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SUMMARY

A new type of control law is derived to steer the dynamic model of a wheeled robot of unicycle type along a
desired path. The methodology adopted for path following control deals explicitly with vehicle dynamics
and plant parameter uncertainty. Furthermore, it overcomes stringent initial condition constraints that are
present in a number of path following control strategies described in the literature. This is done by
controlling explicitly the rate of progression of a ‘virtual target’ to be tracked along the path, thus
bypassing the problems that arise when the position of the virtual target is simply defined by the projection
of the actual vehicle on that path. In the paper, a nonlinear adaptive control law is derived that yields
convergence of the (closed-loop system) path following error trajectories to zero. Controller design relies
on Lyapunov theory and backstepping techniques. Simulation results illustrate the performance of the
control system proposed. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of motion control of autonomous vehicles (including air, land, and marine robots)
has received considerable attention during the last few years. The problems addressed in the
literature can be roughly classified in three groups:

1. point stabilization}the goal is to stabilize the vehicle at a given point, with a given ori-
entation;
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2. trajectory tracking}the vehicle is required to track a time parameterized reference, and
3. path following}the vehicle is required to converge to and follow a path, without explicit

temporal specifications.

Point stabilization presents a true challenge to control system designers when the vehicle has
nonholonomic (or nonintegrable) constraints, since there is no smooth (or even continuous)
state-feedback law that will yield stability, as pointed out by Brockett [1]. To overcome this
difficulty three main approaches have been proposed: smooth time-varying control laws
[2–4] and discontinuous as well as hybrid feedback laws [5–9].

The trajectory tracking problem for fully actuated systems is now well understood and sat-
isfactory solutions can be found in advanced nonlinear control textbooks. However, in the case
of underactuated vehicles, that is, when the vehicle has less actuators than state variables to be
tracked, the problem is still a very interesting topic of research. Linearization and feedback
linearization methods [10, 11], as well as Lyapunov-based control laws [2,12] have been
proposed.

Path following control has received relatively less attention than the other two problems. See
the publications of Samson and Ait-Abderrahim [13] and Micaelli and Samson [14] for
pioneering work in the area as well as Canudas de Wit et al. [2] and Jiang and Nijmeijer [15] and
the references therein. Path following systems for marine vehicles have been reported by
Encarnac-ão et al. [16, 17]. The underlying assumption in path following control is that the
vehicle’s forward speed tracks a desired speed profile, while the controller acts on the vehicle
orientation to drive it to the path. Typically, smoother convergence to a path is achieved, in
comparison with the performance obtained with trajectory tracking controllers, and the control
signals are less likely pushed to saturation.

This paper addresses the problem of steering the dynamic model of a wheeled robot of
unicycle type along a desired path. Its main contribution is twofold: (i) it extends the results
obtained in Reference [14]}for kinematic models of wheeled robots}to a more general setting,
in order to deal with vehicle dynamics and parameter uncertainty, and (ii) it overcomes stringent
initial condition constraints that are present in a number of path following control strategies
described in the literature. This is done by controlling explicitly the rate of progression of a
‘virtual target’ to be tracked along the path, thus bypassing the problems that arise when the
position of the virtual target is simply defined by the projection of the actual vehicle on that
path. This procedure avoids the singularities that occur when the distance to path is not well
defined and allows for a proof of global convergence of the actual path of the vehicle to the
desired path. This is in striking contrast with the results described in Reference [14] for example,
where only local convergence has been proven. To the best of the authors’ knowledge, the idea
of exploring the extra degree of freedom that comes from controlling the motion of a virtual
target along a path appeared for the first time in the work of Aicardi et al. [18] for the control of
wheeled robots. The circle of ideas exploited in Reference [18] was extended to deal with marine
craft control in Reference [19]. However, none of these references addresses the issues of vehicle
dynamics and parameter uncertainty. Furthermore, the methodologies adopted in References
[18, 19] for control system design build on an entirely different technique that requires the
introduction of a nonsingular transformation in the original error space. Interestingly enough, a
recent publication, by del Rio et al. [20] explores the same concept of a virtual target for path
following of wheeled robots.
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In this paper, controller design builds on the work reported in Reference [14] on path
following control and relies heavily on Lyapunov-based backstepping techniques established
by Krstić et al. [21] in order to extend kinematic control laws to a dynamic setting. Parameter
uncertainties are dealt with in an adaptive framework by augmenting Lyapunov candidate
functions with terms that are quadratic in the parameter errors. See Reference [5], where
identical techniques were used in the design of an adaptive control law to steer the dynamic
model of a wheeled robot to a point, with a desired orientation, in the presence of parameter
uncertainty.

