(5)  

with the matrix 

R(v) =

⎛

⎜
⎜
⎜
⎜
⎝

cosθcosψ − sinψ sinθcosψ 0 0
cosθsinψ cosψ sinθsinψ 0 0
− sinθ 0 cosθ 0 0

0 0 0 1 0
0 0 0 0 1/cosθ

⎞

⎟
⎟
⎟
⎟
⎠

(6)  

where the location and velocity vector are given as η = [x, y, z, θ,ψ ]T and 
ν = [u, v,w, q, r]T , which are locations, angles and velocities on surge, 
sway, heave, pitch and yaw directions respectively. M, C and D denote 
inertia, Coriolis and damping matrixes respectively. The vector g(ν)
represent generalized gravitational and buoyancy forces. 

Furthermore, the kinetic equation can be rewritten in differential 
form Do and Pan (2009) 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ =
m22vr + m33wq − d11u + τdu + sat(τu)

m11

v̇ =
m11ur − d22v + τdv

m22

ẇ =
m11uq − d33w + τdw

m33

q̇ =
(m33 − m11)uw − d55q − Ghsinθ + τdq + sat

(
τq
)

m55

ṙ =
(m11 + m22)uv − d66r + τdr + sat(τr)

m66

(7)  

where m(⋅) and d(⋅) denote the inertial and hydrodynamic damping co
efficients respectively. τu, τq and τr are control force and moments from 
main propeller and stern control surfaces, respectively. τdu, τdv, τdw, τdq 

and τdr are forces and moments caused by oceanic disturbance on surge, 
sway, heave, pitch and yaw directions respectively. The input saturation 
function sat(x) will be detailed later. 

The kinetic equations of AUV in actuated freedom can be rewritten as 
follows: 
⎧
⎨

⎩

u̇ = fu + guτu + du1
q̇ = fq + gqτq + dq1
ṙ = fr + grτr + dr1

(8)  

where fu, fq and fr are unknown smooth functions depending on AUVs 
hydrodynamics. And parameters gu, gq and gr are unknown constants. 
Smooth unknown functions du1, dq1 and dr1 are disturbances-like terms, 
which include external disturbance, unmodeled dynamics. 

The control force saturation for propeller and control surfaces can be 

Table 1 
Notations for 3 frames.  

Frames Origin Notation Description 

{NED} Arbitrary {I} Earth-fixed inertial frame (North-East- 
Down) 

{uvw} Ob  {B} Body-fixed fame 
{xSFySFzSF} Op  {F} Serret-Frenet frame  

Fig. 1. Geometric illustration of three-dimensional path following with an an 
underactuated AUV. 
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formulated as: 

τinput = sat(τ) =

⎧
⎨

⎩

τmax τmax < τ
τ τmin ≤ τ ≤ τmax

τmin τ < τmin

(9)  

with τ = τu, τq and τr. And τmax and τmin denote the upper and lower 
bounds of control forces respectively (Naik and Singh, 2007; Zheng 
et al., 2018). 

Let us define a parameterized reference path which is propagated 
based on the variable ϖ(t), and the virtual tracking point on the path in 
{NED} frame is denoted with Op(xp, yp, zp). By defining a coordinate 
frame whose origin is located at Op, the route angle at point Op can be 
denoted in the following way: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψp = atan2
(

ẏp, ẋp

)

θp = arctan

⎛

⎜
⎜
⎝

− żp
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ẋ2

p + ẏ2
p

√

⎞

⎟
⎟
⎠

(10)  

with ẋp = dxp/dϖ, ẏp = dyp/dϖ and żp = dzp/dϖ. Furthermore, the 

velocity of Op can be denoted as up =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
p + ẏ2

p + ż2
p

√

. The vectorial 
difference between the AUV and the virtual point Op can be denoted as: 

de =

⎛

⎝
xe
ye
ze

⎞

⎠ = Rz
(
ψp

)
Ry

(
θp
)

⎛

⎝
x − xp
y − yp
z − zp

⎞

⎠ (11)  

with rotation matrix Rz(ψp) = (cψp, − sψp,0; sψp, cψp, 0;0, 0,1) and 
Ry(θp) = (cθp, sθp,0; 0,1, 0; − sθp,0, cθp), where cΔ := cosΔ and sΔ :=

sinΔ with Δ = θp,ψp. 
Hence, the path-following control objectives can be formulated as: 

{ lim
t→∞

de = 0
lim
t→∞

(ψv, θv) =
(
ψp, θp

) (12)  

with angles θv = θ − α and ψv = ψ − β. The angle of attack and sideslip 
angle are given as α = arctan(− w /u) and β = arctan(v /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + w2

√
). 

