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a b s t r a c t

This paper proposes an affordable mobile platform for pathological gait analysis. Gait spatio-temporal
parameters are of great importance in clinical evaluation but often require expensive equipment and are
limited to a small and controlled environment. The proposed system uses state-of-the art robotic tools, in
contrast to their original use, for the development of a robust low-cost diagnostic decision-making tool.
Themobile system, which is driven by a Kinect sensor, is able to (1) follow a patient at a constant distance
on his own defined path, and (2) to estimate the gait spatio-temporal parameters. The Robust Tracking-
Learning-Detection algorithm estimates the positions of the targets attached to the trunk and heels of the
patient. Real-condition experimental validation including the corridor, occlusion cases, and illumination
changes was performed. A gold standard stereophotogrammetric systemwas also used and showed good
tracking of the patient and an accuracy in the stride length estimate of 2%. Finally, preliminary results
showed an RMS error that was below 10° in the 3D lower-limb joint angle estimates during walking on a
treadmill.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Evaluation of gait abnormalities is important in the clinical
assessment of a patient over time in a large number of medical
disorders related to the central nervous system, muscular system,
or orthopaedic disabilities, which often affect gait pattern [1].
This evaluation is essential for diagnosis or research purposes
and can be performed via a simple visual observation during the
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medical consultation, i.e., a standard procedure such as the six-
minutewalking test [2] or amore complete quantitative evaluation
in a dedicated laboratory [3]. Devising low-cost and easy-to-use
tools to measure the nominal value and the variability of gait
spatio-temporal parameters such as step length, gait events [4]
or 3D trunk orientation [5] has been the target of extensive
studies in or during the last two decades. Indeed, these parameters
are representative of the compensatory mechanisms adopted in
pathological walking [6]. Some studies have also focused on the
detection and identification of a particular gait disorder, such
as the freezing of gait [7], which is observed in the majority of
people with Parkinson’s disease. This freezing of gait (FOG) is
the temporary, involuntary inability to move when initiating gait,
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passing through a door, turning, or negotiating an obstacle. The
freezing of gait is closely related to the risk of falling [8] and can
occur at any time. FOG can occur for very different periods of
time and is usually studied using video recordings of the patient’s
gait [7]. Consequently, trigging protocols of freezing in a confined
environment in which video recording, using single or multiple
cameras, have been developed [7,8].

Thus, measuring and visualising the patient’s walking ability in
the clinic but outside of a dedicated motion analysis laboratory for
extended periods of time and mobilising the less possible medical
staff is one of the goals of bioengineering studies. Although these
studies have been performed for decades, most of the existing
systems are task- and/or population-specific and/or often require
a large investment.

To achieve these purposes, inertial measurement units (IMUs),
embedding a 3-axes accelerometer and gyroscope, have gained in
popularity due to their low cost and their ease of use [4,5]. Un-
fortunately, the IMU outputs are subject to a large non-linear drift
over time, which jeopardises their time integration [9]. Advanced
adaptive filters [5,9] have been used for orientation assessment,
but they are task- and population-specific. An assessment of dis-
placement during gait is based on the detection of the zero crossing
of the trunk or shank accelerations corresponding to gait events.
These events are subsequently used in combination with inverted
pendulum models to estimate the step length [10] during straight
walking. These biomechanical assumptions can result in very large
discrepancies in the case of pathological walking or over prolonged
periods of time, and IMUpositioning is very sensitive [4,6].With re-
gard to the detection of freezing events, recent studies have used
several IMUs located in the lower limbs for a maximal rate of de-
tection of 80% of positive detection when compared to manual de-
tection performed by clinicians on videotape [7].

Taking into account these considerations, an affordable mobile
robot that is able to follow a patient outside the motion analysis
laboratory with the purpose of measuring gait spatio-temporal
parameters while providing visual video feedback recorded at a
constant distance would be a great advantage to clinicians.

The person who is following the patient has two tasks, i.e., the
person tracking and the robot navigation or its path generation.
Person tracking can use any of the numerous sensor technologies
available depending on the context. Measurements from a laser
can be used to extract the subject’s legs, but other persons or
even tables or chair legs can make robust detection difficult [11].
To improve the tracking performance, some authors proposed to
merge laser and infrared data [12] or to use an omnidirectional
camera [13]. Approaches based on single or multiple cameras to
follow a subject have often been proposed [14–17] and have been
more recently combinedwith a depthmap [18]. Indeed, a new type
of very affordable sensor called light coding has recently become
available. The Kinect sensor, which was released by Microsoft R⃝,
is a low-cost, compact and lightweight sensor that provides both
colour and depth map information. It is being increasingly mainly
used in mobile robotics for indoor navigation [19,20] but also
for person-following [21–24]. The Kinect sensor represents a
significant reduction in robot costs for the replacement of other
sensors, including the expensive laser [24]. It is associated with
many software that allow for various interactions with humans,
but it also allows skeletal tracking or person 3D centroid detection,
which is mainly based on silhouette segmentation using the depth
map [24]. However, even if several groups have reported using
the Kinect sensor person detection ability with mobile robots, few
studies have published their results [24]. Moreover, other groups
have developed their own algorithms [23,25]. In our application,
algorithms such as skeletal tracking will most likely fail because
one or several clinicians can be interacting with the patient or
they can walk over a short period of time between the robot and
the patient. Furthermore, these depth map-based algorithms were
originally developed for entertainment purposes and are supposed
to be used in an open environment in contrastwith our application,
which can occur in constrained environments such as a corridor.