The paper is organized as follows. Section 2 introduces the problem of path following control
for a wheeled robot of unicycle type. Section 3 develops a nonlinear, adaptive, path following
control law to deal with vehicle dynamics and parameter uncertainty. The performance of the
control system proposed is illustrated in simulation in Section 4. Finally, Section 5 contains the
conclusions and describes some problems that warrant further research.

2. PATH FOLLOWING CONTROL. PROBLEM FORMULATION

This section reviews the dynamic model of a wheeled robot and provides a rigorous formulation
of the problem of steering it along a desired path. The reader is referred to References [5, 14] for
background material.

The following assumptions are made regarding the robot, see Figure 1. The vehicle has two
identical parallel, nondeformable rear wheels which are controlled by two independent motors,
and a steering front wheel. It is assumed that the plane of each wheel is perpendicular to the
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Figure 1. Unicycle’s parameters and frame definitions.
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ground and that the contact between the wheels and the ground is pure rolling and nonslipping,
i.e. the velocity of the centre of mass of the robot is orthogonal to the rear wheels axis. It is
further assumed that the masses and inertias of the wheels are negligible and that the centre of
mass of the mobile robot is located in the middle of the axis connecting the rear wheels. Each
rear wheel is powered by a motor which generates a control torque ti; i ¼ 1; 2:

2.1. Kinematic equations of motion. The Serret–Frenet frame

The solution to the problem of path following derived in Reference [14] admits an intuitive
explanation: a path following controller should look at (i) the distance from the vehicle to the
path and (ii) the angle between the vehicle velocity vector and the tangent to the path, and
reduce both to zero. This motivates the development of the kinematic model of the vehicle in
terms of a Serret–Frenet frame fFg that moves along the path; fFg plays the role of the body
axis of a ‘virtual target vehicle’ that should be tracked by the ‘real vehicle’. Using this set-up, the
abovementioned distance and angle become the coordinates of the error space where the control
problem is formulated and solved. In this paper, motivated by the work in Reference [14],
a Frenet frame fFg that moves along the path to be followed is used with a significant dif-
ference: the Frenet frame is not attached to the point on the path that is closest to the vehicle.
Instead, the origin of fFg along the path is made to evolve according to a conveniently defined
function of time, effectively yielding an extra controller design parameter. As it will be seen, this
seemingly simple procedure allows to lift the stringent initial condition constraints that arise
with the path following controlled described in References [14]. The notation that follows is by
now standard. See for example References [13, 14].

Consider Figure 1, where P is an arbitrary point on the path to be followed and Q is the centre
of mass of the moving vehicle. Associated with P; consider the corresponding Serret–Frenet
frame fFg: The signed curvilinear abscissa of P along the path is denoted s: Clearly, Q can either
be expressed as q ¼ ðX ;Y ; 0Þ in a selected inertial reference frame fIg or as ðs1; y1; 0Þ in fFg:
Stated equivalently, Q can be given in ðX ;YÞ or ðs1; y1Þ coordinates (see Figure 1). Let the
position of point P in fIg be vector p: Let

R ¼

cos yc sin yc 0

�sin yc cos yc 0

0 0 1

2
664

3
775

be the rotation matrix from fIg to fFg; parameterized locally by the angle yc: Define oc ¼ ’yc:
Then,

oc ¼ ’yc ¼ ccðsÞ’s

’ccðsÞ ¼ gcðsÞ’s ð1Þ

where ccðsÞ and gcðsÞ ¼ dccðsÞ=ds denote the path curvature and its derivative, respectively. The
velocity of P in fIg can be expressed in fFg to yield

dp

dt

� �
F

¼

’s

0

0

2
664
3
775
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It is also straightforward to compute the velocity of Q in fIg as

dq

dt

� �
I

¼
dp

dt

� �
I

þR�1
dr

dt

� �
F

þR�1ðoc � rÞ

where r is the vector from P to Q: Multiplying the above equation on the left by R gives the
velocity of Q in fIg expressed in fFg as