The assumptions taken into consideration are summarized as under:  

(1) The reference path is smooth so that the parameterized path in x,
y, and z directions are differentiable. The path curvature c1 and 
path torsion c2 is continued.  

(2) The disturbances-like terms are bounded with unknown constant 
bounds D > 0, D = [Du,Dv,Dw,Dq,Dr]

T
, namely |du| <Du,

|dv| <Dv, |dw| <Dw, |dq| <Dq and |dr| <Dr (Qiao et al., 2017; Wang 
et al., 2017a).  

(3) The unknown functions fu, fq and fr are smooth, such that it can be 
approximated by fuzzy basis functions.  

(4) For the universal approximation of fuzzy logic system, the idea 
weight W∗ is bounded. The approximation error is bounded with 
unknown bound Dε > 0, namely |ε(x)| ≤ Dε. 

Above assumptions are reasonable since AUV hydrodynamic co
efficients and velocity states are continued. Practically, there are many 
path planning and smoothing methods which can provide continued 
path curvature and torsion, such as B-spline and Fermats spiral. In 
addition, the oceanic disturbance are bounded in practice even though 
the bounds are unknown. 

3. Controller Design 

In this section, a successive three-dimensional path following guid
ance law and control schemes have be designed for the underactuated 
AUVs. The control block diagram for AUV path following is designed as 
shown in Fig. 2. The approach-angle-based guidance law is designed for 
the three-dimensional path-following mission. Kinematic control 
schemes for virtual tracking point and AUV velocities, are designed by 
using the backstepping technique and Lyapunov theory to guarantee the 
stability of the kinematic loop. Kinetic control scheme is designed based 
on the indirect adaptive fuzzy logic system and adaptive compensation 
control laws in the presence of actuators saturation. 

3.1. Kinematic Controller 

The theory of relative motion also known as the velocity composition 
theorem, can be denoted as follows: 

Fig. 2. Saturated path-following control block diagram for underactuated AUVs.  
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va = ve + vr (13)  

where va, ve and vr denote the vectorial absolute velocity, relative ve
locity and transportation velocity respectively of a relative-moving 
particle. 

Based on the definition of the coordinate frames in Tab. 1 and Fig. 1, 
the absolute velocity of the AUV in {NED} frame can be denoted as: 
(

dOb

dt

)

I
=

(
dOp

dt

)

I
+
( F

I R
)− 1

((
dd
dt

)

F
+(wF ⊗ d)

)

(14)  

where the rotation matrix FI R represents the transformation from frame 
{I} to frame {F}, which can be derived in the following way: 
F
I R = ROp ,z

(
ψp

)
ROp ,y

(
θp
)

(15) 

As shown in Fig. 1, the vectorial velocity of the tracking error de can 
be derived in the following way: 
(

dde

dt

)

I
=

(
dOb

dt

)

I
−

(
dOp

dt

)

I
(16) 

Hence, the transportation motion equation can be rewritten as: 

F
I R

(
dOb

dt

)

I
=

(
dOp

dt

)

F
+

(
dde

dt

)

F
+ (wF ⊗ de) (17)  

with 
(

dOb
dt

)

I
= (ẋ, ẏ, ż)T

,

(
dOp
dt

)

F
= (ṡ, 0,0)T and 

(
dde
dt

)

F
= (ẋe, ẏe, że)

T. 

wF ⊗ de =

⎛

⎝
0
c2 ṡ
c1 ṡ

⎞

⎠⊗

⎛

⎝
xe
ye
ze

⎞

⎠ =

⎛

⎝
c2 ṡze − c1 ṡye
c1 ṡxe
− c2 ṡxe

⎞

⎠

where c1 and c2 are curvature and torsion of the reference path in Op 

respectively. Besides, s is the signed curvilinear abscissa of OP such that 
ds/dt = up. The relative velocity of Ob can be deduced based on the 
known path parameters, that is 
(

dOb

dt

)

F
= F

I R
(
ψp, θp

)
⋅I
BR(ψ , θ)⋅(u, v,w)T

= ROB ,z(ψe)⋅ROB ,y(θe)⋅(νt, 0, 0)T

=

⎛

⎜
⎜
⎜
⎝

cos(ψe)cos(θe)νt

sin(ψe)cos(θe)νt

− sin(θe)νt

⎞

⎟
⎟
⎟
⎠

(18)  

with resultant velocity vt =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2 + w2

√
> 0. 