To the best of our knowledge, a low-cost mobile gait analysis
platform has never been developed and could become very useful
for gait clinical assessment. Recently, Ojeda et al. [26] proposed a
promising prototype of amobile platform that yields high accuracy
in human gait analysis and subject 3D absolute positioning.
However, this approach, which embeds a high-frequency active
motion capture system consisting of six cameras and a low-
drift gyroscope, requires a large investment and does not provide
videotaping. Importantly, no information is provided in their paper
concerning the subject-following performance. Indeed, it appears
that the mobile platform does not automatically follow the subject
while walking and requires an external person to move. Thus, the
objectives of this studywere to propose a low-costmobile platform
that is able to:

– autonomously follow the patient at a constant distance outside
the motion analysis laboratory but still within a clinical
environment,

– provide a visual feedback for clinicians to evaluate the freezing
of gait,

– accurately estimate the stride length during straight walking
and validate this measurement,

– assess the future ability of the proposed system in providing
amplitude and temporal information on the lower-limb joint
angles.

In this study, the low-cost aspect, the ease of use and the
assessment of reliability in spatio-temporal measurements are
of great importance to allow such devices to be widely used
among the clinician community. The novelty of the approach is the
development of algorithms that allow the ability to autonomously
follow a patient while accurately estimating stride length during
straightwalking, including a visual feedback of gait. In addition to a
new, parcimonial and robust path generationmethod from human
motion estimated from a noisy low-cost sensor, the use of state-
of-the art mobile robotics path planning, path recovery and visual
servoing approaches has been validated in a different context
compared to previous methods. Finally, a newmethod to estimate
human stride length from a mobile platform has been developed
and has proven to be robust to noise and odometry inaccuracy.

Consequently, this paper is organised as follows: Section 2
presents a low-cost platform and its hardware components.
Tracking of the person and the associated visual servoing and path
construction and following are discussed in Section 3. The strategy
used to estimate the stride length is detailed in Section 4. The last
section discusses the experimental validation in the real-clinical
assessment condition using a stereophotogrammetric system as a
gold standard measurement tool.

2. Hardware

The low-cost mobile gait analysis platform was implemented
on an experimental mobile robot shown in Fig. 1. The mobile
robot is based on a generic differential drive mobile platform
with two propulsive wheels and one castor wheel (Pioneer 3DX
robotic platform). A Kinect sensor, which provides colour and
depth imageswith 640×480 resolution,wasmounted horizontally
on amast at a tunable height thatwas selected to be approximately
at the subject’s pelvis height. Under ideal conditions, the resolution
of the depth information can be approximately 3 mm [27]. In
general, the further the Kinect sensor is from the object tomeasure,
the less accurate the depth map obtained. To measure the trunk
and heel positions with the best accuracy and to account for the
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Fig. 1. Detail of the proposed system and experimental setup.
vertical field of view of the Kinect sensor (48.6°), the desired
distance Pd between the person and the robot (see Fig. 1) is chosen
to be between 1.2 and 1.7 m depending on the subject’s height.

The maximal sample rate of the Kinect sensor is 30 Hz for both
the colour and depth cameras; unfortunately, this frequency rate is
not constant. Consequently, all Kinect sensors and robot data were
time stamped. Thus, all data were interpolated using a first-order
approximation to a fixed sample rate of 30 Hz.

The absolute tilt orientation of the Kinect sensor, which is
mechanically kept fixed during all experiments, was computed
using the accelerometer embedded in the Kinect sensor. A pan
mechanismused to decouple the patient tracking and robotmotion
has a range of 180° and was initialised to a value of zero.

Person following began by the selection of the target of interest
located on the lower trunk. The chosen target, the logo of Mont-
pellier city, was attached to the body segment using double-sided
tape. The subject 3D position, Pg , in the global system of reference
needs to be estimated. The global system of reference is defined as
the frame attached to the robot in the first sample. This estimate
can be obtained using available data from the Kinect, i.e., in the
Kinect local frame, the current pan servo angle, and the robot lo-
cal odometry. Using these quantities, the so-called direct kinematic
can be used to obtain the subject 3D position:

Pg (t) =
gTr (ψ (t) , Xr (t) , Yr (t)) rTs sTk(θs(t))Pk(t) (1)

where Pk is the 3D position vector of the subject in the Kinect sen-
sor frames. The transformation matrices, gTr , rTs, sTk, account for
rotations and rigid transformations from the robot to the global
frame, from the pan servo to the robot, and from the Kinect sen-
sor to the pan servo frame, respectively. (ψ, XrYr) are the instan-
taneous robot orientation and linear displacement following the X
and Y initial axes. θs is the instantaneous pan servomotor support-
ing the Kinect sensor. An overview of the system softwaremodules
that will be detailed in the next sections is shown in Fig. 2. The sys-
tem consists of three main parts. The visual-servoing indicated in
blue (Fig. 2) displays an estimate of the 3D patient position in the
global system of reference. The green colour represents the defini-
tion of the robot trajectory and path from the 3D patient position.
Finally, an off-line software module, which is highlighted in red in
Fig. 2, is used to estimate the stride length.
3. Patient tracking algorithms

3.1. Visual servoing

This section describes the visual-servoing part highlighted in
blue in Fig. 2. Both the colour and depth images from the Kinect
sensor are calibrated to reduce distortion and to obtain the intrinsic
parameters to accurately map the depth and colour pixels. To
achieve this purpose, the toolbox developed by Herrera et al. [28]
was used to obtain the Kinect sensor-specific parameters.