R
dq

dt

� �
I

¼
dp

dt

� �
F

þ
dr

dt

� �
F

þoc � r

Using the relations

dq

dt

� �
I

¼

’X

’Y

0

2
664

3
775

dr

dt

� �
F

¼

’s1

’y1

0

2
664

3
775

and

oc � r ¼

0

0

’y ¼ ccðsÞ’s

2
664

3
775�

s1

y1

0

2
664

3
775

¼

�ccðsÞ’sy1

ccðsÞ’ss1

0

2
664

3
775

Equation (2) can be rewritten as

R

’X

’Y

0

2
664

3
775 ¼

’sð1� ccðsÞy1Þ þ ’s1

’y1 þ ccðsÞ’ss1

0

2
664

3
775

Solving for ’s1 and ’y1 yields

’s1 ¼ ½cos yc sin yc�
’X

’Y

" #
� ’sð1� ccy1Þ

’y1 ¼ ½�sin yc cos yc�
’X

’Y

" #
� cc’ss1 ð2Þ

At this point it is important to notice that in Reference [14] s1 ¼ 0 for all t; since the location of
point P is defined by the projection of Q on the path, assuming the projection is well defined.
One is then forced to solve for ’s in the equation above. However, by doing so 1� ccy1 appears in

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:000–000
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the denominator, thus creating a singularity at y1 ¼ 1=cc: As a result, the control law derived in
Reference [14] requires that the initial position of Q be restricted to a tube around the path, the
radius of which must be less than 1=cc;max; where cc;max denotes the maximum curvature of the
path. Clearly, this constraint is very conservative since the occurrence of a large cc;max in even a
very small section of the path only will impose a rather strict constraint on the initial vehicle’s
position, no matter where it starts with respect to that path.

By making s1 not necessarily equal to zero, a virtual target that is not coincident with the
projection of the vehicle on the path is created, thus introducing an extra degree of freedom for
controller design. By specifying how fast the newly defined target moves, the occurrent of a sin-
gularity at y1 ¼ 1=cc is removed . The velocity of the unicycle in the fIg frame satisfies the equation

’X

’Y

" #
¼ v

cos ym

sin ym

" #
ð3Þ

where ym and v denote the yaw angle of the vehicle and its body-axis speed, respectively.
Substituting (3) in (2) and introducing the variable y ¼ ym � yc gives the kinematic model of the
unicycle in the ðs; yÞ coordinates is given by

’s1 ¼ � ’s 1� ccy1ð Þ þ v cos y

’y1 ¼ � cc’ss1 þ v sin y

’y ¼om � cc’s ð4Þ

where om ¼ ’ym:

2.2. Dynamics. Problem formulation

The complete dynamic model of the unicycle is obtained by augmenting (4) with the equations

’v ¼
F

m

’o ¼ ’om � cc.s� gc’s
2 ð5Þ

where ’om ¼ N=I and m and I are the mass and the mass moment of inertia of the unicycle,
respectively. Notice how equation ’v ¼ F=m captures the fact that the motion of the unicycle is
along its longitudinal axis, in reaction to the longitudinal force F : This a consequence of the
common assumption that there is no slippage of the vehicle along its lateral axis (nonholonomic
constraint).

Finally, F and N can be rewritten in terms of the control inputs t1 and t2 as

F ¼
ðt1 þ t2Þ

R

N ¼
Lðt1 � t2Þ

R
ð6Þ

where R is the radius of the rear wheels and 2L is the distance between them.
With the above notation, the problem under study can be formulated as follows:
Given a desired speed profile vdðtÞ > vmin > 0 for the vehicle speed v; and a path to be followed

parameterized in terms of its length, derive a feedback control law for t1 and t2 to drive y1;
y; and v� vd asymptotically to zero in the presence of plant parameter uncertainties in m; I ;R;
and L:

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:000–000
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3. NONLINEAR CONTROL DESIGN

This section introduces a nonlinear closed-loop control law to steer the dynamic model of a
wheeled robot described by (4)–(5) along a desired path, in the presence of parametric uncer-
tainties by resorting to backstepping techniques. The reader will find in Reference [21] a lucid
exposition of interesting theoretical and practical issues involved in backstepping. See also
Reference [5] for related work on wheeled robot control in the face of parameter uncertainty.
Controller design unfolds in three basic steps where a sequence of Lyapunov functions are built
to deal with kinematics, dynamics, and parameter uncertainty in succession.

