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Abstract This paper presents a practical solution to the
guidance of a unicycle type robot, including path follow-
ing, obstacle avoidance and the respect of wheeled actuation
saturation constraint, without planning procedure. These re-
sults are based on an extension of previous results on path
following control including actuation saturation constraints.
New solution for obstacle avoidance, with guaranteed per-
formance, is proposed.

Keywords Path following · Obstacle avoidance ·
Saturation constraints

1 Introduction

1.1 Context and objectives

The architecture of an autonomous mobile system can be
seen as a collection of software processes, orchestrized
within a software architecture and run on an hardware archi-
tecture. These processes can be roughly divided in 4 differ-
ent groups, each of them realizing some basic robotic func-
tions, cf. Fig. 1: Navigation, Guidance and Control, Mission
Control and Communication management.

These basic robotic functions are then sequentially or
contextually recruited to realize different type of behaviors,
in order for the mobile system to efficiently operare in a
complex and versatile environment. Some of these behav-
iors, providing decision making and planning capabilities
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Fig. 1 Architecture of an autonomous mobile system

(Path planning, Mission Control, . . . ), are implemented at
a high level of the architecture. Others, requiring rapid re-
action, gain at being implemented at a lower level (Navi-
gation, Guidance and Control, Reactive Obstacle Avoidance
. . . ) and are generally run as periodical processes.

This paper focuses on the Reactive Guidance and Control
subsystem which has to provide a periodical computation of
the system reaction, in order to afford the system with per-
manent basic capabilities as path following, station keeping,
obstacle avoidance, formation keeping. . .

Recent advances in nonlinear control theory (Lyapunov
based design, backstepping. . . ) provides the necessary tools
to design Guidance and Control algorithms with guarantees
of convergence. The Guidance system processes navigation

mailto:lapierre@lirmm.fr
mailto:zapata@lirmm.fr


178 Auton Robot (2012) 32:177–187

data and path parameters in order to provide an achievable
reference to the control system that drives the actuation. In
this context, a guidance system should drive the system to-
wards its current objective, while respecting the actuation
saturation constraint, and providing a reference compatible
with the system dynamics. This last point is not considered
in this paper, and could be tackled using backstepping tech-
niques (Krstić et al. 1995), assuming that the reference is dif-
ferentiable, and is Globally, Uniformly and Asymptotically
Convergent (GUAC). Moreover, this property warrants that,
in the absence of sensor noise or modeling error, the control
system will constantly and perfectly drive the system toward
its objective. The effect of sensor noise will be to degrade
the convergence property, down to a practical convergence,
as far as the sensor suite and the navigation system afford an
evaluation of the system states with a guaranteed and com-
putable upper bound on the estimation error.

The objective of this paper is to propose a low-level reac-
tive Guidance and Control subsystem that aims at preserv-
ing the convergence properties as the following functions are
considered in the algorithm:

– Path following
– Actuation saturation constraint
– Obstacle avoidance

In Lapierre et al. (2006), we proposed a solution for
path following control design of a unicycle type robot, that
formally exhibits Global Uniform Asymptotic convergence
(GUAC) property. In Lapierre and Indiverri (2007) this so-
lution is extended to consider velocity saturation constraints
of the actuators, while preserving the GUAC property. The
solution proposed here, includes obstacle avoidance capabil-
ity, combined with path following behavior. The objective is
to propose a global solution to this problem, which formally
guarantees:

– a Global Uniform Asymptotic Convergence of the robot
to the path, when there is no obstacle, and

– that a minimum distance to the obstacle is respected, ex-
plicitly considering actuator velocity constraints, and

– that the system will retrieve its path following behavior
when the obstruction has been avoided.

In the sequel, the Navigation system is considered as
ideal and provides a perfect estimation of the system states,
and the system models are considered as perfectly known.

1.2 Some bibliographic elements

1.2.1 Path-following

Motion control of autonomous vehicles has received con-
siderable attention during the last few years. The solutions
proposed in the literature can be roughly classified in three
groups:

– point stabilization: the goal is to stabilize the vehicle at a
given point, with a given orientation;

– trajectory tracking: the vehicle is required to track a time
parameterized reference;

– path following: the vehicle is required to converge to and
follow a path, without explicit temporal specifications.