Next, we obtained reliable depth and colour maps to track the
subject 3D position. Generally, to detect a human using a Kinect
sensor, the first approach is to use background subtraction meth-
ods. Unfortunately, this type of approach is not appropriate in
our situation because the background is continuously changing.
As stated in the Introduction, the algorithms provided by Mi-
crosoft [29] for automatic subject detection and tracking based on
the depth map were tested. However, in our application, the robot
was mainly moving in a narrow corridor and the Kinect pan rota-
tion could be very fast during the turning parts. Because the clin-
icians could surround and/or be in contact with the subject, these
algorithms were not able to satisfactorily detect and track the sub-
ject. The subject’s clothes, i.e., colour and texture, were also used
in the human following task [16,17]. Despite good robustness, such
approaches were not very accurate due to the size of the pattern of
interest. A simple 3D centroid trajectory as a variable to locate the
subject appears to be more suitable. In addition, the lower trunk
area, which is closely related to the subject’s centre of mass dur-
ing walking, is a variable of interest in clinical applications, and its
assessment has been the objective of numerous studies [5,9]. For
these reasons, a target was attached to the lower trunk of the sub-
ject (see Fig. 1). The chosen target is a unique pattern and is sim-
ilar to the patterns used in enhanced reality applications. Due to
the specificity of the pattern, its tracking is easier and the risk of
a mistake with other elements of the environment was reduced in
contrast, for example, to the red patch associated with a blob ex-
pansion method.

Because the robot needs to follow a target attached to an os-
cillating human segment and in various environments such as a
corridor or bay windows, robustness to illumination, occlusion
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Fig. 2. Overview of the system software modules proposed for patient following and for the stride length estimate.
and scale and orientation change are challenging. In addition, as
presented by Papadourakis and Argyros [30], the majority of the
short-term object tracking algorithms in the literature assume no
complete occlusion or disappearance of the tracked object, as is
the case in our application. Recently, Kalal et al. [31] proposed the
so-called Tracking Learning Detection (TLD) framework, which is
designed for long-term tracking of unknown patterns in a video
stream. This framework, which is based on learning frame-by-
frame, proposes to re-initialise the tracker after a complete oc-
clusion. The first element of the TLD framework is the short-term
tracker, which estimates the object’s motion between consecutive
frames under the assumption that the motion between consecu-
tive frames is limited. The tracking component of the TLD is based
on the median-flow tracker [31], which estimates displacements
of a number of points using a Lucas–Kanade tracker [32], which is
contained in a bounding box used to represent the object. As pre-
viously stated, the tracker will never recover if the object disap-
pears from the image. To address this issue, a detector based on
the cascaded architecture [33] will treat each frame independently
and will perform a complete scanning of the image to localise all
appearances that have been observed and learned in the past. Fi-
nally, a dedicated machine-learning component, which has been
described in detail and analysed by Kalal et al. [31], observed the
performances of the tracker and detector and estimates their er-
rors to generate training examples. These examples will be used to
avoid these errors in the future. The learning component is based
on two ‘‘experts’’, which account for real and false positives inde-
pendently. The combination of the results of these two experts will
provide a more suitable database that can be used for the detector.
Importantly, the available version does not perform well on artic-
ulate objects, such as the human body.

Once the trunk pattern is located in the colour image, the
associated 3D position in the Kinect sensor frame is calculated. The
angle α, which is defined between the origin of the Kinect sensor
frame (see Fig. 1) and the subject position, is calculated from these
data as follows:

α = asin

Pkx
|P|


(2)

where Pkx and |P| are the position of the subject along the x-axis
and the absolute distance of the person in the Kinect sensor frame,
respectively.

The angle α was filtered using a recursive low-pass filter that
accounts for the Kinect sensor’s variable delay [33]. A control law
of the pan axis was developed to point the Kinect sensor towards
the tracked subject. A Proportional-Integral-Derivative controller
is used to control the pan servomotor (see Fig. 1) with αd = 0.
3.2. Path construction

This section discusses the first two blocks of the system
component that defines the robot trajectory highlighted in green
in Fig. 2. Navigation of the mobile robot in a real environment
while following a human target can be performed in very different
ways [24]. In this context, the human target will be a patient
suffering from a pathological disorder that affects his gait velocity,
so the patient’s perception of the environment and thus the
ability to avoid obstacles or walk in very narrow environments is
affected. Usually, walking tests are performed in motion analysis
laboratories [1,3], which reduce the number of steps that can be
analysed, or in a long straight corridor to observe the walking
phases at a constant velocity [2]. For these reasons, it is reasonable
to suppose that the environment in which the walking task will
occur will be relatively free of obstacles and consists of long
straight lines. To reduce the cost of the mobile platform, we
selected to not use any external sensor, such as laser range or
ultrasound sonar, for obstacle avoidance but to simply suppose
that, by definition, the path followed by the patient is free of
obstacles. Obviously, if needed, obstacle avoidance functionality
can be added in future versions.

