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Robust Nonlinear Path-Following Control of an AUV
Lionel Lapierre and Bruno Jouvencel

Abstract—This paper develops a robust nonlinear controller that
asymptotically drives the dynamic model of an autonomous under-
water vehicle (AUV) onto a predefined path at a constant forward
velocity. A kinematic controller is first derived, and extended to
cope with vehicle dynamics by resorting to backstepping and Lya-
punov-based techniques. Robustness to vehicle parameter uncer-
tainty is addressed by incorporating a hybrid parameter adapta-
tion scheme. The resulting nonlinear adaptive control system is for-
mally shown and it yields asymptotic convergence of the vehicle
to the path. Simulations illustrate the performance of the derived
controller.

Index Terms—Adaptive control, nonlinear control, path fol-
lowing, underactuated vehicle.

I. INTRODUCTION

THE design of a nonlinear path-following controller
autonomous underwater vehicle (AUV) involves two

different problems: the path-following strategy and the control
of an underactuated vehicle.

A. Path Following

Path following requires the vehicle to reach and follow a
desired path without time constraint. This is done by controlling
the forward velocity to converge to a desired value (constant
in our case), and acting on the vehicle’s orientation to drive it
onto the path. The problem is considered to be solved when
the designed controller guarantees asymptotic convergence to
the path. Many papers have addressed the problem of path-fol-
lowing control for a nonholonomic wheeled vehicle, in most
cases a unicycle-type robot [25], [33], [34]. The underlying
questions to be solved concern the following.

1) Path parameterization. If the path can be considered as
straight lines or circles, classic geometrical description
may be used to parameterize the path and in the control
design [22], [28], [31]. The most general parameterization
considers the curvature of the path in function of the
curvilinear abscissa of the target point [20], [33], [34].

2) Choice of the target point on the path. The choice of the
target point implies different control strategies. In [33], the
target point is designed to be the closest point on the path,
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relative to the current position of the robot. This allows
a rapid convergence to the path, since the distance to the
path is minimal. However, this method implies a drastic
limitation to the robot’s initial conditions. Since the target
point is defined with respect to the current position of the
robot, it has to be actualized at each instant of time, and
problems occur when the robot is located at the center of
the path curvature (the target point is no longer unique) or
during a movement that potentially passes close to it (the
computation of the current reference is not well posed).
To solve this problem, a very conservative but necessary
condition is used: the initial position of the robot must be
such that the initial distance to the path is smaller than the
smallest radius of curvature present on the path. Another
solution [24], [39] consists in considering the target point
as a virtual moving target, animated on the path with its
own movement laws. To ensure cooperative behavior of
the target (slowing down when the vehicle is behind and
accelerating when the vehicle is in advance), the movement
equations of the target are related to the velocity of the
robot. This implies that the target exponentially converges
to the closest point on the path, with the difference that the
target point is now well defined, even if the vehicle crosses
the current center of curvature. The previous constraint is
relaxed into the following: the initial position of the vehicle
should befar from the center of curvature relative to the
initial position of the target point on the path.

B. Control of an Underactuated Vehicle

An increasing number of papers have addressed the topic
of the control of ocean vehicles. Vehicles designed to accom-
plish long-range missions (AUVs, ships) are generally underac-
tuacted, or in the case of fully actuated vehicles, the inefficiency
of a side thruster during high-velocity forward movement leads
them to be considered as underactuated. This implies that trans-
verse movement (sway) is not directly controlled.

In the case of a wheeled robot, the transverse ground fric-
tion of the wheels, expressing the nonholonomic constraint,
effectively cancels this behavior. Nevertheless, in underwater
or terrestrial plane applications, the control inputs are the same:
the forward and yaw velocities. This explains the connection
between unicycle-type robots and AUV path-following control
strategies. For a unicycle-type robot path-following control,
please refer to [31], [33], [34], and [23].

The similarity between these two vehicles ends on consid-
ering that the resulting total velocity of the underwater robot
is not aligned with its main direction of movement. This im-
plies that the AUV heading is not permanently tangent to its
trajectory, but the strategy of controlling the amplitude and the
orientation of the total velocity holds, underlying the added ne-
cessity of having a measurement, or a satisfactory estimation,
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of the sway velocity [21], [26]. Path-following systems for ma-
rine vehicles have been reported by Encarnacao et al. in [18],
and [19], where the underlying assumption was that the ve-
hicle’s forward speed tracks a desired speed profile, while the
controller acts on the vehicle’s orientation to drive it to the
path[AU: "speed" and "velocity" are used in-
terchangeably in the paper. Can "speed" be
used throughout?]. Typically, smoother convergence to
a path is achieved, in comparison with performances obtained
with a trajectory-tracking controller, and the control signals are
less often pushed to saturation [17].

Because the AUV controller relies on a dynamic model of the
system, the performances achieved are dependent on the accu-
racy of the estimation of model parameters. Nevertheless, pre-
cise modeling for an AUV is a difficult task, and it results in a set
of highly coupled nonlinear equations. For more information on
a subject of modeling, the reader should refer to [16] and [15].

Designing a controller to regulate such a nonlinear model
is not a simple process, and classic linear approaches do not
lead to satisfactory performances [14]. Meanwhile, Silvestre
et al. [13] propose a gain-scheduled trajectory-tracking con-
troller, based on the fact that the linearization of the system dy-
namics about trimming trajectory (helices parameterized by the
vehicle’s linear speed, yaw rate, and flight path angle) results
in a time-invariant plant. Then, considering a global trajectory
consisting of the piecewise union of trimming trajectories, the
problem is solved by designing a family of linear controllers for
the linearized plants at each operating point. Interpolating be-
tween these controllers guarantees adequate local performance
for all linearized plants. Nevertheless, this methodology does
not explicitly address the issues of global stability and perfor-
mance.

Because model estimation accuracy cannot be absolutely
guaranteed, the robustness of the control scheme is of major
importance. One of the classic control methods relies on the
sliding-mode design [12]. In [11], Salgado et al. propose a
control design applied to the Taipan 2 AUV, based on an
high-order sliding mode, that explicitly addresses the classic
chattering problem encountered when using the classic sliding
mode. This is achieved by controlling high-order derivatives
of the sliding surface, thus removing the discontinuity of the
control vector. This method exhibits robust behavior, but the
equivalent control is designed using a linearized method that
does not allow for global stability and performance analysis.
In [8], Song et al. combine the sliding-mode advantages with
a fuzzy approach expressing the switching rules based on the
experimental data. The authors say this method is independent
of any system model. Nevertheless, global stability and perfor-
mance are not addressed. Naem et al. [10] and [9] propose a
control based on model prediction using genetic algorithms,
but the performances and stability properties are not addressed.

Considering model nonlinearities, the Lyapunov approach
has many advantages. The first step allows for designing a
control solution that takes into account the system kinematics
and meets uniform asymptotic convergence requirements. As
we will see in the sequel, the concurrent use of the virtual target
principle allows for expressing the problem in a nonsingular

way, thus guaranteeing the respect of the convergence property
whatever the initial conditions are, and meeting a global and
uniform asymptotic convergence requirement. The second step
consists in using the backstepping approach [7], augmenting
the system with its dynamic states, and still meeting global
performance requirements. For an application of this method to
an underactuacted marine system, please refer to [17]. Another
backstepping stage allows parameter uncertainty to be taken
into account, in designing an adaptive scheme that guarantees
robustness. It should be noted that this method is valid if the
parameters appear in an affine form in the control expression.
An application to a nonholonomic wheeled system can be found
in [4]. The particularity of an AUV system is its underactuation,
which leads to a Lyapunov-based control expression, with
parameters that do not appear in an affine form [6]. Existing
solutions are based on a model simplification, reducing the
problem to a multivariable linear system [5], [15], [3], or using
a McLaurin series expansion of the trigonometic terms around
a well-chosen guidance function [2]. Obviously, these existing
methods do not allow for establishing the global convergence
property of the solution.

C. Paper Description

The problem formulation is described in Section II.
Section III describes the design of an asymptotically con-
vergent kinematic control (Section III-A), extended to cope
with vehicle dynamics (Section III-B) by resorting to backstep-
ping and Lyapunov-based techniques (for details on this topic,
please refer to [30]). The computation of such a control is shown
in Section III-C and it provides a limitation of robot design. Ro-
bustness to uncertainty in the parameters of vehicle dynamics
is addressed by incorporating a hybrid parameter-adaptation
scheme (Section III-D). Section IV provides simulation results
of the previously described controllers. Section V contains the
conclusions and explanation of future work concerning this
subject. It should be noted that this paper does not explicitly
address the disturbance rejection problem (e.g., ocean current,
waves effect, etc.).

