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Nonlinear Path-Following Control of an AUV
Lionel Lapierre*, Didik Soetanto

Abstract

A new type of control law is developed to steer an autonomous underwater vehicle (AUV) along a desired path. The
methodology adopted for path-following deals explicitly with vehicle dynamics. Furthermore, it overcomes stringent initial
condition constraints that are present in a number of path-following control strategies described in the literature. Controller
design builds on Lyapunov theory and backstepping techniques. The resulting nonlinear feedback control law yields convergence
of the path-following error trajectory to zero. Simulation results illustrate the performance of the control system proposed.

Index Terms

Nonlinear Control, Path-following, Underactuated Vehicles, Autonomous Underwater Vehicles.

I. INTRODUCTION

RAPID progress in marine robotics is steadily affording scientists advanced tools for ocean exploration and exploitation.
However, much work remains to be done before marine robots can roam the oceans freely, acquiring scientific data on

the temporal and spatial scales that are naturally imposed by the phenomena under study. To meet these goals, robots must
be equipped with systems to steer them accurately and reliably in the harsh marine environment. For this reason, there has
been considerable interest over the last few years in the development of advanced methods for marine vehicle motion control.
Namely, point stabilization, trajectory tracking, and path-following control.

Point stabilization refers to the problem of steering a vehicle to a final target point, with a desired orientation. Trajectory
tracking requires a vehicle to track a time-parameterized reference curve. Finally, path-following control aims at forcing a
vehicle to converge to and follow a desired spatial path, without any temporal specifications. The latter objective occurs for
example when it is required that an AUV examine an area by performing a ”lawn mowing” maneuver along desired tracks
with great accuracy, at speeds determined by a scientific end-user. The underlying assumption in path-following control is that
the vehicle’s forward speed conforms to a desired speed profile, while the controller acts on the vehicle’s orientation to steer it
to the path. Typically, smoother convergence to a path is achieved when path-following strategies are used instead of trajectory
tracking control laws, and the control signals are less likely to reach saturation.

This paper proposes a new methodology for the design of path following systems for AUVs. The reader is referred to the
work of Micaelli and Samson (Micaelli and Samson, 1992 and 1993) and the references therein for related ground-breaking
work in the field of land robots, where powerful nonlinear path-following control structures were introduced. It is important to
remark that even though the problem of path-following is essentially solved for land vehicles, the same does not hold true for
marine craft. This is due to the fact that dynamics play a key role in the motion of the latter, thus requiring the development
of methodologies for accurate path-following that take explicitly into account the presence of possibly complex, nonlinear
hydrodynamic terms. This is in striking contrast with land vehicles, where methodologies that build on pure vehicle kinematics
are often adequate for control.

The present paper builds on previous results obtained by Encarnação and Pascoal (Encarnação and Pascoal, 2000) and in
(Encarnação et al., 2000), where the results in (Micaelli and Samson, 1992 and 1993) were extended to deal with the control of
marine vehicles in three-dimensional space, and to address explicitly the presence of non-negligible marine vehicle dynamics.
The methodology for path-following proposed in (Encarnação et al., 2000) can be easily understood by recalling that the total
velocity vector of an AUV is not necessarily aligned with the vehicle’s main axis, as is the case for wheeled robots (AUVs
sideslip). However, by drawing a simple analogy between the problems of path-following for wheeled robots and AUVs,
the latter can be cast as the equivalent problem of aligning the total AUV velocity vector with the tangent to the path by
manipulating the vehicle’s yaw rate. It is important to remark that in spite of its broader scope of application, the results in
(Encarnação et al., 2000), inherit the major shortcoming already present in the path following control strategy for wheeled
robots described for example in (Micaelli and Samson, 1993) : the initial position error must be smaller than the smallest
radius of curvature present in the path.

The work reported in this paper lifts this restriction entirely. This is achieved by controlling explicitly the progression rate
of a ’virtual target’ to be tracked along the path, thus bypassing the problems that arise when the position of the virtual target
is simply defined by the projection of the actual vehicle onto that path. See the work of Soetanto et al., (Soetanto et al., 2003)
where a similar technique was first proposed for wheeled robots. This design procedure effectively creates an extra degree of
freedom, that can then be explored to avoid the singularities that occur when the distance to path is not well defined (this
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occurs for example when the vehicle is located exactly at the center of curvature of a circular path). Controller design starts at
a kinematic level and evolves to a dynamic setting using backstepping techniques. The resulting control strategy yields global
convergence of the actual path of the vehicle to the desired path.