Nevertheless, due to the specific dynamics of the mobile robot,
mainly the effect of its mass and its inertia in decelerating while
turning, and of the measurement noise in the Kinect sensor, it is
not appropriate to update the path at each sample of time without
filtering. Indeed, taking into account all of the measurements
will result in numerous small variations in the path that the
robot will have to follow. The error and delay in the following
path will accumulate and may result in erratic behaviour. This
challengewas addressed by creating a circular area around the first
subject position determined in the global system of reference, as
represented in Fig. 3. The diameter of this circular area was set
based on field experiments to CD = 0.5m. A new point in the path,
i.e., a new circular area, will be created when three consecutive
measurements are obtained outside of this initial circular area. This
allows for a dramatic reduction in the number of points in the path.
The obtainedpath is then filtered using a discrete time, linear state-
space Kalman filter in which the state is expected to be constant.
In this case, the retained Kalman filter acts as a low-pass filter to
reduce the Kinect sensor noise effect but with a reduced offset.

The patient position in the global system RG of reference was
estimated, even if it is not always taken into account in the path
construction, at each sample time using the Kinect sensor and the
robot local odometry information. The coordinates of the patient
position in the colour image provided by the TLD algorithm were
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Fig. 3. Principle of path construction using the circular area and Kalman filtering.
used in combination with the calibrated depth map to obtain the
3D patient position in the Kinect sensor system of the reference
RK . The patient position was then expressed in the RG frame using
transformation matrices (see Section 2) accounting for the Kinect
sensor pan angle and current robot absolute pose ψ .

A second Kalman filter, based on a double integrator, assuming
a constant speed of the subject, was implemented in the case
of patient loss. The Kalman filter predicts the 2D location of the
subject based on previous states, and if the subject is detected
at the current time step, then its location is used to correct the
states. On the basis of this prediction, the robot will continue to
follow the path for a maximal time of 2 s. This value, which is
derived from field experiments, appears to be a good compromise
between safety and robot autonomy and is, for instance, sufficient
for door passing or occlusion due to person passing between the
robot and patient. Indeed, the maximal expected velocity of the
patient would be approximately 1 m s−1.

3.3. Path following

This section concerns the two last blocks of the system part
defining the robot trajectory highlighted in green in the system
overview in Fig. 2. The solution to the problem of path following
admits an intuitive explanation: a path following controller should
look at (i) the distance from the vehicle to the path and (ii) the angle
between the vehicle velocity vector and the tangent to the path
and should reduce both to zero. This motivates the development
of the kinematic model of the vehicle in terms of a Serret–Frenet
frame {F} that moves along the path; {F} plays the role of the body
axis of a path following target, located on the path according to
the curvilinear abscissa s, which should be tracked by the vehicle.
Using this set-up, the abovementioned distance and angle become
the coordinates of the error space (s1, y1, θ), where the control
problem is formulated and solved, according to Fig. 4, and is
expressed in Eq. (3).
ṡ1 = −ṡ · (1 − c · y1)+ u · cos(θ)
ẏ1 = −c · ṡ · s1 + u · sin (θ) (3)
ω = r − c · ṡ
where c designates the local curvature of the path in s, and θ is the
relative angle between the path and the robot, i.e., θ = ψ − ψF
and ω = θ̇ . For a detailed derivation, the reader is invited to refer
to Lapierre et al. [34]. The system can be velocity controlled, i.e., the
control inputs are (u, r), where u is the forward velocity and r the
rotational one. Equivalently, the control expression can consider
the wheel velocities as control inputs, i.e., (wleftwright), with the
following relationship:

wleft =
1
R

· (u − L · r)

wright =
1
R

· (u + L · r) (4)
Fig. 4. Path following problem formulation.

where R is the wheel radius and L is the half distance between
the wheels along their axis. Using this framework, the path fol-
lowing solution is to design a kinematic control law, in terms of
(wleftwright , ṡ), which asymptotically and uniformly drives the uni-
cycle robot to the path, with a desired arbitrary forward veloc-
ity profile ud. This approach decouples the heading control from
the forward velocity, differing from the trajectory control approach
where both the kinematic variables u and r are coupled. This ad-
vantage will be used in the sequel to design an explicit control for
the forward velocity u to warrant the respect of a desired distance
between the system and patient.

We introduce the approach angle δ = −θA · tanh (kδ · y1),
where kδ is an arbitrary positive gain, and θA defines the asymp-
totic desired approach,which defines the approach anglewhen |y1|
is large. Traditionally, θA = π/2, which indicates that the system is
driven to the path with a relative incidence of π/2, i.e., perpendic-
ular to the path. Next, as shown in Lapierre et al. [34], the following
control law solves the path following problem:

ṡ = u · cos θ + Ks · s1

rPF = δ̇ − K1 · (θ − δ)+ c · ṡ (5)

where K1 and Ks are arbitrary positive gains, and ud is an arbitrarily
chosen positive. The reader is invited to read Lapierre et al. [34] for
the complete proof, extension to dynamics and robustness. The for-
ward velocity control has to insure that a desired distance between
the system and the patient is maintained, extending the previous
path following the solution to trajectory tracking [35]. The cur-
rent distance between the robot and patient is estimated using the
Kinect sensormeasurement P , as defined in Fig. 1. The convergence
of P to Pd is performed using a Proportional-Integral controller.
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4. Stride length estimate