3.1. Nonlinear controller design using the kinematic model

The analysis that follows in inspired by the work in Reference [13,14] on path following control
for kinematic models of wheeled robots. Recall from the problem definition in Section 2 that
the main objective of the path following control law is to drive y1 and y to zero. Starting at the
kinematic level, these objectives can be embodied in the Lyapunov function candidate, see
Reference [14].

V1 ¼
1

2
ðs21 þ y21Þ þ

1

2g
ðy� dðy1; vÞÞ

2 ð7Þ

where it is assumed that

A.1. dð0; vÞ ¼ 0:
A.2. y1v sin dðy1; vÞ40 8y 8v:
A.3. limt!1vðtÞ=0:

In the V1 Lyapunov function adopted, the first term 1
2
ðs21 þ y21Þ captures the distance

between the vehicle and the path, which must be reduced to 0: The second term aims to
shape the approach angle y ¼ ym � yc of the vehicle to the path as a function of the ‘lateral’
distance y1 and speed v; by forcing it to follow a desired orientation profile embodied
in the function d: See Reference [13], where the use of a d function of this kind was first
proposed.

Assumption A.1 specifies that the desired relative heading vanishes as y1 goes to zero, thus
imposing the condition that the vehicles main axis must be tangent to the path when the lateral
distance y1 is 0: Assumption A.2 provides an adequate reference sign definition in order to drive
the vehicle to the path (turn left when the vehicle is on the right side of the path, and turn right
in the other situation). Finally, Assumption A.3 stated that the vehicle does not tend to a state
of rest. The need for these conditions will become apparent in the development that follows.
The derivative of V1 can be easily computed to give

’V1 ¼ s1’s1 þ y1 ’y1 þ
1

g
ðy� dÞð’y� ’dÞ

¼ s1ðv cos y� ’sð1� ccy1Þ � ’sccy1Þ þ y1v sin yþ
1

g
ðy� dÞð’y� ’dÞ

¼ s1ðv cos y� ’sÞ þ y1v sin dþ
1

g
ðy� dÞ ’y� ’dþ gy1v

sin y� sin d
y� d

� �

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:000–000
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Let the ideal (also called virtual) ‘kinematic control laws’ for s and y be defined as

’s ¼ v cos yþ k1s1

’y ¼ ’d� gy1v
sin y� sin d

y� d
� k2ðy� dÞ ð8Þ

where k1 and k2 are positive gains. Then,

’V1 ¼ �k1s21 þ y1v sin d�
ðy� dÞ2

g
40 ð9Þ

Note the presence of the term y1v sin d in the previous equation and how assumption A.2 is
justified.

3.2. Backstepping the dynamics

The above feedback control law applies to the kinematic model of the wheeled robot only.
In what follows, using backstepping techniques, that control law is extended to deal with the
vehicle dynamics. Notice how in the kinematic design the speed of the robot vðtÞ was assumed to
follow a desired speed profile, say vdðtÞ: In the dynamic design this assumption is dropped, and a
feedback control law must be designed so that the tracking error vðtÞ � vdðtÞ approaches zero.
Notice also that the robot’s angular speed om (or equivalently the variable ’y) was assumed
to be a control input. This assumption will be lifted by taking into account the vehicle
dynamics. Following Reference [21] define the virtual control law for ’y (desired behaviour of ’y
in (8)) as

z ¼ ’d� gy1v
sin y� sin d

y� d
� k2ðy� dÞ ð10Þ

and let e ¼ ’y� z be the difference between actual and desired values of ’y: Replacing ’y by eþ z
in the computation of ’V1 gives

’V1 ¼ �k1s21 þ y1v sin d�
ðy� dÞ2

g
þ
ðy� dÞ

g
e ð11Þ

Augment now the candidate Lyapunov function V1 with the terms e2=2 and ðv� vdÞ
2=2 to

obtain

V2 ¼ V1 þ 1
2
½e2 þ ðv� vdÞ

2�

with derivative

’V2 ¼ �k1s21 þ y1v sin d�
1

g
ðy� dÞ2 þ e

1

g
ðy� dÞ þ ’e

� �
þ ðv� vdÞð’v� ’vdÞ

Simple computations show that if

’e ¼ �
1

g
ðy� dÞ � k3e

’v ¼ ’vd � k4ðv� vdÞ ð12Þ

where k3 and k4 are positive gains. Then

’V2 ¼ �k1s21 þ y1v sin d�
1

g
ðy� dÞ2 � k3e2 � k4ðv� vdÞ

240 ð13Þ

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:000–000
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It is now straightforward to compute the control inputs F and N (and thus t1 and t2) by solving
the dynamics equation (5) to obtain