As remarked in (Soetanto et al., 2003), the idea of exploring the extra degree of freedom that comes from controlling the
motion of a virtual target along a path seems to have appeared for the first time in (Casalino et al., 1995), for the control
of wheeled robots. This idea was later extended to the control of marine craft in (Aicardi et al., 2001). However, none of
these references addresses the issues of vehicle dynamics. Furthermore, the methodologies adopted for control system design
in (Casalino et al., 1995) and (Aicardi et al., 2001) build on an entirely different technique, that requires the introduction
of a nonsingular transformation in the original error space. Interestingly enough, a very recent publication explores the same
concept of a virtual target for path following in wheeled robots, (Diaz et al., 2002).

The paper is organized as follows. Section II formulates the problem of path-following control for an AUV. Section III
develops a nonlinear path-following control law that deals explicitly with vehicle dynamics. The performance of the control
system proposed is illustrated in simulation in Section IV. Finally, Section V contains the conclusions, and describes some
problems that warrant further research.

II. PROBLEM FORMULATION

This section introduces the simplified dynamic model of an AUV in the horizontal plane, and provides a rigorous formulation
of the problem of steering it along a desired path.

The type of AUV considered in this paper is equipped with two identical back thrusters, mounted symetrically with respect
to its longitudinal axis. Thus, the vehicle is underactuated since it lacks a lateral thruster. The common and differential modes
of the thrusters generate a force F along the vehicle’s longitudinal axis and a torque Γ about its vertical axis, respectively. In
this study, a full dynamic model of the INFANTE AUV operated by the Institute for Systems and Robotics (ISR) of Lisbon
will be used, see Figure 2 and Table II. It is assumed that only the back thrusters are used to maneuver in the horizontal plane.

A. Vehicle Modeling. Kinematics and Dynamics.

The following notation will be used in the sequel. The symbol {A} := {xA, yA, zA} denotes a reference frame with origin
OA and unit vectors xA,yA, and zA. Given two reference frames {A} and {B}, B

AR is the rotation matrix from {B} to
{A}. Following standard practice, the general kinematic and dynamics equations of a vehicle can be developed using a global
coordinate frame {U} and a body-fixed coordinate frame {B}, as depicted in Figure 1. Let Q denote the center of mass of the
vehicle, which we assume is coincident with OB , and let q = [x, y, 0]T be the position of Q in {U}. Further let ψB denote the
yaw angle that parametrizes the rotation matrix from {B} to {U}. Let v t = [u, v, 0]T be the velocity of Q in {U} expressed
in {B}, where u and v are the longitudinal (surge) and transverse (sway) velocities, respectively.

With this notation, the kinematic equations of the AUV can be written as

ẋ = u cos(ψB) − v sin(ψB)
ẏ = u sin(ψB) + v cos(ψB)
ψ̇B = r

(1)

where r is the vehicle’s angular speed (yaw rate). Assuming u is never equal to zero, define the side-slip angle β = arctan(v/u)
and consider the reference frame {W} that is obtained from {B} by rotating it around the z B axis through angle β in the
positive direction . The above equations can then be re-written to yield

ẋ = vt cos(ψW )
ẏ = vt sin(ψW )
ψ̇W = r + β̇

(2)

where ψW = ψB + β and vt is the xW component of the total vehicle velocity expressed in {W}. Clearly, v t = ||vt|| =
(u2 + v2)

1/2. In the aircraft literature {W} is called the wind frame and will henceforth be called the flow frame. Notice
how the choice of a new frame simplified the first two kinematic equations, and brought out their similarities with those of a
wheeled robot. See (Micaelli and Samson 1993), and (Soetanto et al., 2003).

Neglecting the equations in heave, roll and pitch, the simplified equations for surge, sway and yaw can be written as in
(Fossen, 1994) and (Silvestre, 2000).