II. PROBLEM FORMULATION

This section introduces some basic notation, presents the
kinematic equations of motion for an underactuated mobile
robot, and formalizes the problem of driving the robot along a
desired path, in the horizontal plane. The first part (Section II-A)
shows the notations adopted throughout this paper. Section II-B
describes the underactuated underwater robot, as depicted in
Table II. Section II-C presents the kinematic equations of the
system. Section II-D briefly presents the dynamic model of
the robot. Finally, Section II-E states the problem of finding a
controller that guarantees convergence to a desired path, taking
into account the parametric uncertainties.

A. Notation

Throughout this paper, the following notations will be used.
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Fig. 1. Frame definition and description of the problem posed.

. Reference frame with the origin
in . We let and be inertial,
Serret–Frenet, and body axis frames, respectively.

. Position of the
frame in relation to . Note that

represents the
velocity of the frame in relation to
expressed in .

Orientation of in relation to , and
the angular velocity of in relation to .

Rotational matrix from to .

Note that because the study takes place in the horizontal
plane, constant and .

B. Vehicle Description

The vehicle has two identical rear thrusters, mounted sym-
metrically with respect to its longitudinal axis of symmetry.
Each thruster generates a control force , , and a
torque that we consider negligible. The common action mode of
the thrusters results in a forward force , and their differential
action mode generates a torque . defines the dynamic
system input.

We assume that the vehicle is neutrally buoyant and that its
metacenter coincides with the origin of . specifies the
absolute position of the origin of in , and is the
parameter that represents the orientation of with respect
to , the yaw angle. denotes the abso-
lute velocity of with respect to , expressed in the body
frame. and are the longitudinal (surge) and transverse (sway
or sideslip) velocities, respectively. represents the
heading velocity (Fig. 1). We also define the sideslip angle as

(1)

Note that the well poseness of this expression requires the
following assumption:

where is the AUV’s total velocity. Note that the control of an
AUV system implies considering a permanent positive velocity,
therefore the previous condition is covered by the following:

(2)

C. Kinematic Model of the Robot

The kinematic model relates the inertial velocity expressed
in the body frame with the one expressed in the inertial
frame , through the equation . Extracting
the meaningful relations yields

(3)

Note that defines the kinematic system inputs.

D. Dynamic Model of the Robot

The dynamic model of the chosen robot is the classical one
described in (4). A complete model of the Infante AUV, devel-
oped at the DSOR[AU: Please define DSOR], is de-
scribed in [36]

(4)

with

where denotes the system mass, is the moment of inertia
with respect to the -axis, and , , and are the hydro-
dynamic derivatives of the system. For more information on the
modeling of the Infante vehicle, please refer to [36]. Note that

defines the dynamic system inputs.

E. Problem Formulation

1) Side-Slipping Vehicle Control: The laws of mechanics
show that the trajectory of a moving object is fully related to
the amplitude and the orientation of its total velocity. These
variables must be driven to a desired value to control the tra-
jectory. The control strategy depends on the type of actuation
mounted. From the actuation point of view, there exists a vis-
ible similarity between the underactuated underwater robot de-
scribed in Section II-D and the classic nonholonomic wheeled
unicycle-type robot. The main difference is that the nonholo-
nomic constraint, active in the wheeled robot, is relaxed in the
underactuated system. The direct consequence is that the total
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velocity of a unicycle-type robot is permanently equal to its for-
ward velocity , while the total velocity of an underactuated
vehicle results from both surge and sway components and
[see (2)].

The path-following problem is solved for the unicycle-type
robot by designing a control that drives the vehicle onto the path
and then insures that the orientation of the forward velocity
stays tangent to the path. In the case of an underactuated ve-
hicle, this is no longer valid. The transverse component of the
velocity implies that the robot is not aligned with its total ve-
locity, so while the unicycle case is solved by controlling the
forward velocity , the underactuated case requires the control
of the total velocity defined in (2). Designing a controller
for a sideslipping vehicle implies driving the amplitude and the
orientation of the total velocity to desired values, defined with
respect to the path that the robot must reach and follow. The
related variables are and . This implies a
design limitation on a submarine robot controlled in this way,
which is shown in Section III-C. It is because the kinematic
controller involves a computation of , therefore a computa-
tion of and , the longitudinal and transverse accelerations
of the robot. Relying on the dynamic model injects dynamic
parameters at the kinematic level. The backstepping process,
used to design the dynamic control from the kinematic[AU:
Kinematic what?], reveals the necessary computation of

, hence and , the transverse and longitudinal system jerks.
Once again, this is achieved using the dynamic model, and it
implicitly implies deriving longitudinal and transverse accelera-
tion expression from the dynamical model. This emphasizes the
limit of the hypothesis made during the drawing up of the dy-
namical model, especially the neglected high-order terms. On
the other hand, a hybrid adaptation scheme can be designed
(Section III-D) that relaxes the necessity for high accuracy in
the estimation of the constant model parameters.

2) Path Following: To derive a controller for a path-fol-
lowing problem, the equations of the system must be derived
relative to a given path, and the goal of the controller is to
drive the robot to reach and follow the path, without time
constraint. The parameterization of the problem is illustrated
in Fig. 1. Referring to Fig. 1, given any point on the path, a
controller that drives to , as and go to , solves
the path-following problem. The difference in the strategies
that can be adopted concerns the definition of point . In [33],
point is defined as the closest point on the path with respect
to the current position of the robot. In this case, the line
is always perpendicular to the path tangent on . Thus, the
parameterization of the problem is simpler, convergence is
guaranteed when , and are driven to . However, this
method implies a singularity when point is located at the
center of the path curvature, at point ( is undefined). Locate
point by its curvilinear abscissa , and name the
path curvature at this point. Then, the singularity occurs when

. In addition, the analysis in [34] shows
that global convergence is guaranteed only if
for all locations of , and for defining the maximum
curvature encountered on the path. This is a very restrictive
hypothesis that implies a considerable limitation on the initial
condition and a poor disturbance rejection

capability. Another solution consists in defining point as a
virtual moving target that describes the path. The movement
control of this target introduces a supplementary virtual state
into the system, but transforms the previous constraint to

. The behavior of the virtual target
(captured in the expression of ) is chosen according to the
derivation of Lyapunov functions in the backstepping process,
and results in a very cooperative target that quickly converges
to the closest point on the path. Expressed in the Serret–Frenet
frame , the kinematic equations of the problem are rewritten
as

(5)

3) Mathematical Formulation: Equipped with this for-
malism[AU: Formulation?], we can now state the
kinematic control problem that is addressed in Section III-A.

: Given the robot kinematic model (3), the
robot dynamic model (4), and a set of available
measurements coming from robot sensors, compute

, so that and con-
verge to as goes to .

This problem will be extended in Section III-B to explicitly
deal with vehicle dynamics. The dynamic control problem
is stated as follows.

: Given the robot kinematic model (3), the
robot dynamic model (4), and a set of available
measurements coming from robot sensors, compute

, so that and
converge to as goes to .

Note that the validity of statement implies that there is no
external disturbance, sensor noise, or unmodeled dynamics, and
a perfect knowledge of the system parameters. Consider that
there is no external disturbances, sensor noise, or unmodeled
dynamics, but that the parameters are not perfectly known.
Section III-C describes another version of the dynamic con-
troller that guarantees robustness against parameter uncertainty
and solves problem , stated as follows.

: Given the robot kinematic model (3), the robot dy-
namic model (4), a set of available measurements coming
from robot sensors, and a set of reasonable estimation
of the nine parameters of the dynamic model, compute

, so that and
converge to as goes to .

The effects of external disturbance, sensor noise, or unmod-
eled dynamics are not treated in this paper. The solution consists
in proving the boundedness of the system output in the presence
of bounded external disturbance and unmodeled dynamics ef-
fect, and extracting from the expression of the bounded system
output the meaningful information related to the performance of
the controlled system.

A proposed solution for problems is de-
scribed in the following section.
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III. CONTROLLER DESIGN

This section describes the solutions to problems , , and
, stated in the previous section. In the following, we will

extensively use a corollary of Barbalat’s lemma (CBL), and
LaSalle’s theorem, stated as follows.

Barbalat’s Lemma: If is a double differentiable function
such that is finite as goes to , and such that is
uniformly continuous, then tends to as tends to .

Uniform Continuity Sufficient Condition: is uniformly
continuous if exists and is bounded.

Corollary of Barbalat’s Lemma: If is a double differen-
tiable function such that is finite as goes to , and such
that exists and is bounded, then tends to as tends
to .

LaSalle’s Theorem: Let be a positively invariant set of
the system described in (3) and (4). Suppose that every solu-
tion starting in converges to a set and let be the
largest invariant set contained in . Then, every bounded solu-
tion starting in converges to as tends to .

For details of Barbalat’s lemma and its application, please
refer to [37]. For demonstration and application of LaSalle’s
theorem, please refer to [35] and [29]. Note that the application
of LaSalle’s theorem is restricted to autonomous systems. In our
situation, the fact that the desired forward velocity is constant
allows us to consider our system as autonomous.