This section concerns the off-line estimate of stride length,
which is represented in red colour in Fig. 2. In this section, the
recorded raw data from the Kinect sensor, servo pan angle and
robot local odometry were used to track two unique targets in the
global system of reference, size 0.08 × 0.08 m, which is located
on the subject’s heels as represented in Fig. 1. The TLD algorithm
was run off-line using the recorded colour image to track these two
targets. Matchingwith the calibrated depthmapwas subsequently
performed to obtain heel 3D positions in the Kinect sensor frame.
For depth images that are very noisy, erosion anddilation [36]were
used to reduce noise, and a hole filling strategy was used in the
case of missing data. This procedure simply requires calculating
the mean value of the pixels surrounding the hole. In case of
an absence of data in the area of interest, missing data were
labelled as such. These positions were then calculated in the
global system of reference using the direct kinematic model of the
robot. This finding indicates that in addition to the Kinect sensor
measurement, error-prone local odometry of the mobile platform
is required. However, because the stride length analysis is relative
from one stride to another, which occurs in a straight line, and the
duration is approximately one second, this error can be neglected.
The eventual gaps created by the labelled missing data were
automatically filled using a classical cubic spline interpolation
method [37].

The automatic stride length estimation is crucial in the objec-
tive of optimising the time of the clinicians. In motion analysis, lit-
erature stride length estimation is generally performed using peak
detection methods [4,6], which mainly require an accurate detec-
tion of heel strike events. In our application, due to the flickering
noise and the maximal frame rate of 30 Hz of the Kinect sensor, it
is difficult to accurately identify heel strike events. Consequently,
the mean value position of the foot during stance, which is not
supposed to vary, was used instead of heel strike events. First, the
heel positions in the subject plane were calculated using principal
component analysis to determine the Antero-Posterior axis (AP),
i.e., the forward progression axis of the subject. Second, as illus-
trated in Fig. 5(a), the derivative of the foot displacement along the
AP axiswas used to detect themaximal signal peaks corresponding
to the change in direction during the foot flying phase. The index
of all points present consecutive to these peaks and that are below
an experimentally chosen threshold, set to Th = 0.15 m s−1, were
selected because they correspond to the foot stance. The position
of the heel was then calculated by grouping and averaging the cor-
responding values of the foot displacement along the AP axis as
illustrated in Fig. 5(b).

5. Lower limb joint angles estimate

Lower limb joint angles are of interest in the case of a biome-
chanical analysis of human gait [1]. At a more macroscopic level,
lower-limb joint coordination during gait can be used to quantify
the deficit and gait adaptation of different populations, such as an
elderly [38] or Parkinsonian patient [39,40]. For the latter popula-
tion, motion analysis techniques have been used to determine the
effect of the levodopa [40] drug on the lower-limb joint range of
motion. In this context, it is important to provide accurate infor-
mation of the lower-limb joint angles.

As represented in Fig. 6, 3D trajectory of the heels and trunk can
be assessed easily using the proposed system. These trajectories
represent five steps obtained during a straight walking condition.

Starting from the 3D world marker trajectories, an offline in-
verse kinematics module was developed to estimate the joint an-
gles of a six degrees-of-freedom floating base lower-limb model
Fig. 5. Identification of the stride length based on the estimated foot displacement
along the AP axis (FAP ). (a) The derivative of the FAPwas used to detect themaximal
peaks and points corresponding to the foot stance between two consecutive
maximal peaks selected if below threshold Th .

Fig. 6. Representative results depicting the ability of the proposed system to
estimate the 3D position of the patient trunk (blue line), right heel (green line),
and left heel (red line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(see Fig. 7). The following joint angles were estimated: adduc-
tion/abduction (q1, q4) of and flexion/extension (q2, q5) of the hips
and flexion/extension of the knees (q3, q6) because they are the
most often reported in gait analyses [1]. The basis of the model is
located at the centre of the pelvis marker. Consequently, the left
(PLmes) and right (PRmes) foot 3D positions were calculated in the
lower-limb system of reference, which was attached to the pelvis
marker via a rigid transformation. This has the advantage, similarly
to the stride length estimate, of avoiding drift in the robot’s odom-
etry, which occurs over an extended period of time.

The inverse kinematics module is based on the so-called global
optimisation method [41]. The principle of this inverse kinematic
module is to identify the joint angle vector q that minimises the
total least-squares difference, J , between the measured positions
of themarkers and their estimates in the lower-limbmodel system
of reference. In the literature, this problem is often solved at each
time sample. Due to the noise in the Kinect sensor, the following
cost function is solved for all of the collected samples of time N:

J =
1
N

N
i=1

(PLmes(i)− PRest(q(i)))2 + (PRmes(i)− PRest(q(i)))2 (6)
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Fig. 7. Six-degrees-of-freedom model of the locomotor system. The subject is
viewed from the back.

where PRest and PLest are the right and left estimated foot positions
from the direct forward kinematic model. The direct kinematic
forward is a function of the joint angles and of the segment lengths
that were measured a priori on the subject.

Biomechanical constraints, which state that the joint angle
limitations and joint velocities should bewithin their physiological
boundaries, were used to reduce the search space and to provide a
feasible solution.

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max (7)

where qmin, qmax, q̇min, q̇max and are the minimal and maximal
boundaries of the joint angles and joint velocities, respectively.

This optimisation problem was solved numerically using
a gradient-based non-linear constrained sequential quadratic
programming method [42].