F = muu̇+ du
0 = mv v̇ +murur + dv
Γ = mrṙ + dr

(3)

where
mu = m−Xu̇ du = −Xuuu

2 −Xvvv
2

mv = m− Yv̇ dv = −Yvuv − Yv|v|v|v|
mr = Iz −Nṙ dr = −Nvuv −Nv|v|v|v|
mur = m− Yr −Nrur.
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The symbols m and Iz denote the mass and moment of inertia of the AUV respectively, X {.}, Y{.}, and N{.} are classical
hydrodynamic derivatives, and [F Γ]T defines the input vector of force and torque that is applied to the AUV. The model
presented in this paper is based on the model of the INFANTE AUV described in (Silvestre, 2000), to which the reader is
referred for complete details.

B. Path-following. Error Coordinates.

The solution to the problem of path-following proposed here builds on the following intuitive explanation, see Figure 1):
a simple path-following controller should compute i) the distance between the vehicle’s center of mass Q and the closest
point P on the path, and ii) the angle between the vehicle’s total velocity vector v t and the tangent to the path at P , and
reduce both to zero. This motivates the development of the ’kinematic’ model of the vehicle in terms of a Serret-Frenet frame
{F} that moves along the path; {F} plays the role of the body axis of a ’virtual target vehicle’ that should be tracked by
the ’real vehicle’. Using this set-up, the abovementioned distance and angle become the coordinates of the error space where
the control problem is formulated and solved. In this paper, however, a Frenet frame {F} that moves along the path to be
followed is used with a significant difference: the Frenet frame is not attached to the point on the path that is closest to the
vehicle. Instead, the origin OF = P of {F} along the path is made to evolve according to a conveniently defined control law,
effectively yielding an extra controller design parameter. As will be seen, this seemingly simple procedure is instrumental in
lifting the stringent initial condition constraints that are patent in (Micaelli and Samson, 1993), for path-following in wheeled
robots and in (Encarnação et al., 2000), for marine vehicles. The notation that follows is by now standard.

Fig. 1. Path-following: reference frames

Consider Figure 1, where P is an arbitrary point on the path to be followed. Associated with P , consider the corresponding
Serret-Frenet frame {F}. The signed curvilinear abscissa of P along the path is denoted s. Clearly, Q can either be expressed
as q = [x, y, 0]T in {U} or as [s1, y1, 0]T in {F}. Stated equivalently, Q can be given in (x, y, 0) or (s1, y1, 0) coordinates.
Let

R =

⎡
⎣ cosψF sinψF 0

− sinψF cosψF 0
0 0 1

⎤
⎦

be the rotation matrix from {U} to {F}, parameterized locally by the angle ψ F . Define ωF = ψ̇F . Then,

{
ωF = ψ̇F = cc(s)ṡ
ċc(s) = gc(s)ṡ

(4)

where cc(s) and gc(s) = dcc(s)
ds denote the path curvature and its derivative, respectively. The velocity of P in {U} can be

expressed in {F} to yield (
dp
dt

)
F

=

⎡
⎣ ṡ

0
0

⎤
⎦ .
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It is also straightforward to compute the velocity of Q in {U} as(
dq

dt

)
U

=
(

dp

dt

)
U

+ R−1
(

dd

dt

)
F

+ R−1(ωF × d)

where d is the vector from P to Q. Multiplying the above equation on the left by R gives the velocity of Q in {U} expressed
in {F} as

R
(

dq

dt

)
U

=
(

dp

dt

)
F

+
(

dd

dt

)
F

+ ωF × d. (5)

Using the relations

(
dq
dt

)
U

=

⎡
⎣ ẋ
ẏ
0

⎤
⎦ ,

(
dd
dt

)
F

=

⎡
⎣ ṡ1
ẏ1
0

⎤
⎦ ,

and

ωF × d =

⎡
⎣ 0

0
ψ̇F = cc(s)ṡ

⎤
⎦ ×

⎡
⎣ s1
y1
0

⎤
⎦

=

⎡
⎣ −cc(s)ṡy1

cc(s)ṡs1
0

⎤
⎦

equation (5) can be rewritten as

R

⎡
⎣ ẋ
ẏ
0

⎤
⎦ =

⎡
⎣ ṡ(1 − cc(s)y1) + ṡ1

ẏ1 + cc(s)ṡs1
0

⎤
⎦ .