A. Kinematic Controller

With the formalism developed previously, we may now state
the following theorem.

Proposition 1: Consider the robot models (3) and (4) and let
a desired approach angle be defined by

(6)

where is a positive gain and . Further, assume
that measurements of are available from robot sensors
and that a parameterization of the path is available such that
given , the curvilinear abscissa of a point on the path, the
variables and are well defined and com-
putable. Then, the control law

(7)

solves problem , with , , and three arbitrary posi-
tive gains, the assumption that , and given the initial
relative position .

Proof: The proof is structured in three parts. First, we show
that the system asymptotically follows the reference angle .
Then, we show that the reference asymptotically drives the robot
onto the path. Finally, we use the LaSalle invariance principle
to concatenate the two previous convergence properties.

Consider the following Lyapunov function
. It is straightforward to show that the choice of the control

yields . That is, is a positive and
monotonically decreasing function up to a well-defined limit

(8)

Simple derivation shows that , which is
bounded since (8). Then, using the CBL, we conclude that

. That is

(9)

The system asymptotically follows the reference de-
fined in (6), so the trajectories of the system will asymptotically
reach the invariant set defined as

(10)

For the sake of clarity, define , , and
, and recall (5). Study the trajectories of the system onto

the invariant set . Consider the Lyapunov candidate
, . It is straightforward to show that

the choice

(11)

leads to

(12)

since onto the set [AU: Delete "onto"? It is un-
clear here. Please rewrite.] ,

, , , and using the assump-
tion , covered by the necessary assumption for
the definition of (2). Therefore, is finite.

Moreover, it is straightforward to show that is bounded,
and we use the CBL to prove that , which im-
plies and , since (12). Hence,

is the unique stable point of , and every trajec-
tory of the system starting in asymptotically converges to the
origin.

We now use LaSalle’s invariance principle. Let . The
first part of the proof showed that every solution starting in
asymptotically converges to . The second step showed that
the largest invariant set of is , so every
bounded solution starting in converges to as tends to .

B. Dynamic Controller

The development of the dynamic control is based on the pre-
vious result, considering the kinematic control as a reference,
called , for the dynamic control

(13)

Let and consider the Lyapunov candidate

(14)
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with being a positive gain. Simple computations show that

(15)

where in our study case. Recall that ,
then

Note that this condition is more restrictive than necessary.
The condition that the desired velocity profile is invariant is
enough. It is now straightforward to compute the control inputs

and by solving the dynamics (4) to obtain

(16)
We can now state Proposition 2 that solves problem .
Proposition 2: Consider the robot models (3) and (4) and

the desired approach angle defined in (6), where is a posi-
tive gain and . Further, assume that measure-
ments of are available from robot sensors and that
a parameterization of the path is available such that, given ,
the curvilinear abscissa of a point on the path, the variables

are well defined and computable.
Define as the desired forward velocity. Then, control law
(16) and expression (7), with and positive
gains, the assumption that , and given the initial rela-
tive position , solve problem .

Proof: Considering the (14) Lypaunov function, and
using the CBL, as previously, it is straightforward to show that

Thus, the trajectories of the system will reach the invariant
set

Using the same argument as that used in the previous proof
(kinematic case) and the assumption that proves the
convergence of the system to the path.

C. Computation of the Control

The previous control guarantees the asymptotic con-
vergence to the path. Nevertheless, the terms appearing in (15)
are not trivially computable. In particular, the computation of
refers to the evaluation of jerks and through

(17)

Because it is not realistic to have any measurement of these
quantities, the only solution is to rely on a derivation of the dy-
namic model such that

(18)

This emphasizes the assumption made regarding the ne-
glected dynamics of the system. Then, is rewritten

where

Then, the control is computed as

For this expression to be well posed, it must be derived from
the robot design parameter

Analyzing the signs of the hydrodynamic parameters as in
[1], we know the following:

• is always negative;
• is positive if stern dominates;
• is negative if bow dominates.
Thus, in the case of a stern dominant vehicle, the control com-

putation is well posed. For a bow dominant vehicle, the sign of
should be taken into account.

D. Robust Control

This section addresses the question of robustness to param-
eter uncertainties. The previous dynamic control is modified to
relax the constraint of having a precise estimation of the dy-
namic parameters by resorting to backstepping Lyapunov-based
techniques.

Recall that the design of the kinematic reference requires an
estimation of surge and sway acceleration, relying on the dy-
namic model, so the errors due to parameters misestimation
should explicitly be taken into account in the elaboration of the
kinematic reference.

1) Kinematic Reference: In Section III-A, we designed a
kinematic reference (13) that includes the computation of ,
which can be rewritten as
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The expression of functions and parameters is displayed
in the Appendix. Because explicitly appears in the previous
relation, a proper expression of the kinematic reference is ex-
tracted by solving (13) for , and naming as , the kinematic
reference

(19)

with . It should be explicitly es-
tablished that the resulting expression is well posed in the func-
tion of the value of , as mentioned for the dynamic case in
Section III-B. This question will be addressed at the dynamic
level.

The optimal value for is computed with the real value of
parameters and a perfect estimation of the forward acceler-
ation . Then, the use of estimated values of the dynamic
parameters induces an error such that

with , , and
.

Consider the Lyapunov candidate . The
misestimation of the parameters induces a nonnegative deriva-
tive

Because is not negative definite, we cannot conclude any
convergence property, since the effects of the parameter mises-
timation still appear in the Lyapunov candidate. Nevertheless,
these effects will be canceled at the dynamic level, and asymp-
totic convergence will be guaranteed. Consider the suboptimal
kinematic control (19) as a reference to drive the dynamic con-
troller

(20)

given , an estimation of .
2) Robust Dynamic Control: To deal with robustness to

parameter uncertainty, it is necessary to expand the dynamic
control expression (16) to make the parameters explicitly
appear in the equations, and study the incidence of their mis-
estimation. Considering the previous suboptimal kinematic
control as a reference (20), we derive the dynamic control as
in Section III-B, explicitly extracting the dynamic parameters

with

where are computable functions
dependent on the measurements, listed in the Appendix. Then,

is rewritten as

(21)

Consider now the following version of the control :

(22)

Hence, a misestimation of the robot parameters yields a com-
puted control that differs from its optimal version by

with , and so on. Using the expres-

sion of , extracted form (4), is rewritten as

where
. The parameters and the functions are listed

in the Appendix.
Consider the following Lyapunov candidate that captures the

system’s property of convergence to the suboptimal reference
:

and, with control (21) and parameter adaptation scheme

(23)

yields the following derivative:

Consider now the forward control, and expand (16)

(24)

The parameters and the functions are listed in the
Appendix. The misestimation , for ,
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induces a computed forward control different from the optimal
one such that

Then, considering the following Lyapunov candidate:

with control (24) and the following parameter adaptation
scheme:

(25)

leads to a negative–definite derivative

Then, noting that is bounded, the use of the CBL proves
the asymptotic convergence of to . Hence, and vanish
with time

The previous argument implies that the system will asymp-
totically reach the invariant set

(26)

Studying the system trajectories onto the set, we notice
that

hence

Noting that is bounded, and using the invariance principle,
the previous arguments imply

Then, the system will asymptotically reach the invariant set
defined as

(27)

The system trajectories onto this set are described by the
Lyapunov candidate. In this set, the derivative is written

as

The effects of the misestimation of parameter are still
present, and we do not consider the previously used solution of
adapting its estimation since the knowledge of is required
to design a classic adaptive scheme.

The proposed solution consists in relying on switching con-
trol system theory to guarantee that is negative definite. For
more information on switching control systems, please refer to
[27] and [32]. To insure asymptotic convergence, one should in-
sure that

This can be done by choosing two different values and
, guaranteed to overestimate and underestimate the real

value ( and ), and use them such that

if
if

if
if

(28)

using the facts that and . Then, using
(28) switching conditions, we conclude that .

Because eight possible Lyapunov functions are negative def-
inite, and the switching process does not affect the convergence
[27], we can state that

Using the same argument concerning the imbricated invariant
set, it has been shown that the robot asymptotically converges
to the path. We are now able to state Proposition 3 that solves
problem .

Proposition 3: Consider the robot models (3) and (4) and
the desired approach angle defined in (6), where is a posi-
tive gain and . Further, assume that measure-
ments of are available from robot sensors and that
a parameterization of the path is available such that, given ,
the curvilinear abscissa of a point on the path, the variables

are well defined and computable.
Consider that a reasonable estimation of the model parameters

was used to
compute the 11 initial values as
described in the tables of the Appendix, and and such
that , . Define as the desired
forward velocity. Then, the control law

(29)

with the kinematic reference

the adaptation scheme (23), (25) and the switching scheme
(28), with positive gains, the as-
sumption that , and given the initial relative position

, solves problem .
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TABLE I
PATH PARAMETERS

Fig. 2. Infante AUV (IST) during its first sea trial.

