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Abstract

This paper proposes an algorithm that drives a unicycle type robot
to a desired path, including obstacle avoidance capabilities. The
path-following control design relies on Lyapunov theory, backstep-
ping techniques and deals explicitly with vehicle dynamics. Further-
more, it overcomes the initial condition constraints present in a num-
ber of path-following control strategies described in the literature.
This is done by controlling explicitly the rate of progression of a “vir-
tual target” to be tracked along the path� thus bypassing the problems
that arise when the position of the path target point is simply defined
as the closest point on the path. The obstacle avoidance part uses
the Deformable Virtual Zone (DVZ) principle. This principle defines
a safety zone around the vehicle in which the presence of an obstacle
induces an “intrusion of information” that drives the vehicle reac-
tion. The overall algorithm is combined with a guidance solution that
embeds the path-following requirements in a desired intrusion infor-
mation function, which steers the vehicle to the desired path while the
DVZ ensures minimal contact with the obstacle, implicitly bypassing
it. Simulation and experimental results illustrate the performance of
the control system proposed.

KEY WORDS—

1. Introduction

Real-time obstacle avoidance coupled with accurate path- fol-
lowing control is one of the major issues in the field of mobile
robotics (Ogren 1989, 2003). The underlying problem to be
solved can be divided into three areas:
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� path-following control of nonholonomic systems,

� obstacle avoidance strategy,

� coupling between the above two areas.

1.1. Path-following control of a nonholonomic system

The general underlying assumption in path-following control
is that the vehicle’s forward velocity tracks a desired speed
profile, while the controller acts on the vehicle orientation to
drive it to the path. See Micaeli and Samson (1993), and Sam-
son and Ait-Abderrahim (1991) for pioneering work in the area
as well as Canudas de Wit et al. (1993), Jiang and Nimeijer
(1999), and Soetanto et al. (2003) and references therein. Path-
following systems for marine vehicles have been reported by
Encarnação et al. (2000), Encarnação and Pascoal (2000), and
Lapierre et al. (2003). The main contribution of the method in
Lapierre et al. (2003) is threefold:

i) it extends the results obtained by Micaeli and Samson
(1993) and Soetanto et al. (2003) – for kinematic wheeled
robots – to a more general setting, in order to deal with vehicle
dynamics and parameter uncertainty,

ii) it overcomes stringent initial condition constraints that
are present in a number of path-following control strategies in
the literature. This is done by controlling explicitly the rate
of progression of a virtual target to be tracked along the path,
thus bypassing the problems that arise when the position of the
target point on the path is simply defined by the projection of
the actual vehicle on the path. This procedure avoids the sin-
gularities that occur when the vehicle is located at the current
center of curvature of the path virtual target location (where
the closest point is not unique), and allows for global conver-
gence of the vehicle to the desired path. The path is a general
curve, described by its curvature as a function of the curvilin-
ear abscissa� the singularity occurs when the robot is located at
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the centre of the path curvature where the virtual target is lo-
cated. This is in contrast with the results described by Micaeli
and Samson (1993) for example, where only local convergence
is proven. To the best of the authors’ knowledge, the idea of
exploring the extra degree of freedom that comes from control-
ling the motion of a virtual target along a path appeared for the
first time in the work of Aicardi et al. (1995) for the control
of wheeled robots. This idea was later extended to the control
of marine craft in the work of Aicardi et al. (2001). However,
none of these addresses the issues of vehicle dynamics and pa-
rameter uncertainty. Furthermore, the methodologies adopted
by Aicardi et al. (1995, 2001) for control system design build
on entirely different techniques that required the introduction
of a nonsingular transformation in the original error space.

iii) It combines path-following control and obstacle avoid-
ance.

In this paper, controller design builds on the work reported
in Micaeli and Samson (1993) on path-following control and
relies heavily on Lyapunov-based and backstepping techniques
(Krstić et al. 1995� Fierro and Lewis 1997) in order to extend
kinematic control laws to a dynamic setting. In Soetanto et
al. (2003) parameter uncertainty is considered within a frame-
work by augmenting Lyapunov function candidates with terms
that are quadratic in the parameter error. For the sake of clar-
ity, in this paper, we do not extend the dynamic control with
the parameter uncertainty robust scheme.

1.2. Obstacle Avoidance

The obstacle avoidance strategy is another major issue affect-
ing applications in the field of mobile robotics, and comprises
two different issues:

� obstacle detection,

� computation of the system reaction.

Obstacle detection requires the system to be equipped with
sensor devices able to estimate the distance between the robot
and the obstacles. Two different types of sensors are generally
used:

� A belt of proximity sensors (ultrasound, infrared, ...)
mounted on the vehicle allowing the acquisition of a dis-
crete estimation of the free space around the robot.

� A rotating laser beam coupled with a vision system, or
a stereo vision system, permitting continuous estimation
of the polar signature of the free space region around the
vehicle.

System reaction can be at the navigation system level (path
replanning) or directly in the controller as a reflex behavior.
Reaction quantification is generally made according to an ar-
bitrary positive potential field function attached to obstacles,

which repels the robot, and an attractive field located on the
goal. The main difficulty with this method is the design of
an artificial potential function without undesired local min-
ima. Elnagar and Hussein (2002) propose to model the poten-
tial field using Maxwell’s equations that completely eliminate
the local minima problem, with the condition that an a pri-
ori knowledge of the environment is available. These methods
are generally computationally intensive. Iniguez and Rossel
(2002) propose a hierarchical and dynamic method that works
on a no regular grid decomposition, simple and computation-
ally efficient, both in time and memory. Ge and Cui (2000)
address the problem of the adaptation of the potential field
magnitude, in order to avoid the problematic situation where
the goal is too close to an obstacle, inducing an inefficient
attractive field, termed Goals Non-reachable with Obstacles
Nearby. The work of Louste (1999) tackles the problem of
coupling a path-planning method, based on viscous fluid prop-
agation, with nonholonomic robot kinematics restrictions. An-
other approach, based on a reflex behavior reaction, uses the
Deformable Virtual Zone (DVZ) concept, in which a robot
kinematic dependent risk zone is located surrounding the ro-
bot. Deformation of this zone is due to the intrusion of prox-
imity information. The system reaction is made in order to
reform the risk zone to its nominal shape, implicitly moving
away from obstacles (Zapata 2004).