6. Experimental validations

Two sessions of experiments were performed with young
healthy subjects as described in Fig. 8. The first experiment focused
on the system tracking, stride length accuracy evaluation and joint
angle estimate using a stereophotogrammeteric system, which
is considered to be a gold standard evaluation tool. The second
set focused on the adaptive person following algorithm in a real
environment.
6.1. Performance analysis using the gold standard method

One volunteer (1.70 m, 65 kg, 27 years) participated in the
double performance evaluation of (i) the patient tracking and
(ii) evaluation of the accuracy in the stride length estimate. Two
retro-reflective markers were located on each subject’s heels and
on his trunk, and fourmarkerswere used to locate the centre of the
mobile robot as indicated in Fig. 1. The 3D trajectories of themark-
ers were recorded using an eight-camera stereophotogrammetric
system (MX-13, VICON©) sampled at 100 Hz. The capture volume
was approximately 5× 3 mwith 1 mm accuracy in estimating the
individual marker locations.

(i) In the first experiment, the person was instructed to walk
naturally around the capture volume during 180 s. The desired
norm of the distance between the subject and robot was set to
Pd = 1.550 m to visualise the heels and trunk in the same image.

Fig. 9(a) superimposes the trajectory of the robot and of
the subject as recorded using the VICON stereophotogrammetric
system. Despite overshooting in the path following, due to the very
frequent changes in subject direction imposed by the relatively
small capture volume of the stereophotogrammetric system, the
robot was able to reproduce the desired path without losing the
subject. The subject travelled a total path of 45.03 m, and the
robot travelled 43.38 m. The norm of the distance between the
subject and robot is presented in Fig. 9(b). The correspondingmean
distance between the patient and robot was 1.57 ± 0.14 m. The
important standard deviation value is mainly due to the starts
and stops of the subject during the turning parts. Indeed, the
presented data corresponded, due to the relatively small capture
volume imposed by the stereophotogrammetric system, to the
worst scenario in subject tracking. This value is expected to be
largely smaller when walking straight.

(ii) The second experiment was designed to assess the accuracy
of the proposed system in estimating the stride length. The sub-
ject was asked to walk straight in the diagonal of the capture vol-
ume. Consequently, five strides per side were recorded. The stride
lengths estimated using the stereophotogrammetric system were
compared with the stride lengths estimated using the proposed
approach. Representative trajectories of the robot and subject are
shown in Fig. 10; the corresponding distance between the robot
and the subject was 1.57 ± 0.03 m. As expected, the standard de-
viation was lower when the robot did not have to brake and/or
turn. Table 1 summarises the results for the stride length estimate.
Table 1 shows the comparative results between the estimation of
the stride length as estimated using the stereophotogrammetric
system and the proposed system. The absolute difference between
these two stride estimations, e, is lower than 0.022 m or 2% when
normalised by the total stride length. Despite the few analysed
strides, one can see that the method is reliable with a standard de-
viation of a fewmillimetres. These values are on the same order of
magnitude compared to previous studies related to the step length
Fig. 8. Experimental procedures used for validation of the proposed system.



V. Bonnet et al. / Robotics and Autonomous Systems 66 (2015) 116–128 123
Fig. 9. Experimental results showing the robot and subject path as measured by the stereo-photogrammetric system during a square walk around the capture volume (a)
and the absolute distance between the patient and robot (b).
Fig. 10. Experimental results showing the robot and subject path as measured
using the stereophotogrammetric system during straight walking.

estimate [4]. For example, Köse et al. recently used one IMU to esti-
mate the step length [6] and reported an accuracy of 1.1% or 0.009
m. Their approach, despite its ease of use, is still limited to normal
walking because it is strongly dependent on the signal characteris-
tics due to the heel strike detection events and IMU signal integra-
tion. Other studies have proposed to usemultiple calibrated Kinect
sensors, which is similar to the stereophotogrammetric system,
that implies a reduced capture volume [43]. The reported accuracy
was 0.026±0.024m. In addition, this approach can result in some
of the Kinect projected pattern interaction problems and may re-
quire a fine calibration phase. Finally, a reference study on Parkin-
son’s disease [44] compares different spatio-temporal parameters
with healthy subjects. The patient’s average stride length was 0.96
m, while the normal walking was on average 1.31 m. This differ-
ence was superior to the accuracy of the proposed system, which
could easily distinguish between the different types of walking.

(iii) The third experiment consisted of asking two volunteers
(1.6 m, 50 kg, 22 years) to walk 30 s on a treadmill at their pre-
ferred velocity to simulate overground walking. Indeed, kinematic
differences between overground and treadmill walking have been
shown to be minimal [45]. In addition, treadmill walking was se-
lected due to the difficulty inmeasuring 3D lower-limb joint angles
Table 1
Stride length error (e) obtained over 5 strides.

e (m) e (%)

Right 0.022 ± 0.0072 2.0
Left 0.021 ± 0.0085 1.9

Table 2
Results (mean±SD) of the comparison between the hip and knee angles (Fig. 7) as
obtained using the Kinect data and the proposed inverse kinematic technique and
stereophotogrammetry during treadmill walking.

RMS (°) CC

Hip abd/abb Left (q1) 2 ± 0.6 0.65
Right (q4) 2 ± 0.4 0.71

Hip flex/ext Left (q2) 4 ± 1.1 0.88
Right (q5) 5 ± 1.2 0.75

Knee flex/ext Left (q3) 8 ±1.1 0.88
Right (q6) 8 ± 1.6 0.86

during straight walking over an extended period of time using the
available stereophotogrammetric system. Sixteen retro-reflective
markers were located on the anatomical landmarks of both legs
following the marker placements as described in the Plug-in-Gait
template (MX-13, VICON©). The biomechanical referenceOpensim
software from Stanford University [41]was used to perform the in-
verse kinematics of the same kinematic model described in Fig. 7.