Solving for ṡ1 and ẏ1 yields ⎧⎪⎪⎨
⎪⎪⎩

ṡ1 =
[

cosψF sinψF
] [

ẋ
ẏ

]
− ṡ (1 − ccy1)

ẏ1 =
[ − sinψF cosψF

] [
ẋ
ẏ

]
− ccṡs1.

(6)

Finally, replacing the top two equations of (2) in (6) and introducing the variable ψ = ψW − ψF gives the ’kinematic’ model
of the AUV in (s, y) coordinates as ⎧⎨

⎩
ṡ1 = −ṡ (1 − ccy1) + vt cosψ
ẏ1 = −ccṡs1 + vt sinψ
ψ̇ = ωW − ccṡ

(7)

where ωW = ψ̇W = r + β̇.
At this point it is important to notice that in (Micaelli and Samson, 1993) and (Encarnação et al., 2000), the point P is

defined by the projection of Q onto the path, assuming the projection is well defined. In other terms, the kinematic model
considered in (Micaelli and Samson, 1993) and (Encarnação et al., 2000) is equivalent to the equations (7) with s 1 = 0. One
is then forced to solve for ṡ in the equation above when s 1 is forced to 0. However, by doing so 1 − ccy1 appears in the
denominator, thus creating a singularity at y1 = 1

cc
. As a result, the control laws derived in (Micaelli and Samson, 1993) and

(Encarnação et al., 2000), require that the initial position of Q be restricted to a tube around the path, the radius of which must
be less than 1

cc,max
, where cc,max denotes the maximum curvature of the path. Clearly, this constraint is very conservative since

the occurrence of a large cc,max in just a small section of the path will impose a rather strict constraint on the vehicle’s initial
position, even if it happens to start in a region that is far away from the ’problematic’ section. By making s 1 not necessarily
equal to zero, a virtual target that is not coincident with the projection of the vehicle onto the path is created, thus introducing
an extra degree of freedom for controller design. By specifying how fast the newly-defined target moves, the occurrence of a
singularity at y1 = 1

cc
is removed.



Acc
ep

te
d m

an
usc

rip
t 

ELSEVIER OCEAN ENGINEERING JOURNAL 5

C. Problem Formulation

With the above notation, the problem under study can be formulated as follows:
Consider the AUV model with kinematic and dynamic equations given by (1) and (3), respectively. Given a path to be

followed and a desired profile ud > umin > 0 for the surge speed u, derive feedback control laws for the force F , torque
Γ, and rate of evolution ṡ of the curvilinear abscissa s of the ’virtual target’ point P along the path so that y 1, s1, ψ, and
u− ud tend to zero asymptotically.

III. NONLINEAR PATH-FOLLOWING CONTROLLER DESIGN

This section introduces a nonlinear closed-loop control law to steer the dynamic model of an AUV described by (1)-(3)
along a desired path. Controller design builds on previous work in (Micaelli and Samson, 1993) and (Encarnação et al., 2000),
on path-following control, and relies heavily on backstepping techniques. The reader will find in (Krstić et al., 1995) a lucid
exposition of interesting theoretical and practical issues involved in backstepping. Controller design is done in two steps. The
first step yields a kinematic controller by adopting the yaw rate r = ψ̇B as a ’virtual’ control input, and by assuming that
the actual surge speed equals the desired speed ud. The second step addresses the vehicle dynamics, builds on the kinematic
controller derived, and uses backstepping techniques to obtain control laws for the input variables F and Γ.

A. Controller Design using the Kinematic Model

This section derives a kinematic controller for the AUV. As in (Micaelli and Samson, 1993), we let

δ(y1) = −ψa e
2kδy1 − 1
e2kδy1 + 1

(8)

be a desired approach angle parameterized by k δ > 0 and 0 < ψa < π/2, satisfying y1δ(y1) ≤ 0 for all y1. The approach
angle is instrumental in shaping transient maneuvers during the path approach phase.