1.3. Coupling Obstacle Avoidance and Path Following

Two different methods are generally proposed in the literature
for obstacle avoidance algorithms, coupled with a nominal ob-
jective, defined as path following, trajectory tracking or point
stabilization:

� path replanning,

� reactive path following.

The path replanning strategy requires the system to design
a safe path between obstacles that ensures the vehicle avoids
obstacles and finally reaches the desired goal. The advantage
of this method is that, under the assumption that an accurate
map of the environment is available, it designs a global solu-
tion that guarantees the system reaches the goal, if this solu-
tion exists. Moreover, since the system is necessarily equipped
with proximity sensors, the requirements for an environmen-
tal map construction are met. This allows the use of SLAM
(Simultaneous Localization and Mapping) or CML (Concur-
rent Localization and Mapping) techniques for accurate nav-
igation systems, in which the path replanning method natu-
rally takes place. The drawback is the necessary computational
time, which may cause the system to stop in front of an un-
charted obstacle. Finally the control objective is to follow the
computed path (Elnagar and Hussein 2002� Iniguez and Rossel
(2002)� Rimon and Koditschek 1992).
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Reactive path following, which acts directly at the control
level, is generally considered as a behavior-based approach,
and includes fuzzy or neural systems, Althaus and Chris-
tensen (2002) and Arkin (1998). Several behaviors are defined
(avoid-obstacle, move to goal, ...) and a switching scheme is
designed to switch between these behaviors.

1.4. Outline of this paper

We have investigated the coupling between the path-following
algorithm described in Soetanto et al. (2003) and a DVZ-based
reactive obstacle avoidance control. The proposed method
consists in a guidance solution that embeds the path-following
requirements in a desired proximity function (with respect to
the obstacles) that drives the robot to contour the obstacles
while guaranteeing the path-following convergence require-
ments when there is no obstacle. This approach is based on the
derivation of a Lyapunov function that guarantees asymptotic
convergence to the path without obstacles, and the bounded-
ness of a variable called the intrusion ratio, that captures the
surrounding obstacles proximity and the current robot situa-
tion with respect to the path. The combination of path follow-
ing with a reactive – local – obstacle avoidance strategy has
a natural limitation in the situation that both controllers yield
antagonistic system reactions. In the proposed method, this
situation leads to a local minimum called the corner situation,
where a heuristic switch between controllers is necessary. The
advantage of the method is that outside this very specific cor-
ner situation, no switch is required.

The paper is organized as follows: Sections 2 and 3 review
the basic algorithms we use for path following and obstacle
avoidance. Section 4 shows our solution combining both con-
trollers and Section 5 illustrates the results obtained. Finally,
Section 6 presents conclusions and suggests further work.

2. Path-following Algorithm

2.1. Path Following. Problem Formulation

This section reviews a solution to the problem of steering a
unicycle type vehicle along a desired path.

The following assumptions are made regarding the robot
(see Figure 1). The vehicle, of width 2L, has two identical par-
allel, non-deformable rear wheels of radius R, which are con-
trolled by two independent motors, and a passive front wheel.
It is assumed that the plane of each wheel is perpendicular to
the ground and that the contact between the wheels and the
ground is pure rolling and non-slipping, i.e. the velocity of the
center of mass of the robot is orthogonal to the rear wheels
axis. It is further assumed that the masses and inertias of the
wheels are negligible and that the center of mass of the mobile
robot is located in the middle of the axis connecting the rear

Fig. 1. Path following: frames definition and problem pose
description.

wheels. The wheels control provides a forward force F and
an angular torque N applied at the vehicle’s center of mass.
The vehicle mass and moment of inertia are denoted m and
I , respectively. Let u and r denote the forward and rotational
velocity of the vehicle.

2.1.1. Kinematic equations of motion. The Serret–Frenet
Frame

The solution to the problem of path following derived in Mi-
caelli and Samson (1995) admits an intuitive explanation: a
path-following controller should look at (i) the distance from
the vehicle to the path and (ii) the angle between the vehicle
velocity vector and the tangent to the path, and reduce both to
zero. This motivates the development of the kinematic model
of the vehicle in terms of a Serret–Frenet frame �F� that moves
along the path, with abscissa denoted s1 and ordinate y1� �F�
plays the role of the body axis of a “virtual target vehicle” that
should be tracked by the “real vehicle”. Using this set-up, the
abovementioned distance and angle become the coordinates of
the error space in which the control problem is formulated and
solved. In this paper, motivated by the work in Micaelli and
Samson (1995), a Frenet frame �F� that moves along the path
to be followed is used with a significant difference: the Frenet
frame is not attached to the point on the path that is closest
to the vehicle. Instead, the origin of �F� along the path is
made to evolve according to a conveniently defined function
of time, effectively yielding an extra controller design parame-
ter. As will be seen, this seemingly simple procedure allows
one to lift the stringent initial condition constraints that arise
with the path-following controller described in Micaelli and
Samson (1993). The notation that follows is now standard.