N ¼ Iðf1ð�Þ � k3eÞ

F ¼mðf2ð�Þ � k4ðv� vdÞÞ ð14Þ

where

f1ð�Þ ¼ ’z�
1

g
ðy� dÞ þ cc.sþ gc’s

2

f2ð�Þ ¼ ’vd

The above control law makes ’V2 negative semidefinite. This fact plays an important role in the
proof of convergence of the robot to the path.

3.3. Choice of the approach angle dðy1; vÞ and control computation

As explained before, the choice of the dðy1; vÞ function is instrumental in shaping the transient
maneuvers during the path approach phase. In Reference [14], the authors propose to use
dðy1; vÞ ¼ �signðvÞya tanhðy1Þ: This choice is natural, but raises some subtle mathematical
difficulties because dðy1; vÞ is not differentiable with respect to v at v ¼ 0:

We propose instead the approach function

dðy1; vÞ ¼ �ya tanhðkdy1vÞ ð15Þ

where 05ya5p=2 and kd is an arbitrary positive gain.
Clearly, this function satisfies the assumptions A.1 and A.2. The candidate controller pro-

posed so far requires the computation of ’d and .d as

’d ¼ d0y ’y1 þ d0v ’v

.d ¼ d00y ’y
2
1 þ d00v ’v

2 þ d0y .y1 þ d00v .vþ ðd
0
vy þ d0yv1Þ’y1 ’vþ d0yv2’v ð16Þ

where

d0y ¼ � yakdvð1� tanh2ðkdy1vÞÞ

d0v ¼ � yakdy1ð1� tanh2ðkdy1vÞÞ

d00y ¼ yaðkdvÞ
22 tanhðkdy1vÞð1� tanh2ðkdy1vÞÞ

d00v ¼ yaðkdy1Þ
22 tanhðkdy1vÞð1� tanh2ðkdy1vÞÞ

d0yv1 ¼ � yakd þ yakd tanh
2ðkdy1vÞ þ yakdv2 tanhðkdy1vÞkdy1ð1� tanh2ðkdy1vÞÞ

d0yv2 ¼ d0yðsin y� ccs1 cos yÞ

d0vy ¼ � yakd þ yakd tanh
2ðkdy1vÞ þ yakdy12 tanhðkdy1vÞkdvð1� tanh2ðkdy1vÞÞ ð17Þ

Equation (16) show that it is necessary to compute the forward acceleration ’v and jerk .v:
Because measuring these quantities is hard at best, one must resort to the dynamic model of the
vehicle. Assume for the time being that the unicycle’s physical parameters m; I ; L; and R are
known exactly. At this point it is convenient to redefine the control inputs ui; i ¼ 1; 2 as

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:000–000
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u1 ¼ t1 � t2 and u2 ¼ t1 þ t2: This yields the dynamic equations (see (6))

’om ¼
u1

c1

’v ¼
u2

c2
ð18Þ

where c1 ¼ IR=L and c2 ¼ mR are positive parameters. With this input transformation the
controller can be re-written as