Remark : as mentioned in (Micaelli and Samson, 1993) for wheeled vehicles, the approach angle is generally chosen as
δ′(y1, u) = −sign(u)δ(y1), where u is the forward velocity of the wheeled robot. Note that the nonholonomic constraint
makes the side-slip velocity null, so vt = u in this situation. This choice does not guarantee the differentiability of δ ′ around
u = 0. In the case of an AUV, the condition u(t) > 0, ∀t, is necessary for controllability reasons. Effectively this kind of
vehicle is generally actuated via control surfaces that generate an action on the body if there is non-null relative fluid-flow
velocity. This justifies the choice of the approach angle expression, and the necessary assumptions that will be used in the
proof.

Proposition 1: Consider the kinematic model of an AUV described in (1) and the corresponding path-following error model
(7). Let the approach angle δ(y1) be defined as in (8). Assume that the surge velocity of the vehicle is such that u = u d > 0.
Suppose that the path to be followed is parametrized by its curvilinear abscissa s, and assume that for each s the variables
ψ, s1, y1, and cc are well defined. Then the kinematic control law

Ukin =
{
r = δ̇ − β̇ − k1(ψ − δ) + cc(s)ṡ
ṡ = cosψvt + k2s1

(9)

(where k1 and k2 are arbitrary positive constants) drives y1, s1, and ψ asymptotically to zero.
At this point, one should notice that the equation (9) appears in a non-causal form. Indeed, the term β̇ is hiding acceleration

terms, and through them a dependance on r itself. This is due to the coupling term m ur appearing in the side-slip dynamics
(v̇).

Nevertheless, the consideration of the dynamic model (3) yields an algebraic solution for the expression of the kinematic
control r as described below:

r =
1

1 − mur

mv
(cosβ)2

(
δ̇ +

1
v2
t

(u̇v +
udv
v2
t

) − k1(ψ − δ) + cc(s)ṡ
)

(10)

Note that the above control is causal and well defined if

mur

mv
=
m− Yr
m− Yv̇

< 1. (11)

Close examination of the hydrodynamic parameters of an AUV as in (Lewis, 1989) reveals that
• Yv̇ is always negative.
• Yr is positive if stern dominates.
• Yr is negative if bow dominates.
Thus, in the case of a stern-dominant vehicle such as the one considered in this study, the control computation is well posed.

The implementation of this control requires the consideration of the equation (10), where a surge acceleration estimation u̇ is
necessary. Nevertheless, at this kinematic level, one could restrict the domain of application to the case where the system is
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traveling with a constant forward velocity u = ud > 0. This makes the expression (10) simpler since the acceleration terms
disappear.

The following proof will extensively use Barbalat’s lemma and the LaSalle’s invariance principle stated as follows.
Barbalat’s lemma : if f(t) is a double differentiable function such that f(t) is finite as t goes to ∞, and such that ḟ(t) is

uniformly continuous, then ḟ(t) tends to 0 as t tends to ∞
Uniform continuity sufficient condition : ˙f(t) is uniformly continuous if f̈(t) exists and is bounded.
LaSalle’s Invariance Principle : let Ω be a positively invariant set of the system described in (1) and (3). Suppose that

every solution starting in Ω converges to a set E ⊂ Ω and let M be the largest invariant set contained in E. Then every
bounded solution starting in Ω converges to M as t tends to ∞.

For details of Barbalat’s lemma and its application, please refer to (Slotine and Li, 1995). For demonstration and application
of LaSalle’s theorem, please refer to (Sepulchre et al., 1997) and (Khalil, 2002). Note that the application of LaSalle’s theorem
is restricted to autonomous systems. In our situation, the fact that the desired forward velocity is a constant allows our system
to be considered as autonomous.

Proof: The following proof is made under the assumption that the system is traveling with a constant surge velocity
u = ud > 0. This allows us to consider the system as autonomous, and in turn allows for the application of LaSalle’s
invariance principle. The proof is structured in three parts. First, we show that the system asymptotically follows the reference
approach angle δ. Then we show that this reference asymptotically drives the AUV onto the path. And finally, we use LaSalle’s
invariance principle to concatenate the two previous convergence properties.