Based on the above deduction, the differential of the vectorial 
tracking error can be derived in the following way:  

(
dde

dt

)

F
=

⎛

⎝
cos(ψe)cos(θe)νt − (c2ze − c1ye + 1)ṡ
sin(ψe)cos(θe)νt − c1xeṡ
− sin(θe)νt + c2xeṡ

⎞

⎠ (19) 

Furthermore, based on the above definition, the differential of 
tracking angles can be derived as follows: 
{

ψ̇e = r/cos(θ) + β̇ − c1 ṡ
θ̇e = q + α̇ − c2 ṡ

(20) 

Then design the approach-angle-based guidance law as:  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψapp = − ψa
ekψ ye − 1
ekψ ye + 1

θapp = θa
ekθze − 1
ekθze + 1

(21)  

where ψa ∈ (0, π /2) and θa ∈ (0, π /2) are constant maximum yaw and 
pitch guidance angles, respectively. 

Then design the kinematic control scheme for the virtual point and 
AUVs velocities as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϖ̇ =
− νtcos(ψe)cos(θe) + k1xe

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ẋ2

p + ẏ2
p + ż2

p

√

qd = − α̇ + c2 ṡ + θ̇app − k2
(
θe − θapp

)
+ zevtf

(
θe, θapp

)

rd = cosθ
(

− β̇ + c1 ṡ + ψ̇app − k3
(
ψe − ψapp

)
− yevtf

(
ψe,ψapp

)
)

(22)  

where ṡ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
p + ẏ2

p + ż2
p

√

. The function f(a,b) = sina− sinb
a− b . It is noted that 

the function f(a, b) is non-singular around (a→b) due to that 

lim
a→b

sin a − sin b
a − b

∇=a−b
======= lim

∇→0
sin a − sin(a − ∇)

∇ = cos a (23)  

3.2. Kinetic Controller 

By recalling the saturation function in (9) and simplified AUV kinetic 
model in (8), the AUV kinetic equations in actuated profiles can be 
rewritten as follows: 
⎧
⎨

⎩

u̇ = fu + gusat(τu) + du
q̇ = fq + gqsat

(
τq
)
+ dq

ṙ = fr + grsat(τr) + dr

(24) 

Let us define the kinetic tracking errors as ue = u − ud, qe = q − qd 

and re = r − rd, where desired pitch velocity qd and yaw velocity rd have 
been designed in (22), and the desired travelling surge velocity ud is 
given constant or known time-varying regularity. 

Considering the kinetic velocity tracking errors, choose a positive 
function in the following way: 

V2 =
1
2
(
u2

e + q2
e + r2

e

)
(25) 

By recalling the kinematic model in (24) and definition on velocity 
tracking errors ue, qe & re, the differential of V2 can be derived as: 

V̇2 = ue

(

fu + gusat(τu) + du − u̇d

)

+

qe

(

fq + gqsat
(
τq
)
+ dq − q̇d

)

+

re

(

fr + grsat(τr) + dr − ṙd

)

= ue

(

fu − u̇d

)

+ qe

(

fq − q̇d

)

+ re

(

fr − ṙd

)

+ uedu+

qedq + redr + uegusat(τu) + qegqsat
(
τq
)
+ regrsat(τr)

(26) 

According to the kinematic control law in (22), we have that q̇d and 
ṙd are continuous and differentiable. For an AUV traveling with constant 
surge velocity, we have that u̇d = 0. Hence, by recalling the assumption 
(3) and Lemma 1, the fuzzy logic basis functions can be utilized herein to 
approximate functions (fu), (fq − q̇d) and (fr − ṙd), which can be formu
lated as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
′

u = fu = ξuSu + εu

f ′

q = fq − q̇d = ξqSq + εq

f ′

r = fr − ṙd = ξrSr + εr

(27) 

By substituting (27) into (26), it can be deduced as follows: 

V̇2 = ueξuSu + qeξqSq + reξrSr+

ue(du + εu) + qe
(
dq + εq

)
+ re(dr + εr)+

uegusat(τu) + qegqsat
(
τq
)
+ regrsat(τr)

(28) 
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According to Assumption 2 and 4, we have du + εu ≤ Du+ with Du+ =

Du + Duε. Furthermore, the similar conclusion can be derived in pitch 
and yaw directions: dq + εq ≤ Dq+ and dr + εr ≤ Dr+. It is noted that 
terms Du+, Dq+ and Dr+ are unknown due to the fact that bounds of 
disturbance and approximation errors are unknown and unmeasurable. 
Let us define the parameter approximation errors as  

⎧
⎪⎪⎨

⎪⎪⎩

ξ̃∇ = ξ̂∇ − ξ∇

D̃∇+ = D̂∇+ − D∇+

g̃∇ = g∇

− g∇ (29)  

with ∇ = u, q, r and g∇ = 1/ĝ∇. 
Design the kinetic control scheme in the following way:  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τu = − sign(ue)τu

(

1 + ĝu

)

τq = − sign(qe)τq

(

1 + ĝq

)

τr = − sign(re)τr

(

1 + ĝr

)
(30)  

with 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τu = |ξ̂uSu|+D̂u+ + k4|ue|

τq = |ξ̂qSq|+D̂q+ + k5|qe|

τr = |ξ̂rSr|+D̂r+ + k6|re|

(31)  

and adaptive update law for control parameters is given as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂g∇ = ζg∇ ĝ3
∇|∇e|τ∇

˙̂D∇+ = ζD∇|∇e|

˙̂ξ∇ = ζξ∇∇eS∇

(32)  

where k4, k5 and k6 are positive constants. ζgΔ, ζDΔ and ζξΔ are positive 
adaptive constants. 

