II - Models

Notation

II – Modelsa) Representation Formalism

Position

• Attitude, Orientation : Euler angles

• Attitude, Orientation : Euler angles

Attitude, Orientation : Rotation Matrix

$$\mathbf{R} = \mathbf{P} + \cos \alpha \cdot (\mathbf{I} - \mathbf{P}) + \sin \alpha \cdot \mathbf{Q}$$

with : $\mathbf{P} = \mathbf{n} \cdot \mathbf{n}^T$, $\mathbf{Q} = \wedge (\mathbf{n})$

$$\mathbf{Q} = \begin{pmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{pmatrix}$$

• Attitude, Orientation : Quaternion

$$\mathbf{Q}_{B} = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & \mathbf{n}^{T} \cdot \sin\left(\frac{\alpha}{2}\right) \end{bmatrix}^{T}$$
$$\mathbf{Q}_{B} = \begin{bmatrix} a & b & c & d \end{bmatrix}^{T}$$

Attitude, Orientation : Rot mat. vs Quaternion

Quaternion, basic relations

• Any rotation of an angle α around a unitary vector **n** can be expressed by the unitary quaternion :

$$\mathbf{Q} = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & \mathbf{n}^T \cdot \sin\left(\frac{\alpha}{2}\right) \end{bmatrix}^T, \|\mathbf{n}\| = 1 \rightarrow \|\mathbf{Q}\| = 1$$

• The composition of 2 rotations, Q_1 and Q_2 can be expressed using the (non commutative) quaternionic multiplication, resulting in the Q_3 quaternion such that :

$$\mathbf{Q}_3 = \mathbf{Q}_2 \otimes \mathbf{Q}_1$$

• The conjugate of a quaternion \mathbf{Q} is denoted \mathbf{Q}^* and exhibits the following properties:

$$\mathbf{Q}^* = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & -\mathbf{n}^T \cdot \sin\left(\frac{\alpha}{2}\right) \end{bmatrix}^T;$$

$$(\mathbf{Q}_1 \otimes \mathbf{Q}_2)^* = \mathbf{Q}_2^* \otimes \mathbf{Q}_1^*;$$

$$\mathbf{Q}_1 \otimes \mathbf{Q}_2 = \mathbf{Q}_2^* \otimes \mathbf{Q}_1^*;$$

 $\mathbf{Q} \otimes \mathbf{Q}^* = \|\mathbf{Q}\| \cdot \mathbf{1}_{\mathbf{Q}}$, where $\mathbf{1}_{\mathbf{Q}} = [\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}]^T$ is called *identity quaternion*

• A vector $\mathbf{v} \in \mathbb{R}^3$ can be expressed as a pure imaginary (non unitary) quaternion as:

$$\mathbf{V} = [\mathbf{0}, \mathbf{v}^T]^T$$

• The rotation **Q** applied on a vector $\mathbf{v}_1 \in \mathbb{R}^3$ results in a vector \mathbf{v}_2 expressed as:

$$\mathbf{V_2} = \mathbf{Q} \otimes \mathbf{V_1} \otimes \mathbf{Q}^*$$
, where $\mathbf{V_1} = \begin{bmatrix} 0, \mathbf{v_1}^T \end{bmatrix}^T$ and $\mathbf{V_2} = \begin{bmatrix} 0, \mathbf{v_2}^T \end{bmatrix}^T$

Quaternion, basic relations

An object, onto which a frame {B}: (X_B, u, v, w) is rigidly attached, in rotation w.r.t an intertial frame {U}: (0, x, y, z), has an angular velocity vector denoted ω. The orientation of {B} w.r.t {U} is denoted with quaternion Q. Hence the following relations hold :

 $\mathbf{\Omega}_B = \mathbf{2} \cdot \mathbf{Q}^* \otimes \dot{\mathbf{Q}}$, where $\mathbf{\Omega}_B = [0, \boldsymbol{\omega}_B^T]^T$ and $\boldsymbol{\omega}_B = [p, q, r]^T$ is $\boldsymbol{\omega}$ expressed in {**B**}, and