The mean Root Mean Square (RMS) difference and Pearson’s
correlation coefficient (CC) between the corresponding joint angles
obtained using the stereophotogrammetric system and proposed
system were used to perform the accuracy analysis (Table 2). As
observed from Table 2, the RMS is lower than 10° for all joints
with a high correlation between the joint angles. The maximum
difference is observed at the knee joint level. This is due to the large
motion amplitude (mean 90° ± 6°).

Representative comparative results obtained from one ran-
domly chosen trial are shown in Fig. 11. As shown in this figure,
a consequential part of the RMS difference is due to the low and
variable sampling frequency of the Kinect sensor and of its resam-
pling to a constant frequency. Nevertheless, the temporal features
within the joint angles estimated using the proposed approach are
well respected, as are the amplitudes of the joint angles.

These preliminary results are very encouraging because they
are within the range of the inter-assessor accuracy. Benedetti
et al. [46] have shown that when different assessors and/or pro-
tocols are involved for gait analysis, the differences in joint angle
estimations were up to 11° for the hip and 6° for the knee. In this
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Fig. 11. Representative results obtained for the left leg joint angles for one
trial: the black and grey lines indicate the joint angles calculated using the
stereophotogrammetric data and Kinect data (zoom-in 8 s).

Fig. 12. Schematic view of the track used to validate the system in a real
environment.

context, we believe that the proposed approach should be suffi-
ciently accurate to assess or at least interpret the different patterns
and strategies used by patients. However, an RMS error of nearly
10°will not, for example, enable the performance of satisfactory in-
verse dynamics for an accurate joint torque estimate [1] or quantify
very accurately the small inter-subject variability observed during
gait.

6.2. Field validation

To confirm the use of our system in a real environment, two
experimental validations were performed. The first experiment (i)
assessed the ability of the system to function under conditions sim-
ilar to the clinical real environment, while the second experiment
(ii) was dedicated to demonstrating the ability of the system in re-
covering and predicting from patient visual loss.

(i) A volunteer (1.75 m, 60 kg, 25 years) was asked to walk in a
corridor and started towalk froma standing positionwith his heels
aligned to the start line. The corridor was 1.5 m wide on average,
239 m long and consisted of four straight lines and four corners.

On one of the straight lines, a landmark on the floor indicated
to the subject that he had to simulate freezing (step-in-place)
for approximately 3 s. The objective was to assess the ability of
the mobile robot to suddenly stop at a desired distance behind
Fig. 13. Robot path during the person-following experiment in a real clinical
environment. The numbers indicate the path point numbering.

the patient. A second straight line was equipped with adhesive
tape, which was attached to the floor, to constrain the subject to
perform a 1-m stride length for 5 m. Illumination changes were
also considered to make the experiment more challenging and
closer to reality. To achieve this purpose, the first straight part was
performed in a corridor consisting of a bay window on one side.
The other corridors were composed of neon lights and one glass
door. The experimental setup is represented in Fig. 12.

The actual path of the subject, as calculated from the Kinect sen-
sor and robot local odometry, is shown in Fig. 13. The completion
of this path lasted for 300 s. As expected, due to geometrical inac-
curacies such as the diameter of the wheels or sliding of the robot
onto the floor, the absolute position of the patient is incorrect. This
localisation problem is classical in mobile robotics and can be ad-
dressed using the Kinect sensor-based SLAM method [19]. Nev-
ertheless, the goal of this paper was not to localise the absolute
position of a patient in the laboratory but to analyse the rela-
tive (step-to-step) walking spatio-temporal parameters and these
straights lines as performed in the clinical assessment. Within our
framework, only straight lines, which were easy to extract from
robot local odometry, would be analysed. This approach will con-
front eventual challenges that will be encountered while using the
SLAM method in an open environment. It is also possible to imag-
ine that the walking task will take place on a predefined path. In
this case, the local odometry can be readjusted a posteriori.

As shown in Fig. 13, it is possible to isolate the parts where
the subject was walking straight and where the robot’s odometry
errors are supposed to be minimal. As represented in Fig. 14,
tracking of the heels and trunk of the subject can be run on these
straight lines to estimate the spatio-temporal parameters.

The position of the robot along its x-axis (forward progression)
when the patient performs the first freezing-like event (step-in-
place) is shown in Fig. 15. From this figure, it is trivial to provide
to the clinician an indication on the potential presence of gait
freezing. The video feedback will then be essential to allow the
clinicians to validate this detection. Future studies will focus on
validating the detection of gait freezing based on this approach
with patients who suffer from Parkinson’s disease.

Table 3 summarises the results concerning the evolution of the
stride length three strides before andduring the constrainedpart of
the path. Form this table, clear differences were observed between
the unconstrained and constrained part of the path. The average
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Fig. 14. Tracking of the heels and trunk of the subject using the TLD algorithm in a corridor.
Table 3

Right side (m) Left side (m)

Unconstrained strides Stride-3 0.690 0.810
Stride-2 0.782 0.726
Stride-1 0.723 0.776

Constrained strides (1 m) Stride 1 0.985 0.988
Stride 2 1.015 0.961
Stride 3 0.920 1.070
Stride 4 0.940 0.946
Stride 5 1.044 0.930
Mean 0.980 ± 0.051 0.979 ± 0.055

stride lengths during the constrained part were 0.980 ± 0.051 m
for the right and 0.979 ± 0.055 m for the left side. Importantly,
the observed difference is a combination of the actual system error
and of the inability of the subject to precisely perform a 1 m stride
length. The absolute error to consider is the one calculated in
Section 6.1, where the gold standard measurement was used.