• Consider the candidate Lyapunov function V1 = 1
2 (ψ − δ)2. The control law

r = δ̇ − β̇ − k1(ψ − δ) + cc(s)ṡ

makes V̇1 = −k1(ψ − δ)2 ≤ 0. Since V1 is a positive and monotonically decreasing function, lim t→∞ V1(t) exists and
is finite. Moreover, since V̈1 = −2k1V̇1, V̈1 is bounded and therefore V̇1 is uniformly continuous. Then an application of
Barbalat’s lemma allows for the conclusion that limt→∞ V̇1 = 0. The system is asymptotically converging to a compact
set E defined by V̇1 = 0. Therefore, the related variables y1, s1, s and ψ are bounded.

• Examine now the motion of the feedback control system restricted to E. To do this, consider the candidate Lyapunov
function candidate VE = 1

2 (s21 + y2
1) and compute its derivative V̇E = y1vt sin δ − k2s

2
1 ≤ 0, according to the definition

of δ in (8). Considering the previous expression of V̇E and the equations (7), V̈E is bounded. Then Barbalat’s lemma
allows for the conclusion that limt→∞ V̇E = 0. This in turn implies that all trajectories in E satisfy limt→∞ y1 = 0 and
limt→∞ s1 = 0.

• We now apply LaSalle’s invariance principle. Let Ω = �2. The first part of the proof showed that every solution starting
in Ω asymptotically converges to E. The second step showed that the largest invariant set of E is M = [(s 1, y1) = 02].
Then every bounded solution starting in Ω converges to 0 as t tends to ∞, or in other terms,⎧⎨

⎩
limt→∞ s1 = 0
limt→∞ y1 = 0
limt→∞ ψ = 0.

(12)

End of proof.

B. The Dynamic controller

The above feedback control law applies to the kinematic model of the AUV only. However, using backstepping techniques,
this control law can be extended to deal with the vehicle dynamics. In the kinematic design the total velocity v t(t) of the
vehicle was left free, but implicitly dependent on a desired profile u d for surge speed u(t). In the dynamic design the variable
u will be explicitly brought into the picture and a control law will be derived so that u(t)− u d tends to zero. Notice also that
the robot’s angular speed r was assumed to be a control input. This assumption is lifted by taking into account the vehicle
dynamics. The following result holds.

Proposition 2: Consider the kinematic and dynamic models of an AUV described in (1) and (3) respectively, and the
corresponding path-following error model in (7). Let the approach angle δ(y 1) be defined as in (8) and let a desired speed
profile ud > umin > 0 for u(t) be given. Suppose the path to be followed is parametrized by its curvilinear abscissa s, and
assume that for each s the variables ψ, s1, y1, and cc

∂cc

∂s are well defined. Then the dynamic control law

Udyn =

⎧⎨
⎩

Γ = mrαr − dr
F = mu(u̇d − k4(u− ud)) − du
ṡ = cosψvt + k2s1

(13)

where
αr = δ̈ − β̈ − (k1 + k3)(ψ̇ − δ̇)
−(k5 + k1k3)(ψ − δ) + ccs̈+ ∂cc

∂s ṡ,
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k1 through k5 are arbitrary positive gains, and dr and du are sums of hydrodynamic coefficients, drives y1, s1, u− ud, and
ψ asymptotically to zero.

The control computation requires further algebraic derivation, as explained in the previous section of the kinematic controller,
where the use of the dynamic model is required. The equations (13) contain an evaluation of the side-slip angle acceleration
β̈. This variable cannot be measured directly, and one must thus resort for its computation to the original dynamic model of
the AUV. It is easy to see that

β̈ =
1
v2
t

(v̈u− üv) − 2
v̇t
vt
β̇ (14)

and that the dynamic model of the AUV can be differentiated to obtain{
ü = 1

mu
(Ḟ − ḋu)

v̈ = 1
mv

(−muru̇r −muruṙ − ḋv)
. (15)

Replacing these equations in the control law and simplifying yields

Γ = mrα+ dr

where

α =
fα − k3(r − rd) − k5(ψ − δ)

1 − mur

mv
(cosβ)2

and
fα = δ̈ − k1(ψ̇ − δ̇) + ccs̈+ gcṡ

+ üv
v2t

+ 2v̇tβ̇
vt

+ u
v2t

(mur

mv
u̇r + ḋv

mv
).

This equation can be further expanded into simpler terms using the vehicle model. Notice that we recover the previous condition
expressed in the equation (11) for the kinematic case.