3.3. Stability analysis 

Theorem 1. The approach angle based guidance law given by (21) and 
kinematic control scheme given by (22) render the state 
(xe, ye, ze, (θe − θapp), (ψe − ψapp)) = (0, 0,0, 0,0) globally uniformly 
asymptotically stable. 

Proof. Choose a candidate Lyapunov function as follows:  

V1 =
1
2
(
x2

e + y2
e + z2

e +
(
θe − θapp

)2
+
(
ψe − ψapp

)2) (33)  

. 
Based on the deduction of tracking error dynamics in (19,20), then 

the differential of V1 can be derived as follows: 

V̇1 = xeẋe +yeẏe + zeże +
(
θe − θapp

)
(

θ̇e − θ̇app

)

+
(
ψe − ψapp

)
(

ψ̇e − ψ̇app

)

= xe(cosψecosθevt − (c2ze − c1ye +1)ṡ)+
ye(sinψecosθevt − c1xeṡ)+ ze( − sinθevt + c2xeṡ)+
(
θe − θapp

)
(

q+ α̇ − c2 ṡ − θ̇app

)

+

(
ψe − ψapp

)
(

r
/

cosθ+ β̇ − c1 ṡ − ψ̇app

)

(34) 

Then by substituting kinematic controller (22) into (34), we have 
that 

V̇1 =xe(vtcosψecosθe − ṡ)+yevtsinψecosθe − zevtsinθe+

(
θe − θapp

)
(

q+α̇− c2 ṡ− θ̇app

)

+
(
ψe − ψapp

)
(

r
/

cosθ+β̇ − c1 ṡ− ψ̇app

)

=− k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+yevtsinψapp − zevtsinθapp

≤0
(35) 

According to the approach angles in (21), we have yesinψapp≤0, ∀[ye,

ψapp]∈R2, and zesinθapp≥0, ∀[ze, θapp]∈R2. Besides, the resultant velocity 
of the vehicle vt>0. Since V̇1≤0, and V1 is a positive and monotonically 
decreasing function, limt→∞V1 exists. Then by recalling the Barbalat’s 
lemma, it can be concluded that limt→∞V̇1 = 0. Hence the related path- 
following errors are bounded and asymptotically converge to the 
invariant set. Hence, it can be concluded that limt→∞V1=0, namely xe=

0, ye=0, ze=0, ψe→ψapp→0 and θe→θapp→0. Thus it can be proved that 
the kinematic system in (5) is asymptotically stable under the guidance 
law (21) and control law (22). □ 

Theorem 2. Consider an underactuated AUV with kinematic and kinetic 
models as shown in (5, 24). Guidance law (21), kinematic control law (22), 
and kinetic control law (30) with parameter update law (31, 32) render 
kinematic and kinetic tracking errors converge to zero. 

Proof. Considering the kinematic tracking errors, kinetic velocity 
tracking errors, and system approximation errors, construct the 
following candidate Lyapunov function: 

V3 = V1 + V2 +
∑

i=u,q,r

⎛

⎝
g̃2

i

ζgi
+

D̃
2
i+

ζDi
+

ξ̃
T
i ξ̃i

ζξi

⎞

⎠ (36) 

Based on the deduction on V1 and V2 in (35) and (26), and by 
recalling the definition on control parameters in (29), the differential of 
V3 can be derived as follows:  

V̇3 = V̇1 + V̇2 +
∑

i=u,q,r

⎛

⎜
⎝

g̃iġi

ζgi
+

D̃i+
˙̂Di+

ζDi
+

ξ̃
T
i
˙̂ξi

ζξi

⎞

⎟
⎠

= − k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+ yevtsinψapp − zevtsinθapp

+ ue

(

fu − u̇d

)

+ qe

(

fq − q̇d

)

+ re

(

fr − ṙd

)

+ uedu + qedq + redr

+ uegusat(τu) + qegqsat
(
τq
)
+ regrsat(τr)

+
∑

i=u,q,r

⎛

⎜
⎝

g̃iġi

ζgi
+

D̃i+
˙̂Di+

ζDi
+

ξ̃
T
i
˙̂ξi

ζξi

⎞

⎟
⎠

(37) 