 $\Omega_0 = \mathbf{2} \cdot \dot{\mathbf{Q}} \otimes \mathbf{Q}^*$, where $\Omega_0 = [0, \boldsymbol{\omega}_0^T]^T$ and $\boldsymbol{\omega}_0$ is $\boldsymbol{\omega}$ expressed in {U}

• The left-multiplication of previous relation by **Q** yields the kinematic rotational model of the moving object as:

$$\dot{\mathbf{Q}} = \frac{1}{2} \cdot \mathbf{Q} \otimes \mathbf{\Omega}_B$$

where
$$\mathbf{\Omega}_B = [0, \mathbf{\omega}_B^T]^T$$
, $\mathbf{\omega}_B = [p, q, r]^T$
denote the object rotational velocities expressed in its own {**B**} frame, as described in the

and p, q and r

sequel.

• Velocities

II – Models b) Kinematic Model

• 2D, Cartesian, no constraint

• 2D, Surface Craft, Cartesian, no constraint

• 2D, Surface Craft, Cartesian, no constraint

• 2D, Cartesian, the Wheel, nonholonomic constraint : $v = \dot{x} \cdot \cos \psi + \dot{y} \cdot \sin \psi = 0$

• 2D, Cartesian, the Wheel, nonholonomic constraint : $v = \dot{x} \cdot \cos \psi + \dot{y} \cdot \sin \psi = 0$

• 2D, Cartesian, the Unicycle, nonholonomic constraint : $v = \dot{x} \cdot \cos \psi + \dot{y} \cdot \sin \psi = 0$

• 2D, Cartesian, the Car, nonholonomic constraint : $v = \dot{x} \cdot \cos \psi + \dot{y} \cdot \sin \psi = 0$

II – Modelsc) Actuation Model

• 2D, the Unicycle

• 2D, the Car

• 2D, the Car, non-sliding contraints

 2D, Cartesian, Omni-directional sweedish wheels system

 2D, Cartesian, Omni_directional Mecanum wheels system

Ř

 $\rightarrow \dot{\eta} = R \cdot \nu$

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -(L_1 + L_2) \\ -1 & 1 & -(L_1 + L_2) \\ 1 & -1 & -(L_1 + L_2) \\ -1 & -1 & -(L_1 + L_2) \\ -1 & -1 & -(L_1 + L_2) \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ r \\ v \\ r \end{bmatrix}$$

$$\rightarrow \mathbf{v} = \mathbf{A} \cdot \mathbf{U}$$

 2D, the Car, Pseudo-Omni-Directional Wheeled Robots

Kinematic Modeling and Singularity Treatment of Steerable Wheeled Mobile Robots with Joint Acceleration Limits

Mohamed SOROUR Andrea CHERUBINI Robin PASSAMA Philippe FRAISSE

IDH group, LIRMM, University of Montpellier, France.

-This video shows the behaviors of the proposed model and of the embedded controller of an industrial mobile robot (Neobotix-MPO700) while performing the proposed benchmark test.

 In the first two trajectories of the test, the instantaneous center of rotation point (ICR) follows a parabolic curve passing by and stopping at the internatic singularity. The ICR point can be shown in a v-rep simulation of the developed model (bottom right).
 The linematic singularity occurs when the ICR point passes by one of the steering axes, in

this experiment is the second steer joint (pointed to by the red arrow at the begining of the experimental videos and the thin steer joint in v-rep simulation video).

$$\begin{cases} \mathbf{W} = \begin{bmatrix} w_1 & w_2 & w_3 & w_4 \end{bmatrix}^T \\ \mathbf{\Delta} = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & \delta_4 \end{bmatrix}^T , \begin{cases} \mathbf{W} = \mathbf{f}(v_t, r), \text{ subject to } \Phi_{\mathbf{W}}(\mathbf{W}) = 0 \\ \mathbf{\Delta} = g(v_t, r), \text{ subject to } \Phi_{\mathbf{\Delta}}(\mathbf{\Delta}) = 0 \end{cases} \\ \mathbf{X}_{ICR} \Big|_{\{\mathbf{B}\}} \Big\|^{-1} = \frac{r}{v_t} \end{cases}$$