Point stabilization presents a true challenge to control
system designers when the vehicle has nonholonomic (or
nonintegrable) constraints, since there is no smooth (or even
continuous) state-feedback law that will yield stability, as
pointed out by Brockett (1983). To overcome this diffi-
culty three main approaches have been proposed: smooth
time-varying control laws (Canudas de Wit et al. 1993;
Godhavn and Egeland 1997 and Micaelli and Samson 1992)
and discontinuous as well as hybrid feedback laws (Aguiar
et al. 2000; Astolfi 1999; Hespanha 1996; Canudas de Wit
and Sordalen 1992).

The trajectory tracking problem for fully actuated sys-
tems is now well understood and satisfactory solutions can
be found in advanced nonlinear control textbooks. How-
ever, in the case of underactuated vehicles, that is, when
the vehicle has less actuators than state variables to be
tracked, the problem is still a very interesting topic of re-
search. Linearization and feedback linearization methods
(Walsh et al. 1994; Freund and Mayr 1997), as well as
Lyapunov-based control laws (Canudas de Wit et al. 1993;
Fierro and Lewis 1994) have been proposed.

Path following control has received relatively less at-
tention than the other two problems. See the publications
of Samson and Ait-Abderrahim (1991) and Micaelli and
Samson (1993) for pioneering work in the area as well as
Canudas de Wit et al. (1993) and Jiang and Nijmeijer (1999)
and the references therein. Path following systems for ma-
rine vehicles have been reported by Encarnacao et al. (1992).
The underlying assumption in path following control is that
the vehicle’s forward speed tracks a desired speed profile,
while the controller acts on the vehicle orientation to drive
it to the path. Typically, smoother convergence to a path
is achieved, in comparison with the performance obtained
with trajectory tracking controllers, and the control signals
are less likely pushed to saturation. The work presented in
this paper is based on the virtual target principle (Lapierre
et al. 2006), where an added degree on freedom captures
the motion of a virtual target on the path, allowing to relax
the initial condition constraint exposed in Samson and Ait-
Abderrahim (1991). Moreover the introduction of the virtual
target will bring some advantages which will be exposed in
the sequel.

1.2.2 Inclusion of saturation constraint

The abovementioned solutions of the literature provide con-
trollers which may not be realistic, since they do not ex-
plicitly consider the effective actuators capacity, while they
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could require large actuator inputs to achieve convergence.
An interesting study, applied to Swedish wheeled robot, can
be found in Indiveri et al. (2009). The authors show that
a saturated situation in the actuator induces an undesired
coupling between the longitudinal and rotational velocities
controls, loosing the possibility to exploit the advantageous
holonomic property of the system. Hence, they propose a
modification of the control expression, allowing to priori-
tize the execution of the basic robotic tasks (position and
heading), in order to respect the saturation constraint on the
actuators, while the tracking error converges to 0. Follow-
ing a behavioral approach, this work has been extended to
non-holonomic system in Arrichiello et al. (2009). The work
presented here is based on Lapierre and Indiverri (2007),
where the path following algorithm exposed in Lapierre et
al. (2006) is extended to cope with actuation limitation, us-
ing saturating functions proposed in Jiang et al. (1998), with
the objective of preserving the convergence property of the
path following algorithm, while respecting at any time the
saturation constraint of the actuators. Basic ideas are ex-
posed in the sequel.

1.2.3 Obstacle avoidance

Obstacle avoidance strategy is another major issue to per-
form reliable applications. The system reaction can be com-
puted as replanning function (Path replanning) or directly in
the controller as a reflex behavior.

Planning a new path, free of potention collision, is still a
major issue of the field. The reaction quantification is gen-
erally made according to an arbitrary positive potential field
functions attached on obstacles that repels the robot, and an
attractive field located on the goal. The main difficulty of
this method is to design an artificial potential function with-
out undesired local minima. Elnagar and Hussein (2002),
propose to model the potential field by Maxwell’s equa-
tions that completely eliminate the local minima problem,
with the condition that an a priori knowledge of the envi-
ronment is available. These methods are generally compu-
tationally intensive. Iniguez and Rossel (2002), proposes a
hierarchical and dynamic method, that works on a non reg-
ular grid decomposition, simple and computationally effi-
cient, both in time and memory. Ge and Cui (2000) address
the problem of the adaptation of the potential field magni-
tude, in order to avoid the problematic situation where the
goal is too close from an obstacle inducing an inefficient
attractive field, called the Goals Non-Reachable with Obsta-
cles Nearby. The work of Louste (1999) tackles the prob-
lem of coupling a path planning method, based on viscous
fluid propagation, with nonholonomic robot kinematics re-
strictions. All these elegant solutions have clear advantages
and the implementation of one of them is mandatory within
the architecture, since they can provide a globally feasible

path (if exists) that drives the system toward the objective.
Nevertheless, planning a new path in a complex and versa-
tile environment induces on the architecture a computational
load that may not be compatible with a periodical recruit-
ment, within a control period.