J. Zhang et al.                                                                                                                                                                                                                                   



Applied Ocean Research 107 (2021) 102486

7

Then by recalling the fuzzy logical basis functions approximation in 
(27) and definition on parameter approximation errors in (29), (37) can 
be deduced as follows:   

Taking the pitch saturation term qegqsat(τq) as an example, and as
sume a situation as qe < 0. According to the definition of control law in 
(30), the pitch control moment can be deducted as τq > 0. By recalling 
the control law in (30), the saturation term can be deduced as follows: 

qegqsat
(
τq
)

= − |qe|gq
τq,max

τq
τq

(

1 + ĝq

)

= − |qe|gq ĝqτq
τq,max

τq
− |qe|gqτq

τq,max

τq

≤ − |qe|gq ĝqτq

(39) 

It is noted that properties gq > 0, τq > 0 and τq,max
τq

≥ 1 (∀τq > 0) have 
been used in the deduction of (39). The same deduction process can be 
followed for qe > 0, unsaturated and saturated situations respectively. 
Eventually, it can be concluded that qegqsat(τq) ≤ − |qe|gq ĝqτq ∀ (re,

δr) ∈ R2. Hence the saturation terms in surge and yaw directions can be 
concluded as follows: uegusat(τu) ≤ − |ue|gu ĝuτu and regrsat(τr) ≤ −

|re|gr ĝrτr. 
According to the deduction in (39) and by recalling the control law in 

(30), (31) and (32), V̇3 can be further deduced as follows: 

V̇3 ≤ − k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+

yevtsinψapp − zevtsinθapp+|ue‖ξ̂u
T
Su| + |qe‖ξ̂q

T
Sq

⃒
⃒
⃒
⃒+

|re‖ξ̂r
T
Sr

⃒
⃒
⃒ − ueξ̃u

T
Su − qeξ̃q

T
Sq − reξ̃r

T
Sr + ueDu++

qeDq+ + reDr+− |ue|guτu ĝu− |qe|gqτq ĝq − |re|grτr ĝr−

g̃u ĝ− 2
u

˙̂gu

ζgu
−

g̃q ĝ− 2
q

˙̂gq

ζgq
−

g̃r ĝ − 2
r

˙̂gr

ζgr
+

D̃u+
˙̂Du+

ζDu
+

D̃q+
˙̂Dq+

ζDq
+

D̃r+
˙̂Dr+

ζDr
+

ξ̃
T
u
˙̂ξu

ζξu
+

ξ̃
T
q
˙̂ξq

ζξq
+

ξ̃
T
r
˙̂ξr

ζξr 

≤ − k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+

yevtsinψapp − zevtsinθapp − k4u2
e − k5q2

e − k6r2
e 

≤ 0 (40) 

Since V̇3 ≤ 0, and by recalling the definition on V3 in (36), V3 is a 
positive and monotonically decreasing function, lim

t→∞
V3 exists. Then by 

recalling the Barbalat’s lemma, it can be concluded that lim
t→∞

V̇3 = 0. 

Hence the kinematic and kinetic errors are asymptotically stable under 

actuator saturation, namely lim
t→∞

de = 0, lim
t→∞

(ψe, θe) = (0, 0) and lim
t→∞

(ue,qe,

re) = 0. Hence, the control objectives in (12) can be realized based on 
kinematic controller (22) and kinetic controller in (30). □ 

3.4. Path-following algorithm 

To provide better understanding and compact formulation of the 
proposed three-dimensional path-following control scheme, the pseudo 
code of the guidance law, kinematic and kinetic controllers are elabo
rated in Tab. 2. The numerical simulation studies in this paper are 
implemented aligning with Tab. 2. According to the complete control 
loop in control block diagram Fig. 2, the state vectors η and v can be 
obtained from on-board integrated navigation system. xp(ϖ), yp(ϖ) and 
zp(ϖ) are reference path functions that depend on the variable ϖ. 
Moreover, some constants have not been listed in Tab. 2, such as ki and 
ζΔ. Furthermore, some iterative process such as integral calculations 
have not been listed in Tab. 2. 