Consider Figure 1, where P is an arbitrary point on the
path to be followed and Q is the center of mass of the mov-
ing vehicle. Associated with P , consider the corresponding
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Serret–Frenet frame �F�. The signed curvilinear abscissa of P
along the path is denoted s. Clearly, Q can either be expressed
as q = �X� Y� 0� in a selected inertial reference frame �I� or as
�s1� y1� 0� in �F�. Stated equivalently, Q can be given in �X� Y �
or �s1� y1� coordinates (see Figure 1). Let the position of point
P in �I� be vector p. Let

R �

����
cos � c sin � c 0

� sin � c cos � c 0

0 0 1

����
be the rotation matrix from �I� to �F�, parameterized locally by
the angle � c. Define �c � �� c. Then,��	 �c � �� c � cc�s��s

�cc�s� � gc�s��s
(1)

where cc�s� and gc�s� � dcc�s�
ds denote the path curvature and

its derivative, respectively. The velocity of P with respect to
�I� can be expressed in �F� to yield



dp
dt

�
F

�

����
�s
0

0

���� �
It is also straightforward to compute the velocity of Q in �I� as



dq
dt

�
I

�



dp
dt

�
I

�R�1



dr
dt

�
F

�R�1��c 	 r�

where r is the vector from P to Q. Multiplying the above equa-
tion on the left by R gives the velocity of Q in �I� expressed in
�F� as

R



dq
dt

�
I

�



dp
dt

�
F

�



dr
dt

�
F

��c 	 r

Using the relations



dq
dt

�
I

�

�����
�X
�Y
0

����� �



dr
dt

�
F

�

����
�s1

�y1

0

���� �
and

�c 	 r �

�����
0

0

�� � cc�s��s

�����	
����

s1

y1

0

����

�

�����
�cc�s��s y1

cc�s��ss1

0

����� �
equation (2) can be rewritten as

R

�����
�X
�Y
0

����� �
�����
�s�1� cc�s�y1�� �s1

�y1 � cc�s��ss1

0

����� �
Solving for �s1 and �y1 yields����������������	

�s1 �



cos � c sin � c

��� �X
�Y

��� �s �1� cc y1�

�y1 �


� sin � c cos � c

��� �X
�Y

��� cc �ss1�

(2)

At this point it is important to notice that in Micaelli and Sam-
son (1993), s1 � 0 for all t , since the location of point P is
defined by the projection of Q on the path, assuming the pro-
jection is well defined. One is then forced to solve for �s in the
equation above. However, by doing so 1� cc y1 appears in the
denominator, thus creating a singularity at y1 � 1

cc
. As a result,

the control law derived in Micaelli and Samson (1993) requires
that the initial position of Q be restricted to a tube around
the path, the radius of which must be less than 1

cc�max
, where

cc�max denotes the maximum curvature of the path. Clearly,
this constraint is very conservative since the occurrence of a
large cc�max in only a very small section of the path will im-
pose a rather strict constraint on the initial vehicle position, no
matter where it starts with respect to that path.

By making s1 not necessarily equal to zero, a virtual target
that is not coincident with the projection of the vehicle on the
path is created, thus introducing an extra degree of freedom for
controller design. By specifying how fast the newly defined
target moves, the occurrence of a singularity at y1 � 1

cc
is

removed. The velocity of the unicycle in the �I� frame satisfies
the equation �� �X

�Y

�� � u

�� cos �m

sin �m

�� (3)
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where �m and u denote the yaw angle of the vehicle and its
body-axis speed, respectively. Substituting (3) in (2) and in-
troducing the variable � � �m � � c gives the kinematic model
of the unicycle in �s� y� coordinates as��������	

�s1 � ��s �1� cc y1�� u cos �

�y1 � �cc �ss1 � u sin �

�� � �m � cc �s
(4)

where �m = ��m .

2.1.2. Dynamics. Problem Formulation

The dynamical model of the unicycle is obtained by augment-
ing (4) with the equations��	 �u � F

�

�� � ��m � cc 
s � gc �s2
(5)

where ��m � N
� and � and � are the mass and the moment

of inertia of the unicycle, respectively. Let FP F and NP F be
the path-following control inputs, the forward force and the
angular torque, respectively.

With the above notation, the problem under study can be
formulated as follows:

Given a desired speed profile ud�t� � umin � 0 for the vehicle
speed u, derive a feedback control law for FP F and NP F to
drive y1, � , and u � ud asymptotically to zero.

2.2. Nonlinear Controller Design

This section introduces a nonlinear closed loop control law to
steer the dynamic model of a wheeled robot described by (4)
and (5) along a desired path. Controller design builds on pre-
vious work by Micaeli and samson (1993) on path-following
control and relies heavily on backstepping techniques.

2.2.1. Kinematic Controller design

The analysis that follows is inspired by the work in Samson
and Ait-Abderrahim (1991) and Micaelli and Samson (1993)
on path-following control for kinematic models of wheeled ro-
bots. Recall from the problem definition in the previous sec-
tion that the main objective of the path-following control law
is to drive y1 and � to zero. Starting at the kinematic level,
these objectives can be embodied in the Lyapunov function
candidate (Micaelli and Samson 1993).

V1 � 1

2
�s2

1 � y2
1��

1

2�
�� � 	�y1� u��

2 (6)

where � is a positive gain, and it is assumed that

A.1. 	�y1� u� is a bounded differentiable function with respect
to y1 and 	�0� u� � 0. This function will be called in the
sequel ‘approach angle’.