Another approach, based on a reflex behavior, is using the
Deformable Virtual Zone (DVZ) concept, in which a robot
kinematic dependent risk zone is located on the robot, sur-
rounding it. The deformation of this zone is due to the in-
trusion of proximity information (obstacles within the risk
zone). The system reaction is made in order to reform the
risk zone to its nominal shape, implicitly going away from
obstacles (Zapata et al. 2004). A combination of this method
with the path following algorithm of Lapierre et al. (2006)
is proposed in Lapierre et al. (2007). The limitation of this
method is due of the virtual and arbitrary dynamics of the
risk zone, that brings complexity in the control algorithm,
and makes the whole system difficult to tune.

Another approach, classified as path deformation pro-
poses to locally modify the shape of the path in order to
contour the detected obstacle. Sgorbissa et al. (2010) pro-
pose a path deformation based on a Gaussian bell shape that
allows for contouring the obstacle. In this present paper, we
use a similar principle based on the definition of a Safe Ma-
neuvering Zone (SMZ) originally introduced in Lapierre et
al. (2010). As it will be exposed later, this solution uses the
basic path following controller previously exposed, exploit-
ing the convergence property of the algorithm.

It has to be noticed that the two last methods are local
and cannot provide a global solution. On the other hand the
planning methods are able to provide a global solution, if
exists. This could be advantageously used within a planning
process, that could be computationally intensive, and cannot
be integrated at the reactive level. The solution is a combina-
tion of both types of methods. One is providing a path to be
followed, free of obstacles as far as the environment knowl-
edge allows for it, and the other allows for locally adapt-
ing the system trajectories in order to reactively avoid un-
charted/misplaced/moving obstacles.

2 Notation and basic models

This section introduces the notation which is used in this pa-
per. As a generic model for a nonholonomic mobile system,
we consider a unicycle-type vehicle, of width 2L, equipped
with 2 rear wheels of radius R and a passive front wheel
(see Fig. 2). The velocity of the center of mass of the robot
is orthogonal to the rear wheels axis. Define {O} an inertial
(universal) frame and {B} the body frame, attached to the
vehicle onto the middle point of the rear wheels axis. Let
PR = [x, y]T design the absolute coordinate of the origin
of {B}, ψ is the yaw angle of the vehicle. Let u and r de-
note the forward and rotational velocity of the vehicle, and
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Fig. 2 Unicycle’s parameters and frame definition

wleft and wright express the wheels angular velocity, and the
control inputs. The maximum achievable angular velocity
of the wheels is denoted wmax. Following this notation, the
kinematic model of the unicycle is expressed as:

ẋ = u cosψ,

ẏ = u sinψ,

ψ̇ = r.

(1)

The expression of the actuation model is:

wleft = (u − Lr)/R,

wright = (u + Lr)/R.
(2)

Define a path to be followed, denoted P , and a Serret-
Frenet frame {F(s)}, attached on a point of the path de-
fined by its curvilinear abscissa s. The orientation of {F }
with respect to {O} is denoted as ψF . Assuming that the
absolute coordinates of the origin of {F(s)} is denoted by
PPF = [xF (s), yF (s)]T , TPF(s) = [PPF,ψF ] is defining the
posture of {F(s)}, also called in the sequel path-following-
target.

Clearly, the robot position PR can be expressed as [x, y]T
in {O} or [s1, y1]T in {F(s)}. Let define the path curvature
of the point located at s, as c(s). The introduction of the
variable θ = ψ − ψF , and the combination with (1), yields
to the kinematic model of the unicycle in {F } as:

ṡ1 = −ṡ(1 − cy1) + u cos θ,

ẏ1 = −cṡs1 + u sin θ,

ω = r − cṡ

(3)

where ω = θ̇ .
Equation (3) captures the kinematic behavior of the uni-

cycle system, expressed in the Frenet frame, attached to
the path on a point described by its curvilinear coordi-
nate s. (s1, y1) are the coordinates of the robot in the Frenet
frame {F }. Note that in this expression, we are using an
added virtual degree of freedom, that is the path following

Fig. 3 Proximity sensors and safety maneuvering zone (SMZ) defini-
tion

virtual target evolution ṡ. As we will see in the sequel, and
mathematically stated and solved in Lapierre et al. (2006),
this procedure permits to solve the path following problem
without restriction. Indeed, classically, for path following
control design, the point to be reached on the path by the
system is chosen as the closest point. This method has the
major drawback of constraining the initial position of the
robot in function of the maximum curvature of the path. This
constraint is relaxed with the virtual target method reported
in Lapierre et al. (2006).