4. Numerical Examples 

This section illustrates the effectiveness and robustness of the pro
posed path-following control scheme with two sets of numerical simu
lations. An 5.56-meters-long and 1089.8 kg AUV in Do and Pan (2009); 
McEwen and Streitlien (2001) is utilized. Model coefficients of the AUV 
are listed in Tab. 3. The under-actuated AUV has a minimum turning 
circle with a radius of 75m. Moreover, the saturated control forces and 
moments are given as follows: 
⎧
⎨

⎩

|τu| ≤τu− max = 2 × 104N
|τq| ≤τq− max = 1.5 × 104Nm
|τr| ≤τr− max = 1.5 × 104Nm

(41) 

The reference paths for two sets of numerical simulation are gives as 
straight path and three-dimensional helix respectively. For two cases, it 
can be assumed that the AUV is exposed to the unknown external dis
turbances with formulated equations as follows: 

V̇3 = − k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+ yevtsinψapp − zevtsinθapp+

ueξuSu + qeξqSq + reξrSr + ue(du + εu) + qe
(
dq + εq

)
+ re(dr + εr)+

uegusat(τu) + qegqsat
(
τq
)
+ regrsat(τr) +

∑
i=u,q,r

⎛

⎜
⎝

g̃iġi

ζgi
+

D̃i+
˙̂Di+

ζDi
+

ξ̃
T
i
˙̂ξi

ζξi

⎞

⎟
⎠

≤ − k1x2
e − k2

(
θe − θapp

)2
− k3

(
ψe − ψapp

)2
+ yevtsinψapp − zevtsinθapp+

ue

(
ξ̂u

T
− ξ̃u

T)
Su(x) + qe

(

ξ̂q
T
− ξ̃q

T
)

Sq(x) + re

(
ξ̂r

T
− ξ̃r

T)
Sr(x)+

ueDu+ + qeDq+ + reDr+ + uegusat(τu) + qegqsat
(
τq
)
+ regrsat(τr)+

∑
i=u,q,r

⎛

⎜
⎝

g̃iġi

ζgi
+

D̃i+
˙̂Di+

ζDi
+

ξ̃
T
i
˙̂ξi

ζξi

⎞

⎟
⎠ (38)   
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τd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τdu = − 0.2m11d(t)
τdv = 0.1m22d(t)
τdw = − 0.1m33d(t)
τdq = 0.1m55d(t)
τdr = − 0.2m66d(t)

(42)  

with d(t) = 1 + 0.1sin(0.2t) (Yu et al., 2017a). And the helix path is 
different from the straight path in that the path curvature and torsion are 
non-zero. Furthermore, some control parameters in Tab. 2 are given as 
follows: ψa = π

2, θa = π
3, kψ = 0.8, kθ = 0.5, k1 = 0.5, k2 = 1, k3 = 1.5,

ζDu = 0.2, ζξu = 0.2, ζgu = 0.1, ζDq = 0.5, ζξq = 0.1, ζgq = 0.2, ζDr = 0.2,
ζξr = 0.1, ζgr = 0.2. For fuzzy logic approximation, seven nodes are used 
in both simulation cases. 

Table 2 
Three-dimensional adaptive fuzzy path-following control algorithm of under- 
actuated AUVs.  

Algorithm: 3-dimensional path following 

Input : xp(ϖ),yp(ϖ), zp(ϖ),η, v,ψa,θa,ud  

(ẋp, ẏp, żp) = (dxp /dϖ,dyp /dϖ,dzp /dϖ)ϖ̇  

ψp = atan2(ẏp, ẋp), θp = arctan( − żp,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
p + ẏ2

p

√

)

de = Rz(ψp)Ry(θp)[x − xp , y − yp , z − zp]
T  

ψapp = − ψa(ekψ ye − 1)/(ekψ ye + 1), θapp = θa(ekθze − 1)/(ekθze + 1)
Kinematic control law: 
qd = − α̇+ c1 ṡ+ θ̇app − k2(θe − θapp) − zevtf(θe,θapp)+ zevtf(θe,θapp)

rd = cosθ( − β̇ + c1 ṡ + ψ̇app − k3(ψe − ψapp)) − cosθyevt(ψe,ψapp)

ϖ̇ = ( − νtcos(θe)cos(θe) + k1xe)/(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
p + ẏ2

p + ż2
p

√

)

ϖ = ϖ + ϖ̇dt  
ue = u − ud, qe = q − qd, re = r − re  

Kinetic control law: 
˙̂Du+ = ζDu|ue|,

˙̂ξu = ζξuueSu,
˙̂Dq+ = ζDq|qe|,

˙̂ξq = ζξqqeSq  

˙̂Dr+ = ζDr|re|,
˙̂ξr = ζξrreSr  

τu = ξ̂uSu + D̂u+ + k4|ue|, τq = ξ̂qSq + D̂q+ + k5|qe|, τr = ξ̂rSr + D̂r+ + k6|re|

˙̂gu = ζgu ĝ3
u |ue|τu ,

˙̂gq = ζgq ĝ3
q |qe|τq,

˙̂gr = ζgr ĝ
3
r |re|τr  

τu = − sign(ue)τu(1 + ĝu), τq = − sign(qe)τq(1 + ĝq), τr = − sign(re)τr(1 + ĝr)

Table 3 
Parameters list of AUV nominal model.  