Note that the evolution of the parameters is a function of the
excitation of the problem. Analyzing the adaptation equations, it
is easy to see that the adaptation stops when the reference errors

and are equal to zero. This phenomenon is
easily observed for linear systems when the path does not lead
to sufficient excitation, and in this case, the estimated value of
the parameters does not converge to the real value [31], [38].

Another solution, based on switching system theory, is imag-
inable. It consists in developing a switching scheme for all pa-
rameters, as for the parameters. Further research on this topic
is warranted.

IV. SIMULATION RESULTS

The aim of the simulation is to illustrate the efficiency of the
previous controllers in driving an AUV onto a desired path. The
path is characterized by a curvature on a point , parameter-
ized by its curvilinear abscissa . The objective is to regulate the
distance to the path and the heading of the total velocity of the
robot to zero relative to the given path. To test these controllers
in a general case, we have chosen to consider the more complex
path defined in Section IV-A.

A. Path Parameterization

The path is designed in Cartesian space (cf., Table I) and we
assume to have a parameterization that allows the computation
of the following items (given ):

• : the global heading of the virtual target;
• : the path curvature at the target position;
• : the curvilinear derivative of the curvature at the

target position;
• and , the absolute location of the virtual target.
We have chosen a polynomial parameterization of the form

TABLE II
PARAMETERS OF THE SIMPLIFIED MODEL OF THE INFANTE AUV (IST)[AU:
Please add space between unit and number;
please change a period between units to a

\cdot and please use regular font, not italics
to present units ]

TABLE III
DYNAMIC CONTROL PARAMETERS

Fig. 3. System trajectories, when considering a perfect knowledge of the pa-
rameters (simulation 1: solid line; simulation 2: dashed line).

Assuming we have a precise estimation of function , and
given , we compute

The estimation of function is achieved by integration of

The model of the robot is a simplified version of Infante [36],
the AUV developed at the DSOR (Fig. 2), given in Table II.
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Fig. 4. Relative distance robot/rabit evolution, when considering a perfect
knowledge of the parameters (simulation 1: solid line; simulation 2: dashed
line).

Fig. 5. System velocities evolution, when considering a perfect knowledge of
the parameters (simulation 1: solid line; simulation 2: dashed line).

B. Dynamic Controller

The simulations are carried out using the robot parameters
of Table II, the control parameters of Table III, and the path
parameters of Table I.

The simulation results are displayed in Figs. 3–6.
Discussion: Both simulation results of Fig. 3 show a satis-

factory behavior of the AUV, clearly driven to reach and stay
on the path. Fig. 4 indicates the evolution of the relative dis-
tance between the virtual target and the robot, expressed in the
Serret–Frenet frame. The concurrent convergence of and

to zero confirms the desired behavior of the system. Note
that since converges to zero, the virtual target converges to
the closest point on the path. Figs. 5 and 6 show the system ve-
locities’ evolution and the related control activity. Concerning

Fig. 6. Control activity, when considering a perfect knowledge of the parame-
ters (simulation 1: solid line; simulation 2: dashed line).

TABLE IV
INITIAL PARAMETERS ESTIMATION[AU; Please follow the

request in Table II]

the amplitude of the control activity, recall that the simulated
system is heavy (cf., Table II). Note that the tunable parameters
of the proposed control are the control gains , ,
and the guidance parameters, the asymptotic approach angle,
denoted , and the gain , designing the smoothness of this
approach.

C. Robust Controller

To demonstrate the efficiency of the robust scheme, we first
proceed to simulations considering the misestimated parame-
ters of Table IV, without adaptation. The results are given in
Figs. 7–10 (dotted lines).

The robust scheme is tested using the path parameters of
Table I and the control parameters of Table III. The system
parameter estimated values are displayed in Table IV, used to
compute the 11 initial values of the parameter groups. The sur-
rounding values for , , and parameter groups are also
considered. The expression of the parameter groups is listed in
the Appendix

The results are displayed in Figs. 7–10 (straight lines). The
adaptation evolution for parameters , , is given in
Figs. 11 and 12, , in Fig. 13, and , ,
in Fig. 14. The convergence gains have been tuned according to
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Fig. 7. System trajectories using robust control (solid line) and dynamic control
with misestimated parameters (dotted line).

Fig. 8. Relative distance robot/rabit evolution using robust control (solid line)
and dynamic control with misestimated parameters (dashed line).

Fig. 9. Velocities evolution using robust control (solid line) and dynamic con-
trol with misestimated parameters (dashed line).

Fig. 10. Control activity, using robust control (solid line) and dynamic control
with misestimated parameters (dashed line).

Fig. 11. Evolution of the adaptation of parameters p (i = 1; 2; 3) involved in
the computation of �.

Table V, to observe the convergence of the parameters during
the simulation.

Discussion: Trajectories of Fig. 7 clearly indicate the im-
provement of the robust control with respect to the performances
of the dynamic control with misestimated parameters. Note that
since the desired path is getting flatter the convergence of the
dynamic control is achieved much more later than the robust
control results. This compared analysis is confirmed by the evo-
lution of the relative distance between the virtual target and
the robot, displayed in Fig. 8, where the convergence evolu-
tion of the variable is similar to the one in the case of
a perfect knowledge of the parameters (cf., Fig. 4), which is
clearly not the case of the response considering misestimated
parameters, without the robust scheme. Fig. 9 indicates also a
better convergence of the forward velocity to the desired one

, when using the robust control. Fig. 10 displays
the evolution of the control activity evolution with and without
the robust scheme. As expected, the control activity is higher
with the robust control. Moreover, the control activity profile of
the robust control (solid line) presents some important disconti-
nuities, induced by the switching part of the robust scheme, as
one could have expected. The reduction of this chattering effect
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Fig. 12. Evolution of the adaptation of parameters p (i = 4; 5; 6; 7) involved
in the computation of �.

Fig. 13. Evolution of the commutations of parameters involved in the compu-
tation of the kinematic reference r .

Fig. 14. Evolution of the adaptation of parameters involved in the computation
of F .

TABLE V
CONVERGENCE GAINS OF THE ADAPTATION SCHEME

TABLE VI
KINEMATIC REFERENCE PARAMETER GROUPS AND FUNCTIONS

TABLE VII
FORWARD CONTROL PARAMETER GROUPS AND FUNCTIONS

TABLE VIII
HEADING CONTROL PARAMETER GROUPS AND FUNCTIONS

could be a substantial improvement of the method. Figs. 11 and
11[AU: Should it be "Figs. 11 and 12"?] show
the evolution of parameters , , involved in the
computation of . It could be noted that the parameters are not
converging to their real value. This is expected since the related
Lyapunov functions (cf., Section III-D2) that warrants the con-
vergence guaranties of the tracking variables, do not consider
the convergence of the parameters to their actual value. This
is a known behavior of adaptive control, that is, for the linear
case, a problem of excitation of the system. This robust con-
trol is not designed to make the parameters estimation, but to
desensitize the system properties to the parameters misestima-
tion. Fig. 13 shows the evolution of the parameters involved in
the computation of the kinematic reference , according to the
designed switching scheme. Note that one of the assumption of
the problem is that the system is able to switch infinitively fast,
and further research on this topic will include the dwell time
property of the system, to establish the practical convergence
performance of the method. Indeed, including a realistic dwell
time in the study will make it impossible to meet asymptotic
convergence property, and only practical convergence will be
reachable.
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TABLE IX
ELEMENTS OF COMPUTATION OF PARAMETER GROUPS AND FUNCTIONS

TABLE X
ELEMENTS OF COMPUTATION OF PARAMETER GROUPS AND FUNCTIONS

V. CONCLUSION

We have developed a dynamic robust path-following AUV
control that exhibits good performances. The proposed method
uses a hybrid robust scheme, relying on classic adaptation
scheme design of those dynamic parameters that appear with
an affine form, and on switching control for the others. A robot
design limitation reduces the application field of this solution
to torpedo-shaped vehicles that ensure that the ratio
stays far from 1. The asymptotic convergence of the controlled
system is shown in the Lyapunov sense. To complete this study,
disturbance rejection and unmodeled dynamic robustness must
be explicitly addressed, with the introduction of a dwell time,
the shortest switching period of the system. Another approach
is now under study, relying exclusively on switching system
theory. This warrants further research.

APPENDIX

FUNCTIONS AND PARAMETER GROUPS

In the sequel, we present the expression of the functions and
parameter group used in Section III-D.

A. Kinematic Reference

The kinematic references, denoted , is rewritten according
to (19), where functions and parameter groups , ,
have the following expression, displayed in Table VI.

B. Forward Control

The expression of the forward control, denoted , is rewritten
according to (24), where functions and parameter groups ,

, are expressed in Table VII.