In the following we use the subscript (.)OA to design vari-
ables related to Obstacle Avoidance. For obstacle avoidance
purpose, the robot is equipped with m proximity sensors,
pointing in m different directions regularly distributed on
the robot, and concurrently crossing onto the middle point of
the rear wheels axis. These sensors periodically provide the
distance to obstacle information as d = [d1, d2, . . . , dm]T in
the absolute direction α = [α1, α2, . . . , αm]T . Clearly, αi =
ψ + (2π)(i/m), for i = 0, . . . ,m − 1. Consider the sensor
that provides the smallest di , and define COA as the absolute
position of that closest sensor/obstacle intersection. Define
a safety maneuvering zone (SMZ), denoted SOA(rS ,COA),
as a circle of radius rS centered in COA, as shown in Fig. 3.
Consider the point POA = [xOA, yOA]T as the intersection be-
tween PRCOA and SOA. Define TOA = [POA,ψOA], called in
the sequel obstacle-avoidance-target, where ψOA will be de-
fined later.

3 Control design

This section presents the methodology to design a low-level
reactive Guidance and Control subsystem, that aims at pre-
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serving convergence properties as the following functions
are considered in the algorithm:

– Path following
– Actuation saturation constraint
– Obstacle avoidance

3.1 Path-following control design

The solution to the problem of path following admits an in-
tuitive explanation: a path following controller should look
at (i) the distance from the vehicle to the path and (ii) the
angle between the vehicle velocity vector and the tangent to
the path, and reduce both to zero. This motivates the devel-
opment of the kinematic model of the vehicle in terms of
a Serret-Frenet frame {F } that moves along the path; {F }
plays the role of the body axis of a path following target
that should be tracked by the vehicle. Using this set-up, the
abovementioned distance and angle become the coordinates
of the error space (s1, y1, θ) where the control problem is
formulated and solved, as expressed in (3).

Motivated by the work in Micaelli and Samson (1992),
the Serret-Frenet frame {F } that moves along the path to be
followed is used with a significant difference: {F } is not at-
tached to the point on the path that is closest to the vehicle.
Instead, the origin of {F } along the path is made to evolve
according to a conveniently defined function of time, effec-
tively yielding an extra controller design parameter. As it
will be seen, this seemingly simple procedure allows to lift
the stringent initial condition constraints that arise with the
path following controller described in Micaelli and Samson
(1992), effectively warranting a global solution, i.e. what-
ever the initial conditions.

Equipped with the previously defined formalism, the
problem under study is to design a kinematic control law,
in terms of [wleft,wright, ṡ] that asymptotically drives a sin-
gle unicycle robot to the path, with a desired arbitrary for-
ward velocity profile ud . We introduce the approach angle
δ := −θA tanh (kδy1), where kδ is an arbitrary positive gain,
and θA defines the asymptotic desired approach, which de-
fines the approach angle when |y1| is huge. Traditionally,
θA = π/2, which implies that the system is driven to the
path with a relative incidence of π/2, i.e. perpendicular to
the path. Then, as shown in Lapierre et al. (2006), the fol-
lowing control law solves the path following problem

wleft = (ud − LrPF)/R,

wright = (ud + LrPF)/R,

ṡ = u cos θ + Kss1

(4)

where

rPF := δ̇ − K1(θ − δ) + cṡ (5)

and K1 and Ks are arbitrary positive gains.

This solution is Globally Exponentially Convergent
(GEC) and provides a useful decoupling between the head-
ing and the forward velocity controllers. The reader is in-
vited to refer to Lapierre et al. (2006) for complete proof,
extension to dynamics and robustness.