A.2. y1u sin 	�y1� u� � 0��y �u�

A.3. lim t
�u�t� �� 0�

In the V1 Lyapunov function adopted, the first term 1
2 �s

2
1 �

y2
1� captures the distance between the vehicle and the path,

which must be reduced to 0. The second term aims to shape
the approach angle � � �m � � c of the vehicle to the path as a
function of the ‘lateral’ distance y1 and speed u, by forcing it
to follow a desired orientation profile embodied in the function
	. See Samson and Ait-Abderrahim (1991), where the use of a
	 function of this kind was first proposed.

Assumption A�1� specifies that the desired relative heading
vanishes as y1 goes to zero, thus imposing the condition that
the vehicle’s main axis must be tangential to the path when the
lateral distance y1 is 0. Assumption A�2� provides an adequate
reference sign definition in order to drive the vehicle to the
path (turn left when the vehicle is on the right side of the path,
and turn right in the other situation). Finally, Assumption A�3�
states that the vehicle does not tend to a state of rest. The need
for these conditions will become apparent in the development
that follows. The derivative of V1 can be easily computed to
give

�V1 � s1 �s1 � y1 �y1 � 1

�
�� � 	�� �� � �	�

� s1 �u cos � � �s �1� cc y1�� �scc y1�

� y1u sin � � 1

�
�� � 	�� �� � �	�

� s1 �u cos � � �s�� y1u sin 	 � 1

�

� �� � 	�


�� � �	 � � y1u

sin � � sin 	

� � 	
�
�

Let the ideal (also called virtual) “kinematic control laws” for
s and � be defined as��������	

�s � u cos � � k1s1�
�� � �	 � � y1u sin ��sin 	

��	
�k2�� � 	��

(7)

where k1 and k2 are positive gains. Then,

�V1 � �k1s2
1 � y1u sin 	 � k2

�� � 	�2
�

� 0� (8)

Note the presence of the term y1u sin 	 in the previous equa-
tion and how assumption A�2� is justified.
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2.2.2. Backstepping the Dynamics

The above feedback control law applies to the kinematic model
of the wheeled robot only. In what follows, using backstepping
techniques, that control law is extended to deal with the vehicle
dynamics. Notice how in the kinematic design the speed of the
robot u�t� was assumed to follow a desired speed profile, say
ud�t�. In the dynamic design this assumption is dropped, and
a feedback control law must be designed so that the tracking
error u�t��ud�t� approaches zero. Notice also that the robot’s
angular speed �m was assumed to be a control input. This
assumption will be lifted by taking into account the vehicle
dynamics. Following Krstić et al. (1995) define the virtual
control law for �� (desired behaviour of �� in (7)) as


 � �	 � � y1u
sin � � sin 	

� � 	 � k2�� � 	� (9)

and let � � �� � 
 be the difference between actual and desired
values of �� . Replacing �� by � � 
 in the computation of �V1

gives

�V1 � �k1s2
1 � y1u sin 	 � k2

�� � 	�2
�

� �� � 	�
�

� (10)

Augment now the candidate Lyapunov function V1 with the
terms �2�2 and �u � ud�

2�2 to obtain

V2 � V1 � 1

2

�
�2 � �u � ud�

2
�

(11)

with derivative

�V2 � �k1s2
1 � y1u sin 	 � 1

�
�� � 	�2

� �



1

�
�� � 	�� ��

�
� �u � ud�� �u � �ud��

Simple computations show that if��	 �� � � 1
�
�� � 	�� k3�

�u � �ud � k4�u � ud��
(12)

where k3 and k4 are positive gains. Then

�V2 � �k1s2
1 � y1u sin 	 � 1

�
�� � 	�2

� k3�
2 � k4�u � ud�

2 � 0� (13)

It is now straightforward to compute the control inputs F and
N by solving the dynamics equation (5) to obtain��	 N � � � f1���� k3
�

F � � � f2���� k4�u � ud��
(14)

where ��	 f1��� � �
 � 1
�
�� � 	�� cc 
s � gc �s2

f2��� � �ud �

The above control law makes �V2 negative semi-definite. This
fact plays an important role in the proof of convergence of the
robot to the path.

2.2.3. Choice of the Approach Angle 	�y1� u�

As explained before, the choice of the 	�y1� u� approach an-
gle is instrumental in shaping the transient maneuvers during
the path approach phase. Indeed, the approach angle is ex-
pressing the desired angle to approach the path. In Micaelli
and Samsion (1993), the authors propose to use 	�y1� u� �
�sign�u� tanh�y1�. This choice is natural in the sense that a
large positive lateral distance between the robot and the path,
will imply the desired relative heading robot/path to be ��2,
that is the approach angle. As the robot approaches the path,
and y1 diminishes, the approach angle decreases as well. The
previous choice is intuitively justified, however, it raises some
subtle mathematical difficulties because 	�y1� u� is not dif-
ferentiable with respect to u at u � 0. Another choice is
possible, 	�y1� u� � � tanh�y1u� for instance. This com-
plicates the control derivation, and reduces the system per-
formances in terms of convergence time. In this study, we
avoid this problematic situation by imposing a forward veloc-
ity ud � umin � 0 (cf. problem statement of Section 2.1.1, and
the implicit respect of the assumption A.3). As we will see
later, this condition will also be justified in the next section on
obstacle avoidance (Section 3).

2.2.4. Control Expression

We now state the proposed solution for the problem exposed
in Section 2.1.2.

Proposition 1: Consider the kinematic and dynamic models
described in (4) and (5). Let the approach angle 	�y1� u� be

	�y1� u� � �sign�u��a tanh�k	 y1� (15)

where 0 � �a � ��2 defines the asymptotic desired approach,
with k	 an arbitrary positive gain. Assume that ud�t� � umin �
0 is a C2 function. Suppose the path to be followed is parame-
terized by its curvilinear abscissa s and assume that for each
s the variables � , s1, y1, cc and gc are well defined (cf. the
Remarks section below). Then, the dynamic control law������	

NP F � � � f1���� k3
�

FP F � � � f2���� k4�� � �d��

�s � u cos � � k1s1

(16)



PROOF O
NLY

Lapierre et al. / Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot 7

where the f1��� and f2��� are defines in equation (14) and k1,
k2, k3, k4 and k� are arbitrary positive gains, drives y1, s1 and
� asymptotically to zero.