C. Heading Control

The expression of the torque control, denoted , is rewritten
according to (29), where functions and parameter groups ,

, are expressed in Tables VIII–X.
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Robust Nonlinear Path-Following Control of an AUV
Lionel Lapierre and Bruno Jouvencel

Abstract—This paper develops a robust nonlinear controller that
asymptotically drives the dynamic model of an autonomous under-
water vehicle (AUV) onto a predefined path at a constant forward
velocity. A kinematic controller is first derived, and extended to
cope with vehicle dynamics by resorting to backstepping and Lya-
punov-based techniques. Robustness to vehicle parameter uncer-
tainty is addressed by incorporating a hybrid parameter adapta-
tion scheme. The resulting nonlinear adaptive control system is for-
mally shown and it yields asymptotic convergence of the vehicle
to the path. Simulations illustrate the performance of the derived
controller.

Index Terms—Adaptive control, nonlinear control, path fol-
lowing, underactuated vehicle.

I. INTRODUCTION

THE design of a nonlinear path-following controller
autonomous underwater vehicle (AUV) involves two

different problems: the path-following strategy and the control
of an underactuated vehicle.

A. Path Following

Path following requires the vehicle to reach and follow a
desired path without time constraint. This is done by controlling
the forward velocity to converge to a desired value (constant
in our case), and acting on the vehicle’s orientation to drive it
onto the path. The problem is considered to be solved when
the designed controller guarantees asymptotic convergence to
the path. Many papers have addressed the problem of path-fol-
lowing control for a nonholonomic wheeled vehicle, in most
cases a unicycle-type robot [25], [33], [34]. The underlying
questions to be solved concern the following.

1) Path parameterization. If the path can be considered as
straight lines or circles, classic geometrical description
may be used to parameterize the path and in the control
design [22], [28], [31]. The most general parameterization
considers the curvature of the path in function of the
curvilinear abscissa of the target point [20], [33], [34].

2) Choice of the target point on the path. The choice of the
target point implies different control strategies. In [33], the
target point is designed to be the closest point on the path,
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relative to the current position of the robot. This allows
a rapid convergence to the path, since the distance to the
path is minimal. However, this method implies a drastic
limitation to the robot’s initial conditions. Since the target
point is defined with respect to the current position of the
robot, it has to be actualized at each instant of time, and
problems occur when the robot is located at the center of
the path curvature (the target point is no longer unique) or
during a movement that potentially passes close to it (the
computation of the current reference is not well posed).
To solve this problem, a very conservative but necessary
condition is used: the initial position of the robot must be
such that the initial distance to the path is smaller than the
smallest radius of curvature present on the path. Another
solution [24], [39] consists in considering the target point
as a virtual moving target, animated on the path with its
own movement laws. To ensure cooperative behavior of
the target (slowing down when the vehicle is behind and
accelerating when the vehicle is in advance), the movement
equations of the target are related to the velocity of the
robot. This implies that the target exponentially converges
to the closest point on the path, with the difference that the
target point is now well defined, even if the vehicle crosses
the current center of curvature. The previous constraint is
relaxed into the following: the initial position of the vehicle
should befar from the center of curvature relative to the
initial position of the target point on the path.

B. Control of an Underactuated Vehicle

An increasing number of papers have addressed the topic
of the control of ocean vehicles. Vehicles designed to accom-
plish long-range missions (AUVs, ships) are generally underac-
tuacted, or in the case of fully actuated vehicles, the inefficiency
of a side thruster during high-velocity forward movement leads
them to be considered as underactuated. This implies that trans-
verse movement (sway) is not directly controlled.

In the case of a wheeled robot, the transverse ground fric-
tion of the wheels, expressing the nonholonomic constraint,
effectively cancels this behavior. Nevertheless, in underwater
or terrestrial plane applications, the control inputs are the same:
the forward and yaw velocities. This explains the connection
between unicycle-type robots and AUV path-following control
strategies. For a unicycle-type robot path-following control,
please refer to [31], [33], [34], and [23].

The similarity between these two vehicles ends on consid-
ering that the resulting total velocity of the underwater robot
is not aligned with its main direction of movement. This im-
plies that the AUV heading is not permanently tangent to its
trajectory, but the strategy of controlling the amplitude and the
orientation of the total velocity holds, underlying the added ne-
cessity of having a measurement, or a satisfactory estimation,

0364-9059/$25.00 © 2008 IEEE
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of the sway velocity [21], [26]. Path-following systems for ma-
rine vehicles have been reported by Encarnacao et al. in [18],
and [19], where the underlying assumption was that the ve-
hicle’s forward speed tracks a desired speed profile, while the
controller acts on the vehicle’s orientation to drive it to the
path[AU: "speed" and "velocity" are used in-
terchangeably in the paper. Can "speed" be
used throughout?]. Typically, smoother convergence to
a path is achieved, in comparison with performances obtained
with a trajectory-tracking controller, and the control signals are
less often pushed to saturation [17].

Because the AUV controller relies on a dynamic model of the
system, the performances achieved are dependent on the accu-
racy of the estimation of model parameters. Nevertheless, pre-
cise modeling for an AUV is a difficult task, and it results in a set
of highly coupled nonlinear equations. For more information on
a subject of modeling, the reader should refer to [16] and [15].

Designing a controller to regulate such a nonlinear model
is not a simple process, and classic linear approaches do not
lead to satisfactory performances [14]. Meanwhile, Silvestre
et al. [13] propose a gain-scheduled trajectory-tracking con-
troller, based on the fact that the linearization of the system dy-
namics about trimming trajectory (helices parameterized by the
vehicle’s linear speed, yaw rate, and flight path angle) results
in a time-invariant plant. Then, considering a global trajectory
consisting of the piecewise union of trimming trajectories, the
problem is solved by designing a family of linear controllers for
the linearized plants at each operating point. Interpolating be-
tween these controllers guarantees adequate local performance
for all linearized plants. Nevertheless, this methodology does
not explicitly address the issues of global stability and perfor-
mance.

Because model estimation accuracy cannot be absolutely
guaranteed, the robustness of the control scheme is of major
importance. One of the classic control methods relies on the
sliding-mode design [12]. In [11], Salgado et al. propose a
control design applied to the Taipan 2 AUV, based on an
high-order sliding mode, that explicitly addresses the classic
chattering problem encountered when using the classic sliding
mode. This is achieved by controlling high-order derivatives
of the sliding surface, thus removing the discontinuity of the
control vector. This method exhibits robust behavior, but the
equivalent control is designed using a linearized method that
does not allow for global stability and performance analysis.
In [8], Song et al. combine the sliding-mode advantages with
a fuzzy approach expressing the switching rules based on the
experimental data. The authors say this method is independent
of any system model. Nevertheless, global stability and perfor-
mance are not addressed. Naem et al. [10] and [9] propose a
control based on model prediction using genetic algorithms,
but the performances and stability properties are not addressed.

Considering model nonlinearities, the Lyapunov approach
has many advantages. The first step allows for designing a
control solution that takes into account the system kinematics
and meets uniform asymptotic convergence requirements. As
we will see in the sequel, the concurrent use of the virtual target
principle allows for expressing the problem in a nonsingular

way, thus guaranteeing the respect of the convergence property
whatever the initial conditions are, and meeting a global and
uniform asymptotic convergence requirement. The second step
consists in using the backstepping approach [7], augmenting
the system with its dynamic states, and still meeting global
performance requirements. For an application of this method to
an underactuacted marine system, please refer to [17]. Another
backstepping stage allows parameter uncertainty to be taken
into account, in designing an adaptive scheme that guarantees
robustness. It should be noted that this method is valid if the
parameters appear in an affine form in the control expression.
An application to a nonholonomic wheeled system can be found
in [4]. The particularity of an AUV system is its underactuation,
which leads to a Lyapunov-based control expression, with
parameters that do not appear in an affine form [6]. Existing
solutions are based on a model simplification, reducing the
problem to a multivariable linear system [5], [15], [3], or using
a McLaurin series expansion of the trigonometic terms around
a well-chosen guidance function [2]. Obviously, these existing
methods do not allow for establishing the global convergence
property of the solution.

C. Paper Description

The problem formulation is described in Section II.
Section III describes the design of an asymptotically con-
vergent kinematic control (Section III-A), extended to cope
with vehicle dynamics (Section III-B) by resorting to backstep-
ping and Lyapunov-based techniques (for details on this topic,
please refer to [30]). The computation of such a control is shown
in Section III-C and it provides a limitation of robot design. Ro-
bustness to uncertainty in the parameters of vehicle dynamics
is addressed by incorporating a hybrid parameter-adaptation
scheme (Section III-D). Section IV provides simulation results
of the previously described controllers. Section V contains the
conclusions and explanation of future work concerning this
subject. It should be noted that this paper does not explicitly
address the disturbance rejection problem (e.g., ocean current,
waves effect, etc.).