Note that the guidance objective for path following is
achieved when θ −δ = 0, or equivalently when ψ = ψF +δ.
We introduce the global path following heading reference:

ψPF := ψF + δ. (6)

3.2 Inclusion of actuation saturation constraint

The consideration of actuation constraint, within the previ-
ous path following strategy, has been treated in Lapierre and
Indiverri (2007). It consists in adapting the current forward
velocity reference according to the following constraint:{

(w2
max − w2

left) > 0,

(w2
max − w2

right) > 0
∀t. (7)

Proposition 1 The path following requirement, under actu-
ation saturation constraint, is achieved using the following
kinematic control:

rPF = fr + gruPF (8)

where

fr = −k3 tanh(θ − δ) + k4(.)s1c[1 − s1δ
′],

uPF = ud

umax

Rwmax − L(1/4 + f 2
r )

1 + L(1/4 + g2
r )

,

gr = c cos θ(1 − s1δ
′) + δ′ sin θ,

δ′ = ∂δ

∂y1

(9)

where k4(.) := kk

1+[s1cc(1−s1δ
′)]2 , k3 and kk are chosen posi-

tive, respecting the following conditions:

k3 + kk

2
<

R

L
wmax,

umax := Rwmax − L/4

1 + L/4
,

wmax > L/4R,

ud ≤ umax.

(10)

Finally, the wheel velocity control is obtained with:

wleft = (uPF − LrPF)/R,

wright = (uPF + LrPF)/R,

ṡ = uPF cos θ + kss1.

(11)

Note that uPF = ud is achieved when the yaw control
rPF = 0. Moreover, since the surge control uPF can be
reduced to zero in case of a strong yaw control (rPF =
R
L
wmax), any continuous path is followable, for any value
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of the curvature c. This is of course a consequence of the
unicycle-type system kinematics. A car-like vehicle does not
share this property. This solution is GUAC and respects the
constraint (7). The interested reader should refer to Lapierre
and Indiverri (2007) for complete proof of convergence.

Proof The proof is organized in two parts. The first one
shows that controller (8), where the control gains are cho-
sen according to (10) respects the saturation constraint (7).
The second part is showing that this controller also yields
GUAC convergence of the robot to the path.

Consider the saturation constraint as expressed in (7).
Injecting the control expression (8) in the actuation model
(2) provides new expressions for the saturation constraint:
R2w2

max − (−Lfr + uPF(1 − Lgr))
2 ≥ 0 and R2w2

max −
(Lfr + uPF(1 + Lgr))

2 ≥ 0. Let’s assume that uPF ≥ 0,
then both previous conditions are met if R2w2

max − (L|fr | +
uPF(1 + L|gr |))2 ≥ 0. The analysis of the previous sec-
ond order inequality easily shows that it is respected if
|fr | < R

L
wmax. On the other hand, since the expression of

fr in (8), one can easily state that |fr | < k3 + kk

2 . It is then
straightforward to see that the respect of the conditions ex-
pressed in (10) guarantees that |fr | < R

L
wmax, and, as a con-

sequence, the saturation constraints in (7) are respected also.
The second part of the proof shows that the control choice

in (8) provides GUAC convergence of the vehicle to the
path. Straightforward computation states that the control (8)
can be equivalently rewritten as: rPF = δ̇ − k3 tanh(θ − δ) +
ccṡ. Considering the Lyapunov candidate V = 1

2 (θ − δ)2,
in conjunction with the previous expression of the control
yields: V̇ = −k3 tanh(θ − δ)(θ − δ) ≤ 0. Since V is posi-
tive definite and V̇ is strictly negative if θ �= δ, we conclude
that V is bounded and has a finite limit as t tends to ∞.
Moreover, simple derivation shows that V̈ is bounded, that
induces that V̇ is uniformly continuous. Hence, the neces-
sary requirements for an application of the Barbalat’s lemma
are met. Then we conclude that the system trajectories con-
verge uniformly to a positive invariant set Ω := {(s1, y1, θ) :
θ = δ}. At this point, and because the system is autonomous,
we restrict the domain of study to the set Ω . Consider
now the Lyapunov candidate V1 = 1

2 (s2
1 + y2

1)|Ω . Clearly
the choice for ṡ in (11) implies that V̇1 = y1uPF sin δ −
k4(.)s

2
1 ≤ 0, since the definition of δ. Simple derivation

shows that the uniform continuity is related to some triv-
ial conditions, discussed in Lapierre and Indiverri (2007).
Finally, the same argument than previously used is invoked
to conclude that Ω1 := (s1, y1, θ) : s1 = y1 = 0 is an invari-
ant set of Ω , and moreover, since the definition of δ, Ω1 is
reduced to the origin. At last, the LaSalle’s invariance prin-
ciple is used in order to show the GUAC convergence of the
trajectories to Ω1, that is the origin, i.e. (y1, s1, θ) = 03. �

For a lucid exposition of the control design and the
proofs, the reader should refer to Lapierre and Indiverri
(2007). The advantages of this solution are:

– The surge velocity is naturally reduced as the heading
control increases. As we will see in the sequel, this be-
havior will be very useful in the obstacle avoidance prob-
lems.