Proof: The key steps in the proof can be briefly described as
follows: let V2 be the Lyapunov function candidate expressed
in equation (11). The kinematic control expression (16) yields
�V2 � 0. Since �V2 is negative semi-definite and bounded be-

low, V2 is bounded and has a well defined limit. Therefore,
s1, y1, � and u are bounded, since � and ud are assumed to be
bounded. Considering the previous equations, it is straightfor-
ward to show that �s1, �y1, �� and �u are bounded as well. Direct
derivation allows one to compute the second derivative of V2,
and prove it is bounded. Therefore, �V2 is uniformly continuous
and application of Barbalat’s lemma implies that �V2 tends to 0
as t tends to �. Consider now the expression for �V2 in (13).
Since �V2 is a sum of negative terms and tends to 0 as t goes to
�, we conclude that s1, y1, �� � ��, �, and �u � ud� tend to
zero as well. That is, the robot asymptotically converges to the
path.

Remarks: The proposed solution consists in a ‘fox–rabbit’
problem where the rabbit is really cooperative since it adjusts
its own velocity to help the convergence, through the expres-
sion:

�s � u cos � � k1s1�

The first term u cos � is the projection of the vehicle (fox) onto
the path where the virtual target (rabbit) is located. The sec-
ond term is necessary to ensure the convergence of s1 to 0,
making the virtual target asymptotically converge to the clos-
est point with respect to the vehicle current position. In the
problem statement, the condition ud�umin � 0 has been im-
posed (implicitly covering the assumption A.3). Then the ve-
hicle will not stay at rest and will effectively converge to the
path. The consequence of this is that the virtual target also
will not stay at rest, since � and s1 are guaranteed to converge
to zero, and u � 0, for all t . Then, the path-following prob-
lem, as described here can never degenerate to a pose regula-
tion problem, for which Brockett’s limitations are inevitable.
The assumption that the variables � , s1, y1, cc and gc are well
defined implies that there is a path parameterization that allows
one to compute the path curvature cc�s� and its spatial deriv-
ative gc�s�, for all s denoting the current curvilinear abscissa
of the virtual target. Moreover, this implies that the system is
equipped with a sensor suite that allows computation of the ro-
bot situation in the Serret–Frenet frame, i.e. the variables � , s1

and y1.

3. Obstacle Avoidance Algorithm

This section presents an obstacle avoidance algorithm based
on the use of a continuous Deformable Virtual Zone (DVZ).
The main idea is to define the robot/environment interaction

as a DVZ surrounding the vehicle. Deformation of this risk
zone 	 is due to the intrusion of proximity information and
thus controls the robot reactions. This DVZ characterizes the
deformable zone geometry, and depends on the robot veloci-
ties (forward and rotational velocities, u and r). Briefly, the
risk zone, disturbed by obstacle intrusion, can be reformed by
acting on the robot velocities. For a complete exposition of the
DVZ principle, the reader is referred to Zapata (2004).

3.1. DVZ Principle

General statement
A rigid body R representing a controlled robot is moving
among obstacles in �2. The 2-dimensional vector U � [u r]T

is the generalized momenta consisting of the translational and
rotational velocities of the robot. It characterizes the motion
of R. Furthermore, we will assume that the robot R can be
controlled by the derivative 
 � �U of this vector.

Informally, we define a controlled DVZ, 	h , as any DVZ
which depends on the vector U characterizing the motion of
R. This functional dependence will appear more clearly in
Section 3.2, after parameterization of the DVZ:

	h � ��U�� (17)

If we let � � �	h� 	� be an ordered pair of two DVZ of
R (the first one being a controlled DVZ), we define the defor-
mation 
 of the DVZ 	h with respect to 	 as the functional
difference of 	 and 	h :


 � 	 � 	h� (18)

We assume that the robot can perceive distances in all di-
rections of space. We also assume that the set of maximum
distances that can be perceived by R and the set of actually
perceived distances are also two DVZ surrounding R respec-
tively named Sensor boundary and Information boundary (and
respectively denoted � and �). The deformation I of � with
respect to � is given by I � � ��.

Let 	 I , be a DVZ which depends on the Sensor boundary
deformation I :

	 I � ��I �� (19)

The deformation 
 of the DVZ 	h with respect to 	 I can
be written:


 � 	 I � 	h � ��I �� ��U�� (20)

For a given point M on R, the deformation vector 
�M�
depends on the intrusion of proximity information I �M�, in
the rigid body workspace, and on the controlled DVZ 	h .

Figure 2 shows these different DVZ.

Parameterization
Equation (20) is a functional equation that has to be parame-
terized in order to be differentiable and to lead to the “usable”
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Fig. 2. DVZ principle: the different DVZ for collision avoid-
ance.

equation (22). For instance, it can be spatially sampled along
the directions of the real sensors. In this case, it becomes an s-
dimensional vectorial equation where s is the number of prox-
imity sensors. It can also be evaluated as a polar signature and
therefore parameterized. In the case of simple mobile robots,
the DVZ can be parameterized by simple shapes like ellipsoids
(see 3.2).

Differentiation
By differentiating Equation (20) with respect to time, we get:

�� � ��U [�] � �� I [�] � (21)

where�U and� I are the differentiation operators with respect
to the vectorial variables U and I . We note � � �U and � � �I .