m = 1089.8(kg) L = 5.56m  m11 = 1116kg  m22 = 2133kg  
m33 = 2133kg  m44 = 36.7kgm2  m55 = 4061kgm2  m66 = 4061kgm2  

d11 = 25.5kgs− 1  d22 = 138kgs− 1  d33 = 138kgs− 1  d44 = 10kgm2s− 1  

d55 = 490kgm2s− 1  d66 =

490kgm2s− 1  

du2 = 0  du3 = 0  

dp2 = 0  dp3 = 0  dq2 = 0  dq3 = 0  
dr2 = 0  dr3 = 0  dv2 =

920.1kgm− 2s  
dv3 =

750kgm− 3s2  

dw2 =

920.1kgm− 2s  
dw3 =

750kgm− 3s2     

Fig. 3. 3-dimensional tracking results under Subcase 1.1, 1.2, 1.3 and 1.4.  

Fig. 4. Cross-tracking errors ye, ze and along-tracking errorxe under 4 subcases.  

Fig. 5. AUV velocities under 4 subcases with desired surge velocity 4m/s.  
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4.1. Case 1: Straight path following 

The equation of the reference straight path is given as yp = 5m, zp =

50m. Let us set up 4 subcases under Case 1, where the vehicle is sailed 
from different inial position and posture. The initial position and posture 
vectors for four subcases are given as η1.1 = [10m, 10m,55m,0rad,
0rad], η1.2 = [11m,11m,45m,0rad, 0rad], η1.3 = [9m,0m,44m,0rad,
0rad] and 

η1.4 = [8m, − 1m,56m,0rad,0rad], respectively. The velocity vector 
is given as v1.1 = v1.2 = v1.3 = v1.4 = [3m/s,0m/s,0m/s,0rad/s,0rad/s]. 
The comparative three-dimensional path-following results are depicted 

in Fig. 3, where the red dashed line represents the reference path, and 
the blue, green, cyan, and black lines are the actual trajectory of AUV 
under subcase 1.1, 1.2, 1.3, and 1.4 respectively. 

The path-following position errors, including the along-tracking 
error xe, cross-tracking errors ye and ze, are shown in Fig. 4. It is 
proved that all of the path-following position errors are global asymp
totical stable at origin. 

The desired surge velocity under four subcases are given as 4m/s. The 
velocities in the tracking process are depicted in Fig. 5. It is observed 
that the actual surge velocity converge to the desired velocity asymp
totically. Due to the effect of time-varying ocean disturbance, the ve
locities on sway, heave, pitch and yaw directions are non-zero and time- 
varying. Moreover, the control force and moments are shown in Fig. 6. 
The control force τu and control moments τq and τr are strictly restricted 
between saturation intervals. 

4.2. Case 2: 3-D Helix tracking 

Helical diving process is simulated herein to test the performance 
and robustness of the proposed path-following control scheme. The 
equation of the reference helix path is given as xp = Rcos(cϖ), yp =

Rsin(cϖ), zp = 50 + 0.5ϖ with R = 80m and c = 0.2618. It is noted that 
the helix reference path is different from straight path in that the path 
curvature c1 and torsion c2 are non-zero constants. The initial AUV 
position and posture vector is given as η = [90m, − 5m,45m, − π/4rad,
3π/4rad]. And the velocities vector is given as v = [3m/s, 0m/s, 0m/s,
0rad/s,0rad/s]. The numerical simulation duration is set as 200 seconds. 
And a sudden disturbance is imposed on the AUV at 100s − 105s with 
the term dsudden = 5 + 0.5sin(0.2t), and the sudden disturbance force 
τd,sudden can be simulated with (42). 

To verify the performance of the proposed control scheme, simula
tion case 2 compare the proposed control scheme with the model-based 
fuzzy sliding mode control (SMC). The fuzzy SMC considering the 
actuator saturation can be designed as follows Yu et al. (2018): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τu,FSMC =
1
gu

[

u̇d − fu − k1f ue − xe
cosθecosψe

cosα − k2f sgn(ue)

]

− ϱ̂u

τq,FSMC =
1
gq

[

q̇d − fq − k3f qe − θe + θapp − k4f sgn(qe)

]

− ϱ̂q

τr,FSMC =
1
gr

[

ṙd − fr − k5f re − ψe + ψapp − k6f sgn(re)

]

− ϱ̂r

(43)  

where kif (i= 1⋯6) are positive control parameters. ϱ̂u, ϱ̂q and ϱ̂r are 
fuzzy approximation terms for saturated truncation in surge, pitch and 

yaw freedoms, which are given as ϱ̂j = ξ̂
T
jf Sjf with (j = u, q, r). The 

control law for weight vectors are given as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂
T
uf =

1
ζuf

guueSuf

ξ̂
T
qf =

1
ζqf

gqqeSqf

ξ̂
T
rf =

1
ζrf

grreSrf

(44)  

where ζuf , ζqf and ζrf are positive control parameters. gu, gq, gr, ue, qe and 
re are defined in the same way with that in subsection 3.2. The control 

Fig. 7. 3-dimensional helix path-following result.  