II. PROBLEM FORMULATION

This section introduces some basic notation, presents the
kinematic equations of motion for an underactuated mobile
robot, and formalizes the problem of driving the robot along a
desired path, in the horizontal plane. The first part (Section II-A)
shows the notations adopted throughout this paper. Section II-B
describes the underactuated underwater robot, as depicted in
Table II. Section II-C presents the kinematic equations of the
system. Section II-D briefly presents the dynamic model of
the robot. Finally, Section II-E states the problem of finding a
controller that guarantees convergence to a desired path, taking
into account the parametric uncertainties.

A. Notation

Throughout this paper, the following notations will be used.
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Fig. 1. Frame definition and description of the problem posed.

. Reference frame with the origin
in . We let and be inertial,
Serret–Frenet, and body axis frames, respectively.

. Position of the
frame in relation to . Note that

represents the
velocity of the frame in relation to
expressed in .

Orientation of in relation to , and
the angular velocity of in relation to .

Rotational matrix from to .

Note that because the study takes place in the horizontal
plane, constant and .

B. Vehicle Description

The vehicle has two identical rear thrusters, mounted sym-
metrically with respect to its longitudinal axis of symmetry.
Each thruster generates a control force , , and a
torque that we consider negligible. The common action mode of
the thrusters results in a forward force , and their differential
action mode generates a torque . defines the dynamic
system input.

We assume that the vehicle is neutrally buoyant and that its
metacenter coincides with the origin of . specifies the
absolute position of the origin of in , and is the
parameter that represents the orientation of with respect
to , the yaw angle. denotes the abso-
lute velocity of with respect to , expressed in the body
frame. and are the longitudinal (surge) and transverse (sway
or sideslip) velocities, respectively. represents the
heading velocity (Fig. 1). We also define the sideslip angle as

(1)

Note that the well poseness of this expression requires the
following assumption:

where is the AUV’s total velocity. Note that the control of an
AUV system implies considering a permanent positive velocity,
therefore the previous condition is covered by the following:

(2)

C. Kinematic Model of the Robot

The kinematic model relates the inertial velocity expressed
in the body frame with the one expressed in the inertial
frame , through the equation . Extracting
the meaningful relations yields

(3)

Note that defines the kinematic system inputs.

D. Dynamic Model of the Robot

The dynamic model of the chosen robot is the classical one
described in (4). A complete model of the Infante AUV, devel-
oped at the DSOR[AU: Please define DSOR], is de-
scribed in [36]

(4)

with

where denotes the system mass, is the moment of inertia
with respect to the -axis, and , , and are the hydro-
dynamic derivatives of the system. For more information on the
modeling of the Infante vehicle, please refer to [36]. Note that

defines the dynamic system inputs.

E. Problem Formulation

1) Side-Slipping Vehicle Control: The laws of mechanics
show that the trajectory of a moving object is fully related to
the amplitude and the orientation of its total velocity. These
variables must be driven to a desired value to control the tra-
jectory. The control strategy depends on the type of actuation
mounted. From the actuation point of view, there exists a vis-
ible similarity between the underactuated underwater robot de-
scribed in Section II-D and the classic nonholonomic wheeled
unicycle-type robot. The main difference is that the nonholo-
nomic constraint, active in the wheeled robot, is relaxed in the
underactuated system. The direct consequence is that the total
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velocity of a unicycle-type robot is permanently equal to its for-
ward velocity , while the total velocity of an underactuated
vehicle results from both surge and sway components and
[see (2)].

The path-following problem is solved for the unicycle-type
robot by designing a control that drives the vehicle onto the path
and then insures that the orientation of the forward velocity
stays tangent to the path. In the case of an underactuated ve-
hicle, this is no longer valid. The transverse component of the
velocity implies that the robot is not aligned with its total ve-
locity, so while the unicycle case is solved by controlling the
forward velocity , the underactuated case requires the control
of the total velocity defined in (2). Designing a controller
for a sideslipping vehicle implies driving the amplitude and the
orientation of the total velocity to desired values, defined with
respect to the path that the robot must reach and follow. The
related variables are and . This implies a
design limitation on a submarine robot controlled in this way,
which is shown in Section III-C. It is because the kinematic
controller involves a computation of , therefore a computa-
tion of and , the longitudinal and transverse accelerations
of the robot. Relying on the dynamic model injects dynamic
parameters at the kinematic level. The backstepping process,
used to design the dynamic control from the kinematic[AU:
Kinematic what?], reveals the necessary computation of

, hence and , the transverse and longitudinal system jerks.
Once again, this is achieved using the dynamic model, and it
implicitly implies deriving longitudinal and transverse accelera-
tion expression from the dynamical model. This emphasizes the
limit of the hypothesis made during the drawing up of the dy-
namical model, especially the neglected high-order terms. On
the other hand, a hybrid adaptation scheme can be designed
(Section III-D) that relaxes the necessity for high accuracy in
the estimation of the constant model parameters.

2) Path Following: To derive a controller for a path-fol-
lowing problem, the equations of the system must be derived
relative to a given path, and the goal of the controller is to
drive the robot to reach and follow the path, without time
constraint. The parameterization of the problem is illustrated
in Fig. 1. Referring to Fig. 1, given any point on the path, a
controller that drives to , as and go to , solves
the path-following problem. The difference in the strategies
that can be adopted concerns the definition of point . In [33],
point is defined as the closest point on the path with respect
to the current position of the robot. In this case, the line
is always perpendicular to the path tangent on . Thus, the
parameterization of the problem is simpler, convergence is
guaranteed when , and are driven to . However, this
method implies a singularity when point is located at the
center of the path curvature, at point ( is undefined). Locate
point by its curvilinear abscissa , and name the
path curvature at this point. Then, the singularity occurs when

. In addition, the analysis in [34] shows
that global convergence is guaranteed only if
for all locations of , and for defining the maximum
curvature encountered on the path. This is a very restrictive
hypothesis that implies a considerable limitation on the initial
condition and a poor disturbance rejection

capability. Another solution consists in defining point as a
virtual moving target that describes the path. The movement
control of this target introduces a supplementary virtual state
into the system, but transforms the previous constraint to

. The behavior of the virtual target
(captured in the expression of ) is chosen according to the
derivation of Lyapunov functions in the backstepping process,
and results in a very cooperative target that quickly converges
to the closest point on the path. Expressed in the Serret–Frenet
frame , the kinematic equations of the problem are rewritten
as

(5)

3) Mathematical Formulation: Equipped with this for-
malism[AU: Formulation?], we can now state the
kinematic control problem that is addressed in Section III-A.

: Given the robot kinematic model (3), the
robot dynamic model (4), and a set of available
measurements coming from robot sensors, compute

, so that and con-
verge to as goes to .

This problem will be extended in Section III-B to explicitly
deal with vehicle dynamics. The dynamic control problem
is stated as follows.

: Given the robot kinematic model (3), the
robot dynamic model (4), and a set of available
measurements coming from robot sensors, compute

, so that and
converge to as goes to .

Note that the validity of statement implies that there is no
external disturbance, sensor noise, or unmodeled dynamics, and
a perfect knowledge of the system parameters. Consider that
there is no external disturbances, sensor noise, or unmodeled
dynamics, but that the parameters are not perfectly known.
Section III-C describes another version of the dynamic con-
troller that guarantees robustness against parameter uncertainty
and solves problem , stated as follows.

: Given the robot kinematic model (3), the robot dy-
namic model (4), a set of available measurements coming
from robot sensors, and a set of reasonable estimation
of the nine parameters of the dynamic model, compute

, so that and
converge to as goes to .

The effects of external disturbance, sensor noise, or unmod-
eled dynamics are not treated in this paper. The solution consists
in proving the boundedness of the system output in the presence
of bounded external disturbance and unmodeled dynamics ef-
fect, and extracting from the expression of the bounded system
output the meaningful information related to the performance of
the controlled system.

A proposed solution for problems is de-
scribed in the following section.
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III. CONTROLLER DESIGN

This section describes the solutions to problems , , and
, stated in the previous section. In the following, we will

extensively use a corollary of Barbalat’s lemma (CBL), and
LaSalle’s theorem, stated as follows.

Barbalat’s Lemma: If is a double differentiable function
such that is finite as goes to , and such that is
uniformly continuous, then tends to as tends to .

Uniform Continuity Sufficient Condition: is uniformly
continuous if exists and is bounded.

Corollary of Barbalat’s Lemma: If is a double differen-
tiable function such that is finite as goes to , and such
that exists and is bounded, then tends to as tends
to .

LaSalle’s Theorem: Let be a positively invariant set of
the system described in (3) and (4). Suppose that every solu-
tion starting in converges to a set and let be the
largest invariant set contained in . Then, every bounded solu-
tion starting in converges to as tends to .

For details of Barbalat’s lemma and its application, please
refer to [37]. For demonstration and application of LaSalle’s
theorem, please refer to [35] and [29]. Note that the application
of LaSalle’s theorem is restricted to autonomous systems. In our
situation, the fact that the desired forward velocity is constant
allows us to consider our system as autonomous.