This equation can be rewritten as:

�� � A� � B�� (22)

Variations in � are controlled by a 2-fold input vector
u � [� �]T . The first control vector �, due to the robot con-
troller, tends to minimize deformation of the DVZ. The second
one, � � �I , is unknown and induced by the environment it-
self, the relative motion of obstacles with respect to the robot
and their shapes. It can be seen as an uncontrolled input.

In the rest of the paper, we will assume that the function �
relating the intrusion of information to the deformed DVZ � I

is defined as follows:

��I � �
��	 � � I i f � � I � �h

0 other� ise
(23)

where the sign � means the comparison of the sensor infor-
mation (� � � � I ) and the undeformed DVZ �h in each
direction of measure (see Figure 3). This restriction does not
change the principle of the DVZ and is just a simplification
leading to confusion of the intrusion I and the deformation �
(their derivatives are now identical).

Fig. 3. Implementation of the function � (and projection).

3.2. The Controlled DVZ

In order to acquire an analytical expression for the polar sig-
nature of the controlled DVZ, expressed in the robot frame
centered on R, we consider an elliptic shape. Let P � [x y]T

be a point on the ellipse with axis cx and cy . If we assume
that the proper reference frame of the DVZ is translated from
its center by a vector a � [ax ay]T , its equation in the robot
frame is given by:


x � ax

cx

�2

�



y � ay

cy

�2

� 1� (24)

The coefficients ax , ay , cx and cy are chosen heuristically
and depend on the first component of the control vector, i.e.
the general momentum u, the translational velocity of the ro-
bot. We have chosen:

cx � �cx u2 � cmin
x

cy �
�

5

3
cx

ax � ��2�3�cx

ay � 0� (25)

In the direction � with respect to the main axis of the el-
lipse, let dh��� be the length of the controlled DVZ �h , i.e.
the norm of the vector

�

R P . We can write:

�

R P �

�
x

y

�
�
�� cos��m� sin��m�

� sin��m� cos��m�

���� X

Y

�� (26)

where [X Y ]T are the coordinates of point P in the absolute
frame.
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Using the definition of dh��� �
�

x2 � y2, we can write:�
x

y

�
� dh���

�
�1

�2

�
(27)

where [�1 �2]T � [cos��� sin���]T is the unit vector in the di-
rection �, expressed in the robot frame. Substituting equation
(27) and equation (26) in equation (24) leads to the quadratic
equation:

Adh���
2 � Bdh���� C � 0 (28)

with:

A � �2
1c2

y cos2���� �2
2c2

x sin2���

B � 2ax�1c2
y cos���� 2ay�2c2

x sin���

C � �ax cy�
2 � �aycx�

2 � c2
x c2

y � (29)

The solution of equation 28 is:

dh��� � �B ��B2 � 4AC

2A
(30)

This distance clearly depends on the form parameters of
the controlled DVZ, i.e. the coefficients ax , ay , cx and cy .
Less explicitly, it also depends on the orientation of the DVZ,
i.e. on the attitude �m of the robot. In order to compute the
derivative of dh��� with respect to this angle �m (as we will
need below), we have to consider that the point P is fixed in
the absolute frame, leading to the dependence of vector � on
�m . We have:

d�

d�m
�
�� sin���

� cos���

�� (31)

Another way to say this is that the obstacle in this direction
(if it exists) is ground-referenced (Figure 4).

3.3. The Deformed DVZ

Let c��� be the distance between the sensor and the obstacle
in the direction �, and d��� the “distance” between the sensor
and the deformed DVZ � I . d��� is obtained by saturation of
c��� according to the following equation:

d��� � c��� : i f : c��� � dh�

� dh��� :: else�here� (32)

3.4. The Deformation

In order to use the DVZ paradigm to control the robot collision
avoidance and to combine this method with our path-following
approach, we introduce the intrusion ratio:

� �
� 2�

��0

��

d���
d� �

� 2�

��0

dh���� d���

d���
d� (33)

Fig. 4. Frames definition and problem pose description.

where �� is the deformation of the DVZ in the direction �.
This quantifies the global amount of intrusion, normalized

by the factor d���. Note that a null distance robot/obstacle
yields an infinite value of �. Thus a control that guarantees
a bounded intrusion ratio at any time, ensures that the system
avoids any obstacle.

The intrusion ratio � is a function of u (through the co-
efficients ax , ay , cx and cy), of � (through equation 31) and of
the absolute position of the detected obstacle ([xE yE ]). We
can write:

� � ��u� �m� xE � yE�� (34)

3.5. System Jacobian Functions

The time derivation of the expression of the intrusion ratio
yields

�� � J u
� �u � J ��r � F Rob��elu � F Obst��el (35)

with��������������������������������������������������	

J u
� � � 2�

0
1

d���



1

2A

�
�J u

B � B J u
B�2C J u

A�2AJ u
C�

B2�4AC

�

� �B�
�

B2�4AC
2A2 J u

A

�
d�

J �� � � 2�
0

�1
d���



1

2A

�
�J �B � B J�B�2C J�A�

B2�4AC

�

� �B�
�

B2�4AC
2A2 J �A

�
d�

F Rob��el � � 2�
0

dh���

d2���
cos�d�

F Obst��el � � 2�
0

dh���

d2���
��[ �xE cos ��m � ��

� �yE sin ��m � ��]� d�
(36)
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where��	 J u
A � 2�cy

�cy
�u cos2 ���� cx

�cx
�u sin2 ����

J �A � 2 cos ��� sin ����c2
y � c2

x�
(37)

����������	
J u

B � 2
�

cos ���[c2
y
�ax
�u � 2ax cy

�cy
�u ]

� sin ���[c2
x
�ay
�u � 2aycx

�cx
�u ]
�

J �B � 2
�
ax c2

y sin ���� ayc2
x cos ���

� (38)

and

J u
C � 2



ax cy

�
cy
�ax

�u
� ax

�cy

�u

�

� aycx

�
cx
�ay

�u
� ay

�cx

�u

�

� cx cy

�
cx
�cy

�u
� cy

�cx

�u

��
(39)

and �xE � �yE define the obstacle absolute velocity. The assump-
tion of static obstacles yields F Obst��el � 0. For the sake of
simplicity, we consider only static obstacles.