Simulation

Kinematic simulation

Video sim Unicycle

Video sim Omni 3 roues

Video sim Car

Video sim Omni Mecanum

2D, Cartesian, Propulsive actuation

Hydro-dynamic phenomena (fluid/structure interaction) :

- Buoyancy
- Lift and Drag
- Added Mass

$$\mathbf{F}_B = \mathbf{f}_D(\mathbf{\Theta}, \mathbf{v}, \mathbf{\eta}, \dot{\mathbf{v}})$$

$$\begin{array}{lll} F_{u} &=& X_{\dot{u}} \cdot \dot{u} + X_{u \cdot |u|} \cdot u \cdot |u| + X_{w \cdot q} \cdot w \cdot q + X_{v \cdot r} \cdot v \cdot r + X_{G}(\eta) \\ F_{v} &=& Y_{\dot{v}} \cdot \dot{v} + Y_{v \cdot |v|} \cdot v \cdot |v| + Y_{u \cdot r} \cdot u \cdot r + Y_{w \cdot p} \cdot w \cdot p + Y_{G}(\eta) \\ F_{w} &=& Z_{\dot{w}} \cdot \dot{w} + Z_{w \cdot |w|} \cdot w \cdot |w| + Z_{u \cdot q} \cdot u \cdot q + Z_{v \cdot p} \cdot v \cdot p + Z_{G}(\eta) \\ \Gamma_{p} &=& K_{\dot{p}} \cdot \dot{p} + K_{p \cdot |p|} \cdot p \cdot |p| + K_{q \cdot r} \cdot q \cdot r + K_{v} \cdot v + K_{w} \cdot w + K_{G}(\eta) \\ \Gamma_{q} &=& M_{\dot{q}} \cdot \dot{q} + M_{q \cdot |q|} \cdot q \cdot |q| + M_{p \cdot r} \cdot p \cdot r + M_{u} \cdot u + M_{w} \cdot w + M_{G}(\eta) \\ \Gamma_{r} &=& N_{\dot{r}} \cdot \dot{r} + N_{r \cdot |r|} \cdot r \cdot |r| + N_{p \cdot q} \cdot p \cdot q + N_{u} \cdot u + N_{v} \cdot v + N_{G}(\eta) \end{array}$$

 $\mathbf{F}_{B} = \mathbf{f}_{D}(\mathbf{\Theta}, \mathbf{v}, \mathbf{\eta}, \dot{\mathbf{v}})$

$$\begin{array}{lll} F_{u} &=& X_{\dot{u}} \cdot \dot{u} + X_{u \cdot |u|} \cdot u \cdot |u| + X_{w \cdot q} \cdot w \cdot q + X_{v \cdot r} \cdot v \cdot r + X_{G}(\eta) \\ F_{v} &=& Y_{\dot{v}} \cdot \dot{v} + Y_{v \cdot |v|} \cdot v \cdot |v| + Y_{u \cdot r} \cdot u \cdot r + Y_{w \cdot p} \cdot w \cdot p + Y_{G}(\eta) \\ F_{w} &=& Z_{\dot{w}} \cdot \dot{w} + Z_{w \cdot |w|} \cdot w \cdot |w| + Z_{u \cdot q} \cdot u \cdot q + Z_{v \cdot p} \cdot v \cdot p + Z_{G}(\eta) \\ \Gamma_{p} &=& K_{\dot{p}} \cdot \dot{p} + K_{p \cdot |p|} \cdot p \cdot |p| + K_{q \cdot r} \cdot q \cdot r + K_{v} \cdot v + K_{w} \cdot w + K_{G}(\eta) \\ \Gamma_{q} &=& M_{\dot{q}} \cdot \dot{q} + M_{q \cdot |q|} \cdot q \cdot |q| + M_{p \cdot r} \cdot p \cdot r + M_{u} \cdot u + M_{w} \cdot w + M_{G}(\eta) \\ \Gamma_{r} &=& N_{\dot{r}} \cdot \dot{r} + N_{r \cdot |r|} \cdot r \cdot |r| + N_{p \cdot q} \cdot p \cdot q + N_{u} \cdot u + N_{v} \cdot v + N_{G}(\eta) \end{array}$$