– Any continuous path is followable.
– It provides a GUAC convergence of the vehicle to the

path.

3.3 Obstacle avoidance: the safe maneuvering zone (SMZ)

The objective here is to afford the robot with obstacle avoid-
ance capability, while preserving the GUAC property of the
path following controller. The idea is to treat the problem
as a Guidance functionality allowing for switching from the
path-following target (TPF) to the obstacle avoidance target
(TOA), when necessary.

3.3.1 The safe maneuvering zone: principle

The closest proximity sensor information is considered, and
the absolute position of the impact (intersection between
proximity sensor/obstacle) is computed and stored, and de-
noted COA. Note that COA is updated only if the closest sen-
sor k provides dk < |PRCOA|. The SMZ is then defined as
SOA(rS ,COA), where rS is, for the moment, the arbitrary
chosen SMZ’s radius.

We introduce a boolean variable σOA according to:

σOA := 1 if [(|PRCOA| < 2rS ) & (ψPF ∈ SOA)],
σOA := 0 otherwise.

(12)

The condition (ψPF ∈ SOA) means that the ray start-
ing from the robot with absolute direction ψPF crosses the
circle SOA. The first condition in (12), expresses the fact
that the closest impact COA is inside the SMZ circle. The
second condition (ψPF ∈ SOA) denotes the situation where
the global path following heading reference is crossing the
SMZ, i.e. the path following controller drives the system
within the SMZ. When both conditions are met, obstacle
avoidance is necessary, σOA = 1, and the current reference
switches from TPF to TOA. On the other hand, the system
is allowed to disengaged from obstacle avoidance strategy
when at least one of the condition is not met.

We also introduce another boolean variable ΣOA that
records the ‘side’ (portboard/starboard) where the first im-
pact occurred. This ‘side’ will be kept until the necessity for
obstacle avoidance vanishes (i.e. σOA = 0). Consider that the
first closest impact has been given by the sensor k, then

ΣOA := 1 if [(αk ∈ [0,π]) & (σOA = 1)],
ΣOA := 2 if [(αk ∈ [π,2π]) & (σOA = 1)],
ΣOA := 0 otherwise.

(13)
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Then, if σOA = 1, TOA exists, and ψOA is chosen as one of
the two directions of the tangent of SOA on TOA. The direc-
tion of

−−−−→
PRCOA is computed as ψRCOA

:= atan2((yOA − y),
(xOA − x)), where atan2() is the four quadrants arctangent
computation function. The ψOA direction is chosen accord-
ing to

ψOA := ψRCOA
+ π/2, if [ΣOA = 1],

ψOA := ψRCOA
− π/2, if [ΣOA = 2]. (14)

This particular choice induces an interesting behavior.
When the first detection is made on portboard (obstacle on
the left side, ΣOA = 1), the choice ψOA = ψRCOA

+ π/2 the
system is contouring the obstacle by the right, and keep this
strategy as fas as σOA = 1. Similar strategy occurs when the
initial detection is made on starboard. This is allowing for
avoiding the known trap situation, called corner situation in
Lapierre et al. (2007), where obstacles are present on both
sides. This computation of ψOA induces a U-turn in such a
situation. This implies that the ability of the vehicles to enter
and maneuver into a narrow corridor, for example, depends
on the size of the SMZ, i.e. rS .

Moreover, an unbounded definition of the angles in-
volved in the computation of the second condition of (12),
i.e. {ψ,ψPF,ψOA} ∈ [−∞,+∞], induces another interest-
ing behavior. Since the vehicles are ‘keeping the contact’
with obstacles on the same side (portboard/starboard), they
naturally find an issue from the entrance to the exit of a 2D
maze, if the solution exists and, consecutively, contour the
obstacles to converge again to the path, when σOA = 0. As a
consequence a solution exists if there is a continuous region,
free of obstacle, with a minimum width of 2rS .

Finally, the control is achieved in considering TOA and
1/rS instead of TPF and c, within the control expres-
sion (11).

Now an interesting question arises: what performances
are expected from this obstacle avoidance strategy? In the
following, we propose a method to chose the size of the
SMZ, rs , such that the induced maneuver is guaranteed to
be performed within a global amplitude less than rs .