A. Kinematic Controller

With the formalism developed previously, we may now state
the following theorem.

Proposition 1: Consider the robot models (3) and (4) and let
a desired approach angle be defined by

(6)

where is a positive gain and . Further, assume
that measurements of are available from robot sensors
and that a parameterization of the path is available such that
given , the curvilinear abscissa of a point on the path, the
variables and are well defined and com-
putable. Then, the control law

(7)

solves problem , with , , and three arbitrary posi-
tive gains, the assumption that , and given the initial
relative position .

Proof: The proof is structured in three parts. First, we show
that the system asymptotically follows the reference angle .
Then, we show that the reference asymptotically drives the robot
onto the path. Finally, we use the LaSalle invariance principle
to concatenate the two previous convergence properties.

Consider the following Lyapunov function
. It is straightforward to show that the choice of the control

yields . That is, is a positive and
monotonically decreasing function up to a well-defined limit

(8)

Simple derivation shows that , which is
bounded since (8). Then, using the CBL, we conclude that

. That is

(9)

The system asymptotically follows the reference de-
fined in (6), so the trajectories of the system will asymptotically
reach the invariant set defined as

(10)

For the sake of clarity, define , , and
, and recall (5). Study the trajectories of the system onto

the invariant set . Consider the Lyapunov candidate
, . It is straightforward to show that

the choice

(11)

leads to

(12)

since onto the set [AU: Delete "onto"? It is un-
clear here. Please rewrite.] ,

, , , and using the assump-
tion , covered by the necessary assumption for
the definition of (2). Therefore, is finite.

Moreover, it is straightforward to show that is bounded,
and we use the CBL to prove that , which im-
plies and , since (12). Hence,

is the unique stable point of , and every trajec-
tory of the system starting in asymptotically converges to the
origin.

We now use LaSalle’s invariance principle. Let . The
first part of the proof showed that every solution starting in
asymptotically converges to . The second step showed that
the largest invariant set of is , so every
bounded solution starting in converges to as tends to .

B. Dynamic Controller

The development of the dynamic control is based on the pre-
vious result, considering the kinematic control as a reference,
called , for the dynamic control

(13)

Let and consider the Lyapunov candidate

(14)
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with being a positive gain. Simple computations show that

(15)

where in our study case. Recall that ,
then

Note that this condition is more restrictive than necessary.
The condition that the desired velocity profile is invariant is
enough. It is now straightforward to compute the control inputs

and by solving the dynamics (4) to obtain

(16)
We can now state Proposition 2 that solves problem .
Proposition 2: Consider the robot models (3) and (4) and

the desired approach angle defined in (6), where is a posi-
tive gain and . Further, assume that measure-
ments of are available from robot sensors and that
a parameterization of the path is available such that, given ,
the curvilinear abscissa of a point on the path, the variables

are well defined and computable.
Define as the desired forward velocity. Then, control law
(16) and expression (7), with and positive
gains, the assumption that , and given the initial rela-
tive position , solve problem .

Proof: Considering the (14) Lypaunov function, and
using the CBL, as previously, it is straightforward to show that

Thus, the trajectories of the system will reach the invariant
set

Using the same argument as that used in the previous proof
(kinematic case) and the assumption that proves the
convergence of the system to the path.

C. Computation of the Control

The previous control guarantees the asymptotic con-
vergence to the path. Nevertheless, the terms appearing in (15)
are not trivially computable. In particular, the computation of
refers to the evaluation of jerks and through

(17)

Because it is not realistic to have any measurement of these
quantities, the only solution is to rely on a derivation of the dy-
namic model such that

(18)

This emphasizes the assumption made regarding the ne-
glected dynamics of the system. Then, is rewritten

where

Then, the control is computed as

For this expression to be well posed, it must be derived from
the robot design parameter

Analyzing the signs of the hydrodynamic parameters as in
[1], we know the following:

• is always negative;
• is positive if stern dominates;
• is negative if bow dominates.
Thus, in the case of a stern dominant vehicle, the control com-

putation is well posed. For a bow dominant vehicle, the sign of
should be taken into account.

D. Robust Control

This section addresses the question of robustness to param-
eter uncertainties. The previous dynamic control is modified to
relax the constraint of having a precise estimation of the dy-
namic parameters by resorting to backstepping Lyapunov-based
techniques.

Recall that the design of the kinematic reference requires an
estimation of surge and sway acceleration, relying on the dy-
namic model, so the errors due to parameters misestimation
should explicitly be taken into account in the elaboration of the
kinematic reference.

1) Kinematic Reference: In Section III-A, we designed a
kinematic reference (13) that includes the computation of ,
which can be rewritten as
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The expression of functions and parameters is displayed
in the Appendix. Because explicitly appears in the previous
relation, a proper expression of the kinematic reference is ex-
tracted by solving (13) for , and naming as , the kinematic
reference

(19)

with . It should be explicitly es-
tablished that the resulting expression is well posed in the func-
tion of the value of , as mentioned for the dynamic case in
Section III-B. This question will be addressed at the dynamic
level.

The optimal value for is computed with the real value of
parameters and a perfect estimation of the forward acceler-
ation . Then, the use of estimated values of the dynamic
parameters induces an error such that

with , , and
.

Consider the Lyapunov candidate . The
misestimation of the parameters induces a nonnegative deriva-
tive

Because is not negative definite, we cannot conclude any
convergence property, since the effects of the parameter mises-
timation still appear in the Lyapunov candidate. Nevertheless,
these effects will be canceled at the dynamic level, and asymp-
totic convergence will be guaranteed. Consider the suboptimal
kinematic control (19) as a reference to drive the dynamic con-
troller

(20)

given , an estimation of .
2) Robust Dynamic Control: To deal with robustness to

parameter uncertainty, it is necessary to expand the dynamic
control expression (16) to make the parameters explicitly
appear in the equations, and study the incidence of their mis-
estimation. Considering the previous suboptimal kinematic
control as a reference (20), we derive the dynamic control as
in Section III-B, explicitly extracting the dynamic parameters

with

where are computable functions
dependent on the measurements, listed in the Appendix. Then,

is rewritten as

(21)

Consider now the following version of the control :

(22)

Hence, a misestimation of the robot parameters yields a com-
puted control that differs from its optimal version by

with , and so on. Using the expres-

sion of , extracted form (4), is rewritten as

where
. The parameters and the functions are listed

in the Appendix.
Consider the following Lyapunov candidate that captures the

system’s property of convergence to the suboptimal reference
:

and, with control (21) and parameter adaptation scheme

(23)

yields the following derivative:

Consider now the forward control, and expand (16)

(24)

The parameters and the functions are listed in the
Appendix. The misestimation , for ,
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induces a computed forward control different from the optimal
one such that

Then, considering the following Lyapunov candidate:

with control (24) and the following parameter adaptation
scheme:

(25)

leads to a negative–definite derivative

Then, noting that is bounded, the use of the CBL proves
the asymptotic convergence of to . Hence, and vanish
with time

The previous argument implies that the system will asymp-
totically reach the invariant set

(26)

Studying the system trajectories onto the set, we notice
that

hence

Noting that is bounded, and using the invariance principle,
the previous arguments imply

Then, the system will asymptotically reach the invariant set
defined as

(27)

The system trajectories onto this set are described by the
Lyapunov candidate. In this set, the derivative is written

as

The effects of the misestimation of parameter are still
present, and we do not consider the previously used solution of
adapting its estimation since the knowledge of is required
to design a classic adaptive scheme.

The proposed solution consists in relying on switching con-
trol system theory to guarantee that is negative definite. For
more information on switching control systems, please refer to
[27] and [32]. To insure asymptotic convergence, one should in-
sure that

This can be done by choosing two different values and
, guaranteed to overestimate and underestimate the real

value ( and ), and use them such that

if
if

if
if

(28)

using the facts that and . Then, using
(28) switching conditions, we conclude that .

Because eight possible Lyapunov functions are negative def-
inite, and the switching process does not affect the convergence
[27], we can state that

Using the same argument concerning the imbricated invariant
set, it has been shown that the robot asymptotically converges
to the path. We are now able to state Proposition 3 that solves
problem .

Proposition 3: Consider the robot models (3) and (4) and
the desired approach angle defined in (6), where is a posi-
tive gain and . Further, assume that measure-
ments of are available from robot sensors and that
a parameterization of the path is available such that, given ,
the curvilinear abscissa of a point on the path, the variables

are well defined and computable.
Consider that a reasonable estimation of the model parameters

was used to
compute the 11 initial values as
described in the tables of the Appendix, and and such
that , . Define as the desired
forward velocity. Then, the control law

(29)

with the kinematic reference

the adaptation scheme (23), (25) and the switching scheme
(28), with positive gains, the as-
sumption that , and given the initial relative position

, solves problem .
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TABLE I
PATH PARAMETERS

Fig. 2. Infante AUV (IST) during its first sea trial.