(ii) To demonstrate the ability of the system to recover from
subject loss, the following experimentation was performed. A vol-
unteer was asked to walk normally when a second person was
passing in between the robot and the subject to interact with the
subject as in the case of a patient and their clinicians. The occlu-
sion of the subject lasted for approximately 1.2 s. The snapshot
presented in Fig. 16, which was recorded from the Kinect sensor,
attests to the subject loss. The blue rectangle represents the out-
put of the TLD tracking algorithm. As presented in Section 3.2, a
Kalman filter was used to predict the trajectory of the subject up
to 2 s. Fig. 17 shows the associated robot and subject trajectory as
estimated using the Kalman filter.

7. Conclusions

In this study, we presented a new low-cost mobile gait analysis
platform that is able to provide video feedback recorded at a con-
stant distance and accurate stride length estimate to clinicians. The
provided experimental results relative to stride length estimation
Fig. 15. Representative results showing the robot forward progression before and
after the freezing-like event during straight walking.

showperformances thatwere consistentwith othermethods using
IMU or multiple Kinect sensors during straight walking. The accu-
racy of the stride length estimate, which is lower than 2.5 cm, will
be sufficient in several clinical applications. However, the relatively
low Kinect sensor sampling frequency will not permit the study of
very small temporal variability in gait events. Nevertheless, even
if this variable became popular, it is still confined to clinical re-
search and has not, to the best of our knowledge, found a practical
application in daily rehabilitation. As shown in Table 2, the pre-
sented system was able to differentiate between constrained and
unconstrained stride lengths. This opens very promising perspec-
tives in gait freezing assessment in Parkinson’s disease patients.
As previously discussed, due to its high variability, the detection
of gait freezing is hardly achievable using only sensor data [47]. As
exemplified by Fig. 15, freezing can be detected using the forward
progression of the robot. However, such stops can also occur for
other reasons, including door passing or a simple patient stop. In
any case, the system will provide event information to the clini-
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Fig. 16. Snapshot of the Kinect sensor colour camera during the experiment to demonstrate the ability of the system to recover from the subject loss. The blue rectangle
represents the output of the TLD algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Experimental results showing the subject and robot path as estimated by
the proposed system. The black lines indicate the prediction of the subject motion
performed using the Kalman filter during occlusion of the trunk target.

cian that is synchronised with the video timeline. The final classi-
fication of the event being made by the clinician is helped by the
step length estimate and video feedback. Importantly, the system
was validated in experimental conditions that were fairly similar
to those that will be encountered in clinical environments. Conse-
quently, errors collected during the real clinical assessment would
be of the same order of magnitude as those presented for healthy
walking. In the near future, the system will be validated over a
large number of Parkinson’s disease patients in a clinical centre.
The threshold parameter of the step length estimate algorithm, Th,
may have to be tuned for the patient’s specific walking, as is the
case with any gait analysis system used for different populations.
Additional gait parameters, such as medio-lateral step width, 3D
trunk trajectory or gait events, can also be easily calculated using
the presented system.

As experimentally shown, the retained path planning and the
reactive control of the distance between the robot and subject are
suitable for the indoor analysis of gait, including relatively narrow
corridors. The use of the TLD algorithm in combination with depth
information provided by the Kinect sensor to track a subject and
his/her heels, previously equipped with targets, from a mobile
robot is relevant due to its robustness and its ability to recover from
subject loss. Subject loss will be unavoidable while walking in a
real environment, for instance, while turning in a corridor. For this
purpose, the proposed system is to use a Kalman filter to predict
the subject trajectory and to help position the robot and Kinect
sensor at a relevant distance for the subject.

Positioning the Kinect sensor in a vertical manner will allow
a size reduction of the targets located at the trunk and heels.
Additional targets could also be located on the lower limbs of
the subject. Analysis of their deformations in combination with
the Kinect sensor data and TLD algorithm outputs should provide
accurate information regarding the 3D position of each lower-limb
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segment. The preliminary results demonstrate an RMS difference
that is inferior to 10° for joint angle estimates of a simplified
model of the locomotor system (Fig. 7), which supports further
development of a mobile low-cost humanmotion analysis system.
At the time when this manuscript was prepared, the Kinect 2 was
not available. However, announcements were made regarding the
possibility of obtaining high definition of colour and depth images.
This will, without a doubt, improve the global accuracy. This more
accurate information will be of great help to implement the Kinect
sensor-based SLAM method to improve the estimate of subject
absolute position and to reduce local robot odometry errors. Future
studies may also benefit from the advantage of this accuracy
improvement by avoiding patterns and only directly using the
amer located on the subject, i.e., clothes or skin landmark, or at
least to dramatically reduce their size. Finally, a real-time estimate
of the stride length may allow us to pilot more interactively
auditory or visual stimuli [48] based on stride length variability.
Indeed, these types of cues have been shown to have an effect on
gait freezing [48].
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