Fig. 6. Control force and moments of straight line tracking process under 
4 subcases. 
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parameters are given as: k1f = 0.5, k2f = 0.1, k3f = 0.5, k4f = 0.1, k5f =

0.8, k6f = 0.5, ζuf = 1.0, ζqf = 0.5, ζrf = 0.2. The kinematic control law 
and corresponding control parameters of the control group are selected 
same with the proposed control scheme. 

The comparative three-dimensional helix path following results are 
shown in Fig. 7. Further, the two-dimensional projection of the reference 
path and the AUV trajectories in X-Y and X-Z profiles are shown in Fig. 8. 
It is observed that the actual trajectory of the AUV with the proposed 
control scheme converges to the reference path asymptotically. 

In addition, the along-tracking error xe, cross-tracking errors ye and 
ze are depicted and compared in Fig. 9. The desired and actual pitch and 
yaw angles are presented in Fig. 10. It is noted that the desired pitch 
angle and yaw angle are given as θd = c2 ṡ − α and ψd = c1 ṡ − β respec
tively. Particularly, the enlarged views of path-following errors show 
details around the sudden disturbance. It can be observed that the path- 
following errors converge to 0 asymptotically. Comparatively, the pro
posed control scheme presents smaller steady-state errors and better 
dynamic performance. The desired travel speed is given as 4m /s. The 

linear and angular velocities, sideslip angle β, and the angle of attack α 
in the tracking process are depicted and compared in Fig. 11. And the 
velocity errors are given in Fig. 12. It is noted that the desired pitch and 
yaw velocity are designed as shown in kinematic control law (22). The 
proposed control scheme presents better stability when the AUV was 
imposed sudden disturbance. In addition, the fuzzy logic system 
approximation targets and results are shown in Fig. 13. The approxi
mation results are represented with ξuSu, ξqSq and ξrSr respectively. 
Furthermore, the comparative control force τu and control moments τq,

τr are shown in Fig. 14, Particularly, the effect of the sudden disturbance 
on AUV have been depicted in Fig. 14. It can be observed that the control 
force and moments of proposed control scheme and fuzzy SMC are 
strictly constrained by the inherent actuator saturations. The proposed 
control scheme shows comparatively better actuator performance with 
the same simulation environment. The chattering effect of the actuators 
can be greatly avoided. 

Fig. 9. Along-tracking error xe, cross-tracking errors ye and ze under helix 
tracking case. Fig. 10. Pitch and yaw angles for fuzzy SMC and proposed control scheme.  

Fig. 8. 2-dimensional projection of reference path and AUV trajectory in X-Y and X-Z profiles.  
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5. Conclusion 

In this paper, an adaptive approach-angle-based three-dimensional 
path-following control scheme is proposed for underactuated AUVs with 
unknown input saturations. The kinematic control law is designed based 
on the approach-angle-based guidance law, which synthesizes the cross- 
tracking errors into the tracking errors of heading and elevation angles. 
Further, the path-following error dynamic model is derived based on the 
theory of relative motion. The kinematic controller is designed by using 
the backstepping technique and Lyapunov theory to drive tracking er
rors asymptotically converge to 0. The kinetic control law is designed 
based on the indirect adaptive fuzzy logic control system, which is 

adopted to approximate the unknown functions including unknown 
coupled hydrodynamic parameters and complex differential of the 
desired pitch and yaw velocities. Furthermore, two adaptive laws are 
designed to estimate the constant AUV hydrodynamic parameters and 
unknown bounds of disturbance-like terms, which include the external 
disturbance and fuzzy approximation errors. Finally, two sets of nu
merical simulations for the straight path following with different initial 
position and spatial helix path following with sudden disturbance are 
implemented to demonstrate the effectiveness and robustness of the 
proposed control scheme. Control force and moments are strictly con
strained in the pre-defined saturation zones. Moreover, simulation re
sults on cross-tracking and along-tracking errors have correctly prove 
the tracking performance and asymptotic stability. 

Fig. 13. Fuzzy logic system approximation results in surge, pitch and 
yaw freedoms. 

Fig. 14. Control force and moments for fuzzy SMC and proposed con
trol scheme. 

Fig. 11. AUV linear and angular velocities under helix tracking case with 
desired surge velocity 4m/s. 

Fig. 12. Linear and angular velocity errors ue, qe and re.  
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