Note that the evolution of the parameters is a function of the
excitation of the problem. Analyzing the adaptation equations, it
is easy to see that the adaptation stops when the reference errors

and are equal to zero. This phenomenon is
easily observed for linear systems when the path does not lead
to sufficient excitation, and in this case, the estimated value of
the parameters does not converge to the real value [31], [38].

Another solution, based on switching system theory, is imag-
inable. It consists in developing a switching scheme for all pa-
rameters, as for the parameters. Further research on this topic
is warranted.

IV. SIMULATION RESULTS

The aim of the simulation is to illustrate the efficiency of the
previous controllers in driving an AUV onto a desired path. The
path is characterized by a curvature on a point , parameter-
ized by its curvilinear abscissa . The objective is to regulate the
distance to the path and the heading of the total velocity of the
robot to zero relative to the given path. To test these controllers
in a general case, we have chosen to consider the more complex
path defined in Section IV-A.

A. Path Parameterization

The path is designed in Cartesian space (cf., Table I) and we
assume to have a parameterization that allows the computation
of the following items (given ):

• : the global heading of the virtual target;
• : the path curvature at the target position;
• : the curvilinear derivative of the curvature at the

target position;
• and , the absolute location of the virtual target.
We have chosen a polynomial parameterization of the form

TABLE II
PARAMETERS OF THE SIMPLIFIED MODEL OF THE INFANTE AUV (IST)[AU:
Please add space between unit and number;
please change a period between units to a

\cdot and please use regular font, not italics
to present units ]

TABLE III
DYNAMIC CONTROL PARAMETERS

Fig. 3. System trajectories, when considering a perfect knowledge of the pa-
rameters (simulation 1: solid line; simulation 2: dashed line).

Assuming we have a precise estimation of function , and
given , we compute

The estimation of function is achieved by integration of

The model of the robot is a simplified version of Infante [36],
the AUV developed at the DSOR (Fig. 2), given in Table II.
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Fig. 4. Relative distance robot/rabit evolution, when considering a perfect
knowledge of the parameters (simulation 1: solid line; simulation 2: dashed
line).

Fig. 5. System velocities evolution, when considering a perfect knowledge of
the parameters (simulation 1: solid line; simulation 2: dashed line).

B. Dynamic Controller

The simulations are carried out using the robot parameters
of Table II, the control parameters of Table III, and the path
parameters of Table I.

The simulation results are displayed in Figs. 3–6.
Discussion: Both simulation results of Fig. 3 show a satis-

factory behavior of the AUV, clearly driven to reach and stay
on the path. Fig. 4 indicates the evolution of the relative dis-
tance between the virtual target and the robot, expressed in the
Serret–Frenet frame. The concurrent convergence of and

to zero confirms the desired behavior of the system. Note
that since converges to zero, the virtual target converges to
the closest point on the path. Figs. 5 and 6 show the system ve-
locities’ evolution and the related control activity. Concerning

Fig. 6. Control activity, when considering a perfect knowledge of the parame-
ters (simulation 1: solid line; simulation 2: dashed line).

TABLE IV
INITIAL PARAMETERS ESTIMATION[AU; Please follow the

request in Table II]

the amplitude of the control activity, recall that the simulated
system is heavy (cf., Table II). Note that the tunable parameters
of the proposed control are the control gains , ,
and the guidance parameters, the asymptotic approach angle,
denoted , and the gain , designing the smoothness of this
approach.

C. Robust Controller

To demonstrate the efficiency of the robust scheme, we first
proceed to simulations considering the misestimated parame-
ters of Table IV, without adaptation. The results are given in
Figs. 7–10 (dotted lines).

The robust scheme is tested using the path parameters of
Table I and the control parameters of Table III. The system
parameter estimated values are displayed in Table IV, used to
compute the 11 initial values of the parameter groups. The sur-
rounding values for , , and parameter groups are also
considered. The expression of the parameter groups is listed in
the Appendix

The results are displayed in Figs. 7–10 (straight lines). The
adaptation evolution for parameters , , is given in
Figs. 11 and 12, , in Fig. 13, and , ,
in Fig. 14. The convergence gains have been tuned according to
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Fig. 7. System trajectories using robust control (solid line) and dynamic control
with misestimated parameters (dotted line).

Fig. 8. Relative distance robot/rabit evolution using robust control (solid line)
and dynamic control with misestimated parameters (dashed line).

Fig. 9. Velocities evolution using robust control (solid line) and dynamic con-
trol with misestimated parameters (dashed line).

Fig. 10. Control activity, using robust control (solid line) and dynamic control
with misestimated parameters (dashed line).

Fig. 11. Evolution of the adaptation of parameters p (i = 1; 2; 3) involved in
the computation of �.

Table V, to observe the convergence of the parameters during
the simulation.

Discussion: Trajectories of Fig. 7 clearly indicate the im-
provement of the robust control with respect to the performances
of the dynamic control with misestimated parameters. Note that
since the desired path is getting flatter the convergence of the
dynamic control is achieved much more later than the robust
control results. This compared analysis is confirmed by the evo-
lution of the relative distance between the virtual target and
the robot, displayed in Fig. 8, where the convergence evolu-
tion of the variable is similar to the one in the case of
a perfect knowledge of the parameters (cf., Fig. 4), which is
clearly not the case of the response considering misestimated
parameters, without the robust scheme. Fig. 9 indicates also a
better convergence of the forward velocity to the desired one

, when using the robust control. Fig. 10 displays
the evolution of the control activity evolution with and without
the robust scheme. As expected, the control activity is higher
with the robust control. Moreover, the control activity profile of
the robust control (solid line) presents some important disconti-
nuities, induced by the switching part of the robust scheme, as
one could have expected. The reduction of this chattering effect
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Fig. 12. Evolution of the adaptation of parameters p (i = 4; 5; 6; 7) involved
in the computation of �.

Fig. 13. Evolution of the commutations of parameters involved in the compu-
tation of the kinematic reference r .

Fig. 14. Evolution of the adaptation of parameters involved in the computation
of F .

TABLE V
CONVERGENCE GAINS OF THE ADAPTATION SCHEME

TABLE VI
KINEMATIC REFERENCE PARAMETER GROUPS AND FUNCTIONS

TABLE VII
FORWARD CONTROL PARAMETER GROUPS AND FUNCTIONS

TABLE VIII
HEADING CONTROL PARAMETER GROUPS AND FUNCTIONS

could be a substantial improvement of the method. Figs. 11 and
11[AU: Should it be "Figs. 11 and 12"?] show
the evolution of parameters , , involved in the
computation of . It could be noted that the parameters are not
converging to their real value. This is expected since the related
Lyapunov functions (cf., Section III-D2) that warrants the con-
vergence guaranties of the tracking variables, do not consider
the convergence of the parameters to their actual value. This
is a known behavior of adaptive control, that is, for the linear
case, a problem of excitation of the system. This robust con-
trol is not designed to make the parameters estimation, but to
desensitize the system properties to the parameters misestima-
tion. Fig. 13 shows the evolution of the parameters involved in
the computation of the kinematic reference , according to the
designed switching scheme. Note that one of the assumption of
the problem is that the system is able to switch infinitively fast,
and further research on this topic will include the dwell time
property of the system, to establish the practical convergence
performance of the method. Indeed, including a realistic dwell
time in the study will make it impossible to meet asymptotic
convergence property, and only practical convergence will be
reachable.
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TABLE IX
ELEMENTS OF COMPUTATION OF PARAMETER GROUPS AND FUNCTIONS

TABLE X
ELEMENTS OF COMPUTATION OF PARAMETER GROUPS AND FUNCTIONS

V. CONCLUSION

We have developed a dynamic robust path-following AUV
control that exhibits good performances. The proposed method
uses a hybrid robust scheme, relying on classic adaptation
scheme design of those dynamic parameters that appear with
an affine form, and on switching control for the others. A robot
design limitation reduces the application field of this solution
to torpedo-shaped vehicles that ensure that the ratio
stays far from 1. The asymptotic convergence of the controlled
system is shown in the Lyapunov sense. To complete this study,
disturbance rejection and unmodeled dynamic robustness must
be explicitly addressed, with the introduction of a dwell time,
the shortest switching period of the system. Another approach
is now under study, relying exclusively on switching system
theory. This warrants further research.

APPENDIX

FUNCTIONS AND PARAMETER GROUPS

In the sequel, we present the expression of the functions and
parameter group used in Section III-D.

A. Kinematic Reference

The kinematic references, denoted , is rewritten according
to (19), where functions and parameter groups , ,
have the following expression, displayed in Table VI.

B. Forward Control

The expression of the forward control, denoted , is rewritten
according to (24), where functions and parameter groups ,

, are expressed in Table VII.

C. Heading Control

The expression of the torque control, denoted , is rewritten
according to (29), where functions and parameter groups ,

, are expressed in Tables VIII–X.
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