u1 ¼ c1ðf 1u1 þ f ’vu1 ’vþ f ’v
2

u1 ’v
2 þ f .vu1 .vÞ

u2 ¼ c2f
1
u2 ð19Þ

where

f 1u1 ¼ f 1f 1 � k3 ’y� d0y ’y1 þ gy1v
sin y� sin d

y� d
þ k2ðy� dÞ

� �

f ’vu1 ¼ f ’vf 1 þ k3d0v

f
’v2

u1 ¼ d00v

f .vu1 ¼ d0v

f 1u2 ¼ ’vd � k4ðv� vdÞ

f 1f 1 ¼ f 1’z �
1

g
ðy� dÞ þ gc’s

2 þ ccðv’y sin yþ k1’s1Þ

f ’vf 1 ¼ f ’v’z þ cc cos y

f 1’z ¼ f 1.d � gv
sin y� sin d

y� d
’y1 þ ’y �k2 �

gvy1
ðy� dÞ2

ðcos yðy� dÞ � ðsin y� sin dÞÞ
� �

þ d0y ’y1 k2 þ
gvy1
ðy� dÞ2

ðcos dðy� dÞ � ðsin y� sin dÞÞ
� �

f ’v’z ¼ f ’v.d � gy1
sin y� sin d

y� d
þ d0v k2 þ

gvy1
ðy� dÞ2

ðcos dðy� dÞ � ðsin y� sin dÞÞ
� �

f 1.d ¼ d00y ’y
2
1 þ d0yf

1
.y1

f ’v.d ¼ ðd
0
vy þ d0yv1Þ’y1 þ d0yv2 þ d0yf

’v
.y1

f 1.y1 ¼ � cc’s’s1 � gc’s
2s1 þ ’yv cos y� ccs1ðk1’s1 � ’yv sin yÞ

f ’v.y1 ¼ sin y� ccs1 cos y ð20Þ

At this stage, assuming that the vehicle parameters are known exactly, the acceleration ’v and
jerk .v are obtained from the physical model of the vehicle as

’v ¼
u2

c2
¼ ’vd � k4ðv� vd Þ; .v ¼

’u2

c2
¼ .vd � k4ð’v� ’vd Þ ð21Þ
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3.4. Parameter adaptation

We now tackle the case where the unicycle’s physical parameters m; I ; L; and R are
not known accurately. To this effect, we start by re-writing the control law obtained in (19).
Let %ci be the estimated values of the parameters, and ci their actual unknown values.
Define

uopt1 ¼ c1 fu1;1 þ c3 fu1;2 þ c4 fu1;3

uopt2 ¼ c2 fu2 ð22Þ

with

fu1;1 ¼ f 1u1

c3 ¼
c1

c2

fu1;2 ¼ f ’vu1u2 þ f .vu1 %c2ð.vd � k4 ’vdÞ

c4 ¼
c1

c22

fu1;3 ¼ f ’v
2

u1u
2
2 � f .vu1%c2k4u2

fu2 ¼ ’vd � k4ðv� vd Þ ð23Þ

where the notation uopti was introduced to stress the fact that this (ideal) control law is
computed with the true values of the parameters. Notice how the control law depends
on four new parameters ci; i ¼ 1; . . . ; 4 that are determined by the true values of the
physical parameters defined above. In practice, the control law defined above must be
implemented using the estimates of %ci of ci; i ¼ 1; . . . ; 4 yielding the actual control
law

u1 ¼ %c1 fu1;1 þ %c3 fu1;2 þ %c4 fu1;3

u2 ¼ %c2 fu2 ð24Þ

Let Dci ¼ %ci � ci; be the errors between true and estimated parameters. Notice that
D’ci ¼ ’%ci � ’ci ¼ ’%ci; i ¼ 1; 2; since the true parameters are constant. Using (24),

’V2 ¼ � k1s
2
1 þ y1v sin d�

1

g
ðy� dÞ2 � k3e2 � k4ðv� vdÞ

2

þ
e
c1
ðDc1 fu1;1 þ Dc3 fu1;2 þ Dc4 fu1;3Þ þ

ðv� vd Þ
c2

Dc2fu2 ð25Þ

which is no longer guaranteed to be negative semidefinite. In order to deal with this
problem, augment V3 with the parameter error terms to obtain the final candidate Lyapunov
function

V3 ¼ V2 þ
k5

2

Dc21 þ Dc23 þ Dc24
c1

þ
k6

2

Dc22
c2

ð26Þ
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and compute its derivative

’V3 ¼ � k1s
2
1 þ y1v sin d�

1

g
ðy� dÞ2 � k3e2 � k4ðv� vdÞ

2 þ
Dc1
c1
ðefu1;1 þ k5’%c1Þ

þ
Dc2
c2
ððv� vd Þfu2 þ k6 ’%c2Þ þ

Dc3
c1
ðefu1;3 þ k5 ’%c3Þ þ

Dc4
c1
ðefu1;4 þ k5 ’%c4Þ ð27Þ

Let a parameter update law be defined as

’%c1 ¼ �
efu1;1
k5

’%c2 ¼ �
ðv� vdÞfu2

k6

’%c3 ¼ �
efu1;3
k5

’%c4 ¼ �
efu1;4
k5

This choice of adaptation law cancels the nonnegative terms of ’V3; yielding

’V3 ¼ �k1s21 þ y1v sin d�
1

g
ðy� dÞ2 �

k3

I
e2 �

k4

m
ðv� vdÞ

240 ð28Þ

that is, ’V3 becomes negative semidefinite.