Proof: Define the virtual control law for r (desired behaviour of r in (9)) as

ζ = δ̇ − β̇ − k1(ψ − δ) + cc(s)ṡ

and let ε = r − ζ be the difference between actual and desired values of r. Set r = ε + ζ and consider the total candidate
Lyapunov function

V2 = k5V1 +
1
2
ε2 +

1
2
(u− ud)2 (16)

with k5 positive. Tedious but straightforward computation shows that with the control law proposed

V̇2 = −k1k5(ψ − δ)2 − k3ε
2

−k4(u− ud)2 ≤ 0

and that V̈2 is bounded. The necessary conditions for the application of Barbalat’s lemma are met, and we conclude that
limt→∞V̇2 = 0. The consequence is that the system is asymptotically converging to a set E ′ defined by V̇2 = 0, or in other
terms E′ := ((ψ − δ, r − ζ, u − ud) ∈ �3|(ψ − δ = 0, r − ζ = 0, u − ud = 0)). As in the previous section, we now study
the system trajectories restricted to the set E ′. This study has been carried out for the kinematic case, and the previous results
may be used to conclude that onto the set E ′, the system properties imply that limt→∞(s1, y1) = 02. Since our system is
autonomous, we use Lasalle’s invariance principle to conclude that⎧⎪⎪⎨

⎪⎪⎩
limt→∞ u− ud = 0

limt→∞ s1 = 0
limt→∞ y1 = 0
limt→∞ ψ = 0

. (17)

End of proof.

IV. SIMULATION RESULTS

This section illustrates the performance in simulation of the derived path-following control law. Table II summarizes the key
parameters of the AUV model used. This is a simple modification of the Infante AUV model described in (Silvestre, 2000),
to account for the fact that only thrusters are used to maneuver in the horizontal plane.

The path is designed in Cartesian space (cf. table I) and we assume a parameterization that allows the computation (given
s) of:

• ψF (s) : the global heading of the virtual target,
• cc(s) : the path curvature at the target position,
• ∂cc(s)

∂s : the curvilinear derivative of the curvature at the target position,
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Fig. 2. Infante

• xs(s) and ys(s), the absolute location of the virtual target.

We have chosen a polynomial parameterization of the form

xs(µ) =
n∑
i=0

aiµ
i ; ys(µ) =

n∑
i=0

biµ
i.

Assuming we have a precise estimation of the function µ(s), and given s, we compute

ψF (s) = arctan (ys)′

(xs)′

cc(s) = ∂ψF (s)
∂µ

dµ
ds

∂cc(s)
∂s = ∂cc(s)

∂µ
dµ
ds

xs(µ(s)) ; ys(µ(s))
(xs)′ = dxs

dµ ; (ys)′ = dys

dµ .

The estimation of the function µ(s) is achievd by integration of

dµ

ds
=

1√
[(xs)′]2 + [(ys)′]2

.

a0 = 0 a1 = 0.866 a2 = −0.02 a3 = 10−5 a4 = 1.5.10−6

b0 = 0 b1 = 0.5 b2 = −5.10−4 b3 = 10−5 b4 = 10−7

TABLE I

THE PATH PARAMETERS

The reference and actual robot paths are shown in Figure 3. The desired surge speed u d was set to 1ms−1. The controller
design parameters are displayed in Table III.

Figures 3, 4, 5 and 6 shows the results of the simulation. Notice in Figure 4 how the coordinates s 1 and y1 tend to zero
asymptotically. This is equivalent to stating that: i) the position of the virtual target (origin of frame {F}(s) along the path)
approaches the projection of the AUV on that path, and ii) the lateral distance of the AUV to the path is driven to zero. Notice
also in Figure 5 that the actual surge velocity u(t) converges to ud = 1ms−1.

V. DISCUSSION

The study that resulted in the development previously described , opened some interesting issues, that should be explicitly
addressed. This section proposes a brief discussion of these questions.