 $\mathbf{F}_{B} = \mathbf{f}_{D}(\mathbf{\Theta}, \mathbf{v}, \mathbf{\eta}, \dot{\mathbf{v}})$

A NONLINEAR UNIFIED STATE-SPACE MODEL FOR SHIP MANEUVERING AND CONTROL IN A SEAWAY

THOR I. FOSSEN Department of Engineering Cybernetics Norwegian University of Science and Technology NO-7491 Trondheim, Norway E-mail: fossen@ieee.org

This article presents a unified state-space model for ship maneuvering, station-keeping, and control in a seaway. The frequency-dependent potential and viscous damping terms, which in classic theory results in a convolution integral not suited for real-time simulation, is compactly represented by using a state-space formulation. The separation of the vessel model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model (represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous.

Keywords: ship modelling, equations of motion, hydrodynamics, maneuvering, seakeeping, autopilots, dynamic positioning.

2D, Cartesian, Propulsive actuation, ASV

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ r \\ r \end{bmatrix}$$
$$\rightarrow \dot{\eta} = \mathbf{R} \cdot \mathbf{v}$$

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{r} \end{bmatrix} = \begin{cases} \frac{1}{X_{\dot{u}}} \cdot (F_u - X_u \cdot u \cdot |u|) \\ \frac{1}{Y_{\dot{v}}} \cdot (F_v - Y_v \cdot v \cdot |v| - Y_{ur} \cdot u \cdot r) \\ \frac{1}{N_{\dot{u}}} \cdot (F_r - N_r \cdot r \cdot |r|) \\ \rightarrow \dot{\mathbf{v}} = \mathbf{f}_D(\mathbf{\Theta}, \mathbf{v}, \mathbf{\eta}, \mathbf{F}_B) \end{cases}$$

2D, Cartesian, Propulsive actuation, ASV

2D, Cartesian, Propulsive actuation, ASV

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{r} \\ \dot{v} \\ \dot{v} \end{bmatrix} = \begin{cases} \frac{1}{X_{\dot{u}}} \cdot (F_u - X_u \cdot u \cdot |u|) \\ \frac{1}{Y_{\dot{v}}} \cdot (-Y_v \cdot v \cdot |v| - Y_{ur} \cdot u \cdot r) \\ \frac{1}{N_{\dot{u}}} \cdot (-Y_v \cdot v \cdot |v| - Y_{ur} \cdot u \cdot r) \\ \frac{1}{N_{\dot{u}}} \cdot (F_r - N_r \cdot r \cdot |r|) \\ \rightarrow \dot{v} = \mathbf{f}_D(\mathbf{\Theta}, \mathbf{v}, \mathbf{\eta}, \mathbf{F}_B) \end{cases}$$

Back to kinematics

• 2D, Cartesian, ASV vs Unicycle

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ r \end{bmatrix}$$
$$\stackrel{\mathbf{x}}{\mathbf{x}} = \begin{bmatrix} \cos\psi_t & 0 \\ \sin\psi_t & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_t \\ \dot{\psi}_t \end{bmatrix}$$

The total velocity of a moving object is necessarily tangent to its own trajectory

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos \psi & 0 \\ \sin \psi & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u \\ r \end{bmatrix}$$