3.6. Obstacle Avoidance Control Design

Consider the following Lyapunov function candidate V� � I 2

2 .
The derivation yields

�V� � ��J u
� �u � J ��r � F Rob��elu�� (40)

It is straightforward to see that the choice��	 �u � �Ku J u
�� � F Rob��el

Ju
�

u

r � �Kr J ���
(41)

where Ku� Kr are arbitrary positive gains yields �V� � 0�t .
Note that tedious but straightforward computation (using for
the sake of simplicity the guidance functions in (25)) shows
that the term F Rob��el

Ju
�

is a positive function that acts as a non-
linear damping term. This confirms the well posedness of the
expression (41).

The control (41) is a hybrid kinematic/dynamic solution.
A backstepping step is necessary for the torque control. Let
VO A � 1

2 �rd � r�2 be a Lyapunov function candidate, where
rd � �Kr J ���. The choice �r � �rd�Kr �r�rd� yields �VO A �
0. Then the dynamic obstacle avoidance control is written as��	 FO A ��

�
�Ku J u

�� � F Rob��el

Ju
�

u
�

NO A � � ��rd � Kr �r � rd��
(42)

where Kr and Ku are arbitrary positive gains,� and � are the
mass and moment of inertia of the vehicle, and rd � �Kr J �� I .

4. Combining Path-following and Obstacle
Avoidance

4.1. Mathematical Inspiration

The combination of the two algorithms is solved as a guidance
problem. The requirements are:

� the vehicle should remain far from the obstacle, i.e. in
the presence of obstacles � has to be bounded at any
time,

� when there is no obstacle, the vehicle has to asymptoti-
cally converge to the desired path.

To do so, we rewrite the obstacle avoidance control, adding a
desired intrusion ratio �d � Kd tanh ��d�� � 	��, where Kd

and �d are arbitrary positive gains, � and 	 are path-following
variables defined in the previous section (equations (4) and

(15)). Let V2 � ����d �
2

2 be a Lyapunov function candidate.
It is straightforward to see that the choice��	 r � �Kr �� ��d��J �� ���d�� cc �s � �	

�u � �Ku J u
��� ��d�� F Rob��el

Ju
�

u
(43)

implies that���d asymptotically converges to a bounded set
defined as:

�� ��d �t
� � J ���cc �s � �	�
Kr �J �� ���d�2 � Ku�J u

��
2

(44)

where ��d � 2Kd�d
1��d ���	�2 .

Note that the previous expression is bounded since �J u
��

2 �
0 if u �� 0,��d is bounded and if the quantity cc �s��	 is assumed
to be bounded, which is covered by the assumption that the free
space is connected.

Then, following the obstacle, the vehicle cannot be driven
infinitely far from the desired path, i.e. cc �s � �	 remains
bounded. Moreover, if there is no obstacle, the Lyapunov func-

tion candidate degenerates to V��0 � �2
d

2 , and the previous
control choice yields �V��0 � �Kr�

2
d�

�
d

2 � 0, which induces
the path-following asymptotic convergence requirements. The
dynamic control corresponding to the previous solution is:��	 FO A ��

�
�Ku J u

��� ��d�� F Rob��el

Ju
�

u
�

NO A � � � �rd � Kr �r � rd��
(45)

where rd � �Kr �� � �d��J �� � ��d� � cc �s � �	, Ku and Kr

are arbitrary positive gains. At this stage one should note that
this solution does not prevent the forward velocity u from be-
ing null, and thus a poor convergence rate around the path.
We therefore propose another control version that avoids these
drawbacks, but also loses any mathematical proof of conver-
gence.
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Table 1. Corner situation.

a) Corner situation b) Extract. from Corner Sit.

c) Evolut. forward vel. d) Evolut. of the ‘rabbit’.

4.2. Practical Solution

The combination of path following and obstacle avoidance ca-
pabilities has a natural limitation in situations where both cri-
teria induce antagonist system reactions.

For instance, the obstacle avoidance algorithm may demand
that the forward velocity be reduced to zero or a negative value.

This situation occurs when the deformed DVZ � is sym-
metric with respect to the forward velocity direction. Then the
robot will orient itself to minimize the intrusion, and regulate
its forward velocity to reshape the nominal DVZ �h in order
to respect the intrusion requirement, i.e. limt
�� � �d .
This situation is called a corner situation, as described in Ta-
ble 1. To avoid this problematic local minimum, the following
switching scheme was designed. Let �l and �r be the intru-
sion ratios on the left (0 � � � �) and right (� � � � 2�)
side, respectively, and umin � 0 the lowest admissible for-
ward velocity. The chosen corner situation detection is made
with the following switching condition. The Boolean variable
C O RN E R is initialized to zero, then

i f [��l�r � 0�&�u � umin�] �C O RN E R � 1�
i f ��l�r � 0� �C O RN E R � 0�� (46)

The reaction to this situation is to:

(i) reduce the forward velocity,

(ii) rotate until the obstacle is present only on one side, us-
ing the following controllers.

�uC O RN E R � �Kuu

rC O RN E R � rC sign��d� (47)

where Ku is a positive gain, and rC the chosen rotational
velocity to operate the corner extraction.