A. The Virtual Target

The idea of the virtual target was implicit in some previous publications (Aicardi et al., 2001, Skjene et al., 2002, Diaz et
al., 2002), where the virtual target control law was ’intuitively chosen’ before establishing global robot control. The originality
of this present work is to show that the virtual target control law can be extracted during robot control design, guaranteeing a
non-singular description of the problem and of system performance. Using this design process, it can be imagined that virtual
target control law can permit the addressing of other problematic properties, and in turn solves other kinds of problem.
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Fig. 3. Robot trajectory

Fig. 4. Relative distance Robot/Virtual Target

Fig. 5. Robot velocities
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m = 2234.5Kg Iz = 2000N.m2

Xu̇ = −142Kg. Yv̇ = −1715Kg.

Nṙ = −1350N.m2 Xuu = −35.4Kg.m−1

Xvv = −128.4Kg.m−1 Yr = 435Kg.
Yv = −346Kg.m−1 Yv|v| = −667Kg.m−1

Nv = −686Kg. Nv|v| = 443Kg.

Nr = −1427Kg.m.

TABLE II

THE INFANTE AUV: MODEL PARAMETERS

k1 = 1 k2 = 1 k3 = 1 k4 = 1 k5 = 1
kδ = 1 ψa = π/4 ud = 1 u̇d = 0 üd = 0

TABLE III

CONTROLLER PARAMETERS

• Actuator saturation: in this study, the actuator saturation constraint has not been considered. This implies that our theoretical
system is able to perfectly follow the path for any curvature. However, this is not true for a real system. In (Jiang and
Nijmejer, 1999) and (Soetanto et al., 2003) it is shown that a unicycle-type robot can achieve asymptotic convergence
in a point-stabilization task, under saturation constraint. In the path-following situation, considering that the robot travels
at a constant forward velocity, the problem is far more complex. Indeed, with the robot traveling at constant forward
velocity, an asymptotic convergence requirement cannot be met on any path. One can argue that path design should take
into account this constraint, thus respecting a ’followability’ condition. However, an interesting question is the following
: considering any path, what should the robot trajectory be to guarantee that the robot/path distance is minimal during
the maneuver? This question can be elegantly posed using the idea of the virtual target, removing the constraint that this
target is moving along the path. This adds another degree of freedom of the virtual controller that can be used to solve
the problem.

B. Acceleration Measurement vs. Estimation

In this study, the dynamic model of the robot has been used to estimate the system accelerations. Nevertheless, the
consideration of a dynamic model implies neglecting the unmodelled dynamics (high order terms, external disturbances,
etc.). Measuring the acceleration captures all the phenomena that cause acceleration. But this kind of measurements id subject
to noise interference, and the efficiency of their consideration should be proven. This is a tradeoff that should be explicitly
studied. Consider the two following situations:

• Minor acceleration: in this situation, 3 solutions are possible:
– use the dynamic model to estimate acceleration,
– use acceleration measurements: this implies checking that the signal/noise ratio is sufficiently large to guarantee

meaningful measurements,

Fig. 6. Control Activity
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– ignore the acceleration.

• Major acceleration: in this situation, the acceleration must be explicitly taken into account. The efficiency of the 2 following
solutions should therefor be studied:

– use the dynamic model: this technique is efficient, especially if a robust adaptive scheme has been designed.
Nevertheless, the high order term of the dynamic model and the external disturbances might not be negligible,

– measure the acceleration: since the related variables are large, their measurement would seem appropriate. Moreover,
the consideration of this measured variable simplifies the control expression.

C. Simplification of the control expression

These results need to be confirmed in tests under real conditions. A preliminary step consists in simplifying the control
expression to obtain an easily implementable version, taking into consideration the sensors that the robot carries.

These questions are important and need to be explicitly studied.

VI. CONCLUSION

A nonlinear control law was developed for accurate path-following in autonomous underwater vehicles (AUVs). The key
idea behind the new control law was to explicitly control the rate of progression of a ’virtual target’ to be tracked along the
path, thus overcoming the ’singularity’ problems that arise when the position of the virtual target is simply defined by the
projection of the actual vehicle onto that path. Controller design relies on backstepping techniques. The paper offered a formal
proof of convergence of the vehicle’s trajectory to the path. Simulation results illustrated the performance of the control system
proposed.

The derived controller relies heavily on accurate knowledge of vehicle dynamics. Future work will address the problems
of reducing controller complexity and evaluating its robustness against parameter uncertainty. The problem of precise path-
following in the presence of unknown sea currents also warrants further consideration.
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