3.3.2 Choice of rs

The aim of the following propositions is to find a method to
choose the control gains and rs , in order to guarantee that
the avoidance is safely performed. This is achieved using a
set of conditions, exposed in the following statements. The
objective is to find a feasible solution. Optimization comes
after.

Some preliminary remarks have to be exposed. Once the
obstacle avoidance strategy is engaged, the robot converges
to TOA, which lives on the SMZ boundary, i.e. a circle of
radius rs . By construction COA, PR and TOA are aligned.
We conclude that s1 = 0 and y1 = ‖COAPR‖. Let denote the

initial instant when the obstacle avoidance is engaged as t0
OA,

then y1(t
0
OA) = 0, and let θ̃0 = θ(t0

OA) − δ(t0
OA) denotes the

initial angle of incidence of the robot with respect to the
SMZ tangent.

Proposition 2 The controller exposed in (8) induces trajec-
tories that remain within the maneuvers induced by the un-
saturated version of the path following controller (5). That
is, given a system situation (y1, s1, θ), the resulting satu-
rated control computation (8) induces a trajectory with a
higher curvature than with (5), i.e.:∣∣∣∣ rPF

uPF

∣∣∣∣ >

∣∣∣∣ rPF

ud

∣∣∣∣, ∀t > t0
OA. (15)

In other words, the use of (8) does not drive the system
closer to the obstacle, than using (5). The rationale of this ar-
gument is to exploit the GEC property of (5), which induces
maneuvers that bound the trajectories induced with (8).
Hence, proving that y1(t) < rs − BS , ∀t > t0

OA, where BS

plays the role of a security margin, with (5) is enough to
prove that the system remains at a minimum distance of BS

from obstacle, using (8).

Proof The idea is to find the condition on the choice of the
control gains, K2 and k3, such that the curvature of the tra-
jectories induced by (5) is always smaller than the one ob-
tained with (8). This is expressed by condition (15).

Using the expression of (5) and (8), and their respective
developments, we can equivalently rewrite Condition (15)
as:

a.b.k3 tanh (|θ − δ|) > K2(|θ − δ|) (16)

where a = 1+ 1
4 +Lf 2

r

1+ 1
4

and b = Rwmax− L
4

Rwmax− L
4 −Lg2

r

, which under

the conditions (10) are both bigger than 1. When obstacle
avoidance is engaged, the maximum value achieved by θ −δ

is π/2, hence (16) is true if:

k3 > K2

(
1 + π2

4

)
. (17)

�

Conditions (10) have also to be considered, which with
obstacle avoidance particularity (s1 = 0) can be expressed
as k3 < R

L
wmax. Then global condition on the gain k3, ex-

pressed as:

R

L
wmax > k3 > K2

(
1 + π2

4

)
, (18)

restricts the range of admissible values for k3.
Since the previous argument, we can now use the expo-

nential convergence property of the guidance error (θ − δ),
induced by the control (5),

(θ̇ − δ̇) = −K2(θ − δ) ⇒
θ(t) = θ̃0e

−K2t + δ(t), ∀t > t0
OA.

(19)
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Proposition 3 The control (5) induces a bounded behavior
of y1, for which an upper bound Y max > |y1| is computable.

Proof Combining (3) and (19) with the following particular
definition for the approach angle:

δ = − arctan (kδy1) (20)

yields to the differential relation:

ẏ1 = ud√
1 + (kδy1)2

(sin (θ̃0e
−K2t ) − cos (θ̃0e

−K2t )kδy1).

(21)

Since all the multiplicative terms are bounded, it is clear
that y1 is bounded, as expected. In the absence of other
criterion to consider (e.g. energy consumption) the highest
rate of convergence is obtained with kδ big, and K2 max-
imum, i.e. K2 = Rwmax

L
. Recall that kδ defines the slope of

the system approach to the path. Hence, a high value for
kδ induces a perpendicular approach to the path for small
values of y1. In the discretized environment of the proces-
sor onto which the algorithm is implemented, this choice
may induce an undesired chattering behavior. This point
has to be deeper investigated. The computation of the up-
per bound ymax

1 is performed using a numerical resolution

of ẏ1
ud

, for different values of kδ ∈ [0.1,10] and K2 = Rwmax
L

.
Given system parameters, e.g. R = 0.1 m, L = 0.25 m and
wmax = 10π rad/s, (21) is solved, and the maximum value
of ymax

1 (kδ)/ud is computed and stored. Figure 4 shows the
expected maximum penetration of the system within the
SMZ, i.e. ymax