3.5. Complete system. Convergence analysis

From the presentation above the complete adaptive, path following control system is described
by the state equations

’s1 ¼ � ’sð1� ccy1Þ þ v cos y

’y1 ¼ � cc’ss1 þ v sin y

’y ¼o

’o ¼
u1

c1
� cc.s� gc’s

2

’v ¼
u2

c2
ð29Þ

together with the control law

u1 ¼ %c1fu1;1 þ %c3fu1;2 þ %c4fu1;3

u2 ¼ %c2fu2 ð30Þ
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the parameter adaptation law

’%c1 ¼ �
efu1;1
k5

’%c2 ¼ �
ðv� vdÞfu2

k6

’%c3 ¼ �
efu1;3
k5

’%c4 ¼ �
efu1;4
k5

ð31Þ

and the virtual target dynamics

’s ¼ v cos yþ k1s1 ð32Þ

In the above equations, all functions are replaced by their estimated values. The main result of
the paper is stated next.

Proposition 1
Consider the closed-loop adaptive control system given by the dynamic model of unicycle (29)
driven by the control law (30), together with the adaptation scheme (31) and the virtual target
dynamics (32). Let vd be a desired velocity profile. Assume that vd and its first- and second-order
derivatives are bounded. Further assume that vd does not tend to zero as t tends to infinity. Then
y1; y; and v� vd tend asymptotically to zero in the presence of bounded plant parameter
uncertainties in m; I ;R; and L: Stated differently, the robot converges to the prescribed path
asymptotically, in the presence of parametric modelling uncertainties, and tracks the desired
speed profile vd asymptotically.

Proof
In what follows, we describe the main steps involved in the proof of Proposition 1. The proof
builds on the partial results obtained so far and makes ample use of Barbalat’s lemma stated
below.

Barbalat’s lemma
Let the function f ðtÞ admit a second-order derivative with respect to t and assume that the limit
of f ðtÞ when t tends to infinity is well defined. Further assume that ’f ðtÞ is uniformly continuous.
Then ’f ðtÞ tends to 0 as t tends to 1: &

For details about the Barbalat’s lemma, its proof, and application, please refer to Reference
[22]. The key steps in the proof can be described as follows:

* Start by considering the positive definite Lyapunov candidate V3 in (26). Straightforward
computations show that the choice of the control expression (30), together with the
adaptation scheme (31) and the virtual target dynamics (32) makes ’V3 is negative
semidefinite. Hence V3 is a positive and monotonically decreasing function, and therefore
limt!1V3 exists and is finite.
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* It is now possible to show that s1; y1; y; e; and v are bounded because d and vd are assumed
to be bounded. From the equations above it then follows that ’s1; ’y1; ’e; and ’v are bounded
as well. Based on this result, a straightforward differentiation of ’V3 will show that .V3 is
bounded and therefore ’V3 is uniformly continuous.

* Finally, a simple application of Barbalat’s lemma shows that ’V3 ! 0 as t!1: As a
consequence, the variables s1; y1; d; y; e and v� vd vanish as t tends to infinity, thus
proving that the vehicle converges to the path and tracks the desired speed profile
asymptotically.

Remark
The errors Dci; i ¼ 1; 2; 3; 4 of the parameter estimation process do not show up in the final
derivative of the Lyapunov function V3: Thus, convergence of the errors to zero cannot be
guaranteed. It can be shown, however that Dci; i ¼ 1; 2; 3; 4 converge to some limit values that
are not necessarily zero. Nevertheless, the control law still drives the required error states to
zero. This behaviour for the parameter estimates can be observed in a large class of adaptive
control systems.