The overall control algorithm is written

i f �C O RN E R � 0�

�N � NO A � f ���NP F � F � FO A � f ���FP F�
else

�N � � ��Kr �r � rC O RN E R�� � F �� �uC O RN E R� (48)

where the selection function is f ��� � 1
1�K��

, with KI a pos-
itive gain. Note that this algorithm causes the robot to travel
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with a positive forward velocity u � umin � 0, outside the
corner situation. This guarantees the well posedness of the
expressions (43), (44) and (45). Then the global control (48) is
well posed in any situation. Table 1(c) describes the evolution
of the forward velocity while encountering a corner situation.
The increase in the intrusion ratio induces a decreasing for-
ward velocity, down to umin � 0�2m�s�1, while the obstacle
is present on the left and right side of the robot (�l�r � 0).
The robot is then controlled according to (47), where rcorner is
driven by the sign of �d . This allows the system to be driven
away from the path, thus guaranteeing the system skirts the
obstacle. Table 1(d) shows the evolution of the virtual target
(‘rabbit’) along the path, where its backward movement to-
wards the closest point on the path is seen, while the robot is
skirting the obstacle.

5. Results

The previous solution implicitly requires an estimation of ��
in the computation of FO A. The numerical derivation of the
sensor information induces noise amplification and will not
provide an accurate estimation of ��. Therefore, we degrade
the previous solution at a kinematic level, that does not require
the estimation of ��. Moreover, the considered robot (cf. Fig-
ure 5) accepts as control inputs the desired velocities u and r ,
and its rapid actuator response (combined with its light mass
and inertia) allows implementation of a kinematic controller
without degrading the overall performance.��	 r � rO A � f ���rp f

u � uO A � f ���u pf

(49)

where����������������������	

rP F � �	 � K P F
r �� � 	�� cc �s

u P F �
� t

0 � �ud � K P F
u �u � ud��dt

�s � u cos � � kss1

rO A � �K O A
r �� ��d��Jr ���d�� cc �s � �	

uO A �
� t

0 ��K O A
u J�u �� ��d�� Frob��el

J�u
u�dt�

(50)

The DVZ guidance functions are chosen according to (25).
The other functions are chosen according to the following
definitions: ��	 �d � Kd tanh�d�� � 	�

f ��� � 1
1�K��

(51)

Table 2. The chosen control parameters.

K P F
r � 0�1 K P F

u � 1 K O A
r � 0�01 K O A

u � 0�1

Kd � 10 �d � 0�01 KI � 100 ud � 1

�cx � 100 cmin
x � 10 K C O RN E R

u � 0�1 rc � 1

5.1. Simulation Results

We have implemented the algorithm on a unicycle simulator
developed with Matlab. The control parameters are chosen
according to Table 2. The results are displayed in Table 3.
Table 2(a) shows the path and obstacles definitions. The ro-
bot is of the unicycle type, on which a 32-proximity-sensors
belt is mounted, displayed as surrounding radial rays of length
defined by the nominal DVZ. Table 2(b) indicates a corner sit-
uation, in which we see the reduction of the DVZ due to the
decreased forward velocity. Table 2(c) shows the system after
the switch from corner situation to nominal control. Finally,
Table 3(d) displays the global trajectory the system has made.

5.2. Experimental Results

We have implemented the control algorithm of equations (49)
on the Pekee robot from the Wany company. This robot is
driven by two independent wheels and carries a 16-infrared-
proximity- sensors belt, see figure 5, and is controlled via a
Mitsubishi M16C family micro-controller. The complete algo-
rithm, equations (49), was first implemented on an embedded
PC daughterboard, and the test results are displayed in Figure
6 describing the odometric trajectory of the robot. Since the
navigation system is based only on odometric information, the
real trajectory is not significant in the demonstration of the va-
lidity of our approach. The robot clearly avoids the obstacle
and returns to the nominal path without requiring switching
control. This is valid in this particular situation where the cor-
ner situation does not occur. Some chattering behavior has
to be filtered out by gain tuning according to the Pekee ro-
bot capabilities. Figure 7 shows the evolution of the forward
velocity. The black dots denote the desired velocity when no
obstacle is detected, the stars indicates the evolution of the for-
ward velocity in the presence of obstacles. A second stage
consisted in simplifying the algorithm complexity (including
trigonometric look-up tables) in order to reduce the compu-
tational burden, and implementation of the solution directly
on the M16C micro-controller onboard the vehicle. The tests
displayed similar vehicle behavior, since the sensor (US and
odometry) accuracy did not allow demonstration of the reac-
tivity benefits of the low level implementation.
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Table 3. Simulation results.

a) Path and Obst. Def. b) Corner Situation

c) Extract. from Corner Sit. d) Final Trajectory

Fig. 5. The Wany robot “Pekee”.

6. Conclusions

We have designed a combined path following and obstacle
avoidance control law for a unicycle type robot based on the
use of the DVZ concept and on a Lyapunov and backstepping
design. Implementation of this solution on the Wany robot
“Pekee” illustrates an interesting performance, avoiding un-
necessary hot switches when the vehicle travels with an im-

portant forward velocity. With this system, we combine the
reactivity of the DVZ principle with a path-following control
without requiring any path replanning. The next step in this
study is to intrinsically attribute the reactivity of the guidance
system to the path-following virtual target, explicitly control-
ling the evolution of an added virtual state of the virtual target,
along the y1 direction (see Figure 1). Then the main robot
control could be designed as a tracker of a cooperative virtual
target� note that the system reactivity is then in charge of a new
dynamic guidance system.
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Fig. 6. Experimental results, trajectories.

Fig. 7. Experimental results, forward velocity.
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