Back to kinematics

• 2D, Cartesian, ASV vs Unicycle

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \\ \dot{\psi} \end{bmatrix} == \begin{bmatrix} \cos \psi_t & 0 \\ \sin \psi_t & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_t \\ \dot{\psi}_t \end{bmatrix}$$
$$\dot{\psi}_t = r + \dot{\beta}, \text{ where } \beta = \operatorname{atan} \frac{v}{u}$$
$$\begin{cases} F_u = r + \dot{\beta}, \text{ where } \beta = \operatorname{atan} \frac{v}{u} \\ f_u = m_u \cdot \dot{u} + d_u \\ 0 = m_v \cdot \dot{v} + m_{ur} \cdot u \cdot r + d_v \\ \Gamma_r = m_r \cdot \dot{r} + d_r \end{cases}$$
$$\rightarrow r = \frac{\dot{\psi}_t + f(\beta, \mathbf{v}, \dot{u})}{1 - \cos^2 \beta \cdot \frac{m_{ur}}{m_v}}$$
$$\text{ well posed if } \frac{m_{ur}}{m_v} = \frac{m - Y_r}{m - Y_{\dot{v}}} < 1$$

Covered by *stern dominancy* assumption (open-loop local stability)

Back to kinematics

• 2D, Cartesian, ASV, AUV vs Unicycle

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = = \begin{bmatrix} \cos \psi_t & 0 \\ \sin \psi_t & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_t \\ r + \dot{\beta} \end{bmatrix}$$

Covered by *stern dominancy* assumption (open-loop local stability)

2D, Cartesian, Propulsive actuation, AUV

• 3D, Cartesian, Propulsive actuation, AUV

• 3D, Cartesian, Propulsive actuation, AUV

Control surface

 $\mathbf{F}_{\mathrm{m}} = [F_D, F_L, \Gamma_M]^{\mathrm{T}} = \mathbf{f}_{\mathrm{m}}(C_L(\alpha), C_D(\alpha), C_M(\alpha), \nu, \delta(c_{\mathrm{m}}), S, \rho)$

A Non sécurisé aè	foiltools.com	S = C + S
STA Bretigne (H) GMail & Webmail LBMM (H) Duri Planing 2023 (R) Partage (R)		Partage D Agenda Google 🎓 Limm Seatlle 2 🎐 Limm Seatlle You have 0 antolis loaded Your Reynold number range in 50,000 to 1,000,000. ()
Search 1638 airfoils		EXHAULED BY GOOGRE SHARCH
Applications Airfoll database search My artolis Arrola photee Airfoll comparison Reynolds number calc NACA 4 digit generator NACA 5 digit generator Information	Airfoil Tools Tools to search, compare and plot airfoils.	Arbittesh.com
	Control Airfoil search Stareh für arköla avsäklarden Stareh für arköla avsäklarden Vers und plot keht stare für arköla starken Stareh für arköla avsäklarden Vers und plot keht stare für arköla starken The Comber, thickness can be adjusted and für plots set to allow for vining angle in fastarken starken. The SVG (Scalar Vestor Graphics) plan can be printed out bil size or over miljöp angles for targe starken. Airfoil Commonitison The SVG (Scalar Vestor Graphics) plan can be printed out bil size or over	
Airfoil data Lift/drag polars Generated airfoil shapes		
Searches Symmetrical airfoils NACA 4 digit airfoils NACA 5 digit airfoils NACA 6 series airfoils		
Addiala Atto 2 A still a avera (8) A still a avera (8) C still a to univer (8) D east 11 is dol1372 (20) D east 11 is dol1372 (20) C still a to univer (2) G panoton to publication (10) H Hin2 b and 20 (20) H Hin2 b and 20 (20) H H att a mod 10 (2) H ot a to and 20 (2) H ot and 20 (2) H ot and	Notice of more addition of the same plan for shape comparison. The plan can be developed or printed kall size for better resolution: Comparison and any plan adapting for any constraint of the plan adapting of the plan	
	These applications were first developed as so plotter was first published on <u>www.windander</u> yacht designers. It went through a number up decided it would be better as a stand alone w	xipts when I wanted to cut ribs and feam cores for some wind turbines I was making. The to come where I became the most requested page used by RC model aircraft, wind turbine and deate, effent requested by users. When the search and comparison functions were added I ab also and AirfolTools com was born.

http://airfoiltools.com/airfoil/naca4digit

(psu-90-125wl-il) PSU-90-125WL

• Thruster (T200, BlueRobotics)

• Thruster (T200, BlueRobotics)

Simulator

• Kinematics

• Dynamics

Simulation

• Kinematics

• Dynamics