4. SIMULATION RESULTS

This section illustrates the performance of the path following control law derived through
simulations with a dynamic model of a wheeled robot. The reference and actual robot paths are
shown in Figure 2. The desired speed vdðtÞ was set to 1 m s�1: The values of the design
parameters were g ¼ 1 and ki ¼ 1; i ¼ 1; . . . ; 6: The following initial conditions were adopted in

0 10 20 30 40 50 60 70 80

−30

−20

−10

0

10

20

30

y(
t)

 [m
]

The Path 

1/c  constraint 

Simulation 1 

Simulation 2 

Figure 2. Desired and actual robot paths.
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the simulations:

x0 ¼

s1ð0Þ ðmÞ

y1ð0Þ ðmÞ

yð0Þ ðradÞ

vð0Þ ðm=sÞ

’yð0Þ ðrad=sÞ

sð0Þ ðmÞ

%c1ð0Þ ðkg
�1Þ

%c2ð0Þ ðmÞ

%c3ð0Þ ðkg mÞ

%c4ð0Þ ðkg m2Þ

2
6666666666666666666666664

3
7777777777777777777777775

¼

4

30

�1:7

0:1

0

10

1

1

1

1

2
666666666666666666666664

3
777777777777777777777775
Simulation 1

¼

4

�30

1:7

0:1

0

10

1

1

1

1

2
666666666666666666666664

3
777777777777777777777775
Simulation 2

The robot parameters used in the simulation are those of the Pioneer P3-DX robot: m ¼ 9 kg;
I ¼ 0:1 kg m2; R ¼ 0:1 m and L ¼ 0:15 m: The corresponding values for c1; c2; c3 and c4 are
0:06; 0:9; 0:07 and 0.08, respectively.

Figures 2–6 shows the results of the simulations. Notice how the lateral distance to the path is
driven to zero and how the actual speed vðtÞ converges to vdðtÞ: Notice that ’s tends to vdðtÞ as
well. Finally, it is important to remark that the errors in the parameter estimates do not go to
zero. The objective of following the desired path is achieved nonetheless.
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Simulation 1 

Simulation 2 
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Simulation 2 

Figure 3. Time history of s1ðtÞ and y1ðtÞ:
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5. CONCLUSIONS AND FUTURE WORK

The paper derived a nonlinear, adaptive control law for accurate path following of a dynamic-
wheeled robot in the presence of parameter uncertainty. The key idea behind the new control
law developed was to control explicitly the rate of progression of a ‘virtual target’ to be tracked
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Figure 4. Time history of yðtÞ and ’yðtÞ:
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Figure 5. Time history of vðtÞ and sðtÞ:
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along the path, thus bypassing the ‘singularity’ problems that arise when the position of the
virtual target is simply defined by the projection of the actual vehicle position on that path.
Controller design relied on backstepping techniques. The paper offered a formal proof of
convergence of the robot to the path. Simulation results illustrated the performance of the
control system proposed. The research done in the scope of the present work unveiled some
important issues that warrant further research. Among them, the following are worth empha-
sizing.

The idea of using a virtual target for path following is present, albeit in an implicit manner, in
the work of Aicardi et al. [19], Skjetne et al. [23] and del Rio et al. [20], where a virtual target
control law was ‘intuitively chosen’ even before a path following control law was developed. The
originality of the present work lies in the fact that the virtual target control law falls naturally
from the type of path following control law proposed, thus yielding superior performance and
avoiding singularity conditions even in the presence of parameter uncertainty. This method
seems to be very promising. Currently, we are investigating the benefits of using the virtual
target vehicle principle to solve the combined problem of path following and obstacle avoidance
for a unicycle-type robot.

In the study adopted, access to vehicle acceleration (and jerk) was done indirectly by
resorting to the vehicle dynamics. The possible criticism that such a strategy may lead to
poor performance or even instability (because of model parameter uncertainty) was partially
addressed by incorporating an adaptive scheme. However, in the development that followed,
we tacitly assumed that external disturbances, measurement noise, and unmodelled
dynamics were absent. Measuring the accelerations directly via a dedicated sensor suite and
using that information in a newly designed control law has the potential to yield better
performance and to simplify the complexity of the path following control scheme.
However, this would certainly introduce a path for noise through the acceleration
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Figure 6. Time history of c1ðtÞ; c2ðtÞ; c3ðtÞ and c4ðtÞ (simulation 1: full line; Simulation 2: dashed line).
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measurements. Clearly, this introduces a tradeoff in system design that must be explicitly
studied.

Finally, and in order to fully complete this study, the problem of path following in the
presence of actuator saturation must also be addressed.
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