1 /ud , versus the guidance’s gain of the desired
approach, i.e. kδ . Clearly the best behavior is achieved for
big kδ , and admits a lower bound. This lower bound corre-
sponds to the limit situation for kδ → ∞, where the dynam-
ics of the intrusion responds to ẏ1|kδ→∞ = − cos (θ̃0e

−K2t ).
Hence, given system parameters R, L and wmax, the slope of
the desired approach kδ and the desired forward velocity ud ,
an upper bound to the maximum intrusion is computable,

referring to Fig. 4, and Y max = [ ymax
1
ud

](kδ)ud . �

Hence, given a safety margin BS , the radius of the SMZ
is chosen as:

rs = Y max + BS. (22)

3.3.3 Some illustrative simulations

We illustrate the performances of the solution using the
path depicted at Fig. 5. The considered system and con-
trol parameters are given at Table 1 considered, where k3 <
Rwmax

L
1

1+ π2
4

, according to the previous argument.

The evolution of the system velocities are drawn at Fig. 6
and indicates the respect of the saturation constraint (7).

Fig. 4 Maximum penetration within the SMZ, versus the approach
parameter kδ

Fig. 5 System trajectory

Table 1 System and control parameters

R = 0.1 m L = 0.25 m wmax = 10 · π

k3 = 3.5 kδ = 1 k1 = 1

Finally, Fig. 7 shows the evolution of the variables y1 and
the minimum distance to the obstacles, when obstacle avoid-
ance strategy is engaged. Clearly the system does not get
closer to the obstacle than BS = 0.5 m, and the maximum
penetration within the DVZ does not exceed the expected
bound, i.e. Ymax = 0.2721 · ud = 0.5442 m.

Figures exposed in Fig. 8 decompose the system trajec-
tory with respect to some particular instants. Figure 8(a) il-
lustrates the system behavior, approaching the desired path
and tracking the path following virtual target TPF , far from
any obstacle. Figure 8(b) shows the first instant when the
proximeters detect an obstacle, at point denoted COA. The
SMZ (SOA), centered in COA with radius rS , is built. Next
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Fig. 6 System velocities

Fig. 7 Evolution of y1, and minimum distance to obstacle

Fig. 8(c) shows the evolution of the new virtual target TOA,
living on SOA and positioned on the intersection of SOA and
PRCOA. Note that the path following virtual target TPF con-
tinues its progression on the path, converging to the clos-
est point between the robot and the path, as expected with
the path following virtual target controller (11). Figure 8(d)
shows a change in COA, while another part of the obstacle is
getting closer. Note the orientation of the absolute path fol-
lowing heading ψPF that still crosses the SOA, that keeps the
obstacle avoidance behavior engaged. The vehicle is then
following the obstacle, as shown at Fig. 8(e). In fact, in this
situation, the system is memorizing the actual COA, which is
updated only if a closer detection occurs. If for any reason,
the obstacle vanishes (e.g. dynamic obstacle) the system will
keep considering the actual COA and turn around it until
the condition of disengagement form Obstacle Avoidance to
Path Following is filled. This behavior is illustrated Fig. 8(f),
where the robot is contouring a salient angle of the obstacle.
In this situation, the desired system trajectory is a portion of
the circle SOA. Figure 8(g) shows the instant when the orien-
tation of the path following desired heading ψPF leaves the
circle SOA, consequently disengaging the Obstacle Avoid-
ance behavior, and tracking now the path following virtual

Fig. 8 Snapshots of the simulation

target TPF . Note that during the Obstacle Avoidance behav-
ior, the path following virtual target was still continuing its
progression on the path. Then, as described at Fig. 8(h) the
robot meets the path following virtual target TPF , after hav-
ing contoured the obstacle.

4 Conclusion

This paper proposes a solution to the control of movement
of a unicycle-type robot, including path-following and ob-
stacle avoidance, while respecting the actuation saturation
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constraint. The goal is to provide a solution with guaranteed
performances. That is, in our context, to drive the system
to globally, uniformly and asymptotically converge to the
path, when possible, and contour the unpredicted obstacles,
respecting a minimum distance between the robot and the
obstacle. This guaranteed minimum distance is a function of
the system capability, in terms of actuation saturation con-
straint. Illustrative simulated examples are given.

An extension of this work will use the virtual target prin-
ciple to generalize the method to multiple-vehicles system,
including collision avoidance capability, in the presence of
communication delay in the necessary information to ex-
change within the formation.
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