III - Simulation
III - Simulation

Representation Formalism

Simulator

• Kinematics

• Dynamics

Simulator

• Kinematics
• Kinematics

Respect de la contrainte de normalisation ? Utilisation des Contraintes de Lagrange

Lagrange Constraint Lagrange Constraint

Let the following dynamical system with model : $F_1 = M \cdot \ddot{x} + G(x, \dot{x})$, where $x = [x_1, ..., x_n]^T$

Considering $F = F_1 - G(x, \dot{x})$, yields :
 $F = M \cdot \ddot{x}$ **Lagrange Constraint**

Let the following dynamical system with model : $F_1 = M \cdot \dot{x} + G(x, \dot{x})$, where $x = [x_1, ..., x_n]^T$

Considering $F = F_1 - G(x, \dot{x})$, yields :
 $F = M \cdot \dot{x}$

This system undergoes the following constraints:
 ϕ

Lagrange Constantial L et the following dynamical system with model : $F_1 = M \cdot \hat{x} + G(x, \hat{x})$, where $x = [x_1, ..., x_n]^T$ denotes its state vector.
Considering $F = F_1 - G(x, \hat{x})$, yields :
 $F = M \cdot \hat{x}$ Let the following dynamical system with model : $F_1 = M \cdot \ddot{x} + G(x, \dot{x})$, where $x = [x_1, ..., x_n]^T$ denotes its state vector. denotes its state vector. **Lagrange Constraint**

Let the following dynamical system with model : $F_1 = M \cdot \dot{x} + G(x, \dot{x})$, where $x = [x_1, ..., x_n]^T$ denotes its s

Considering $F = F_1 - G(x, \dot{x})$, yields :
 $F = M \cdot \ddot{x}$

This system undergoes the following co \sum Constraint
 $M \cdot \ddot{x} + G(x, \dot{x})$, where $x = [x_1, ..., x_n]^T$ denotes its state vector.
 $F = M \cdot \ddot{x}$
 $\phi(x) = 0$
 $\theta \phi(x) |_{x = A, x^* = 0}$ $F_1 = M \cdot \ddot{x} + G(x, \dot{x})$, where $x = [x_1, ... x_n]^T$ denotes its sta
 $F = M \cdot \ddot{x}$
 $\phi(x) = 0$
 $\phi(x) = 0$
 $\phi(x) = \dot{x} = A \cdot \dot{x} = 0$
 $\frac{\dot{A}}{A} \cdot \dot{x} + A \cdot \ddot{x} = 0$

Subere $A^T \cdot \dot{A}$ designs the forces of respect of the contracted \bullet **COTTS LT CITTLE**
 $+ G(x, \dot{x})$, where $x = [x_1, ... x_n]^T$ denotes its state vector.
 $\cdot \ddot{x}$
 $\cdot \dot{x} = A \cdot \dot{x} = 0$
 $\ddot{x} = 0$
 $\ddot{x} = 0$ $\mathbf{r}_1 = \mathbf{M} \cdot \dot{\mathbf{x}} + \mathbf{G}(\mathbf{x}, \dot{\mathbf{x}})$, where $\mathbf{x} = [x_1, ..., x_n]^T$ denotes its state vector.
 $\mathbf{F} = \mathbf{M} \cdot \ddot{\mathbf{x}}$
 $\phi(\mathbf{x}) = 0$
 \cdots , $\frac{\partial \phi(\mathbf{x})}{\partial x_n} \cdot \dot{\mathbf{x}} = \mathbf{A} \cdot \dot{\mathbf{x}} = 0$
 $\mathbf{\dot{A}} \cdot \dot{\mathbf{x}} + \mathbf{A}$

$$
\mathbf{F} = \mathbf{M} \cdot \ddot{\mathbf{x}}
$$

Considering
$$
\mathbf{F} = \mathbf{F}_1 - \mathbf{G}(\mathbf{x}, \dot{\mathbf{x}})
$$
, yields :
\n
\nThis system undergoes the following constraints:
\n
$$
\phi(\mathbf{x}) = 0
$$
\nThe constraint's derivation provides :
\n
$$
\frac{\left[\frac{\partial \phi(\mathbf{x})}{\partial x_1}, ..., \frac{\partial \phi(\mathbf{x})}{\partial x_n}\right] \cdot \dot{\mathbf{x}} = \mathbf{A} \cdot \dot{\mathbf{x}} = 0}{\dot{\mathbf{A}} \cdot \dot{\mathbf{x}} + \mathbf{A} \cdot \ddot{\mathbf{x}} = 0}
$$
\nHence the dynamics of the constrained system is, where $\mathbf{A}^T \cdot \lambda$ designs the forces of respect to
\n
$$
\mathbf{F} + \mathbf{A}^T \cdot \lambda = \mathbf{M} \cdot \ddot{\mathbf{x}}
$$

 $\texttt{r}\cdot \boldsymbol{\lambda}$ designs the forces of respect of the contraint:

$$
\mathbf{F} + \mathbf{A}^{\mathrm{T}} \cdot \lambda = \mathbf{M} \cdot \ddot{\mathbf{x}}
$$

This system undergoes the following constraints:
\n
$$
\phi(x) = 0
$$
\nThe constraint's derivation provides :
\n
$$
\frac{\left[\frac{\partial \phi(x)}{\partial x_1},...,\frac{\partial \phi(x)}{\partial x_n}\right] \cdot \dot{x} = A \cdot \dot{x} = 0}{\dot{A} \cdot \dot{x} + A \cdot \ddot{x} = 0}
$$
\nHence the dynamics of the constrained system is, where $A^T \cdot \lambda$ designs the forces of respect of the contraint:
\n
$$
F + A^T \cdot \lambda = M \cdot \ddot{x}
$$
\nThe new constrained system is then written as:
\n
$$
\begin{cases}\nF = M \cdot \ddot{x} - A^T \cdot \lambda \rightarrow \begin{bmatrix} \ddot{x} \\ \lambda \end{bmatrix} = \begin{bmatrix} M & -A^T \\ A & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} F \\ -\dot{A} \cdot \dot{x} \end{bmatrix} \rightarrow \begin{bmatrix} \ddot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & M & -A^T \\ 0 & A & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \dot{x} \\ F \\ -\dot{A} \cdot \dot{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & M & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \dot{x} \\ F \\ 0 \end{bmatrix}
$$

Lagrange Constraint

Exemple : an object, that is assimilable to a ponctual mass m, is falling in the vertical plane of a terrestrial gravity field of magnitude g , with a linear viscous friction with coefficient f . Its initial position is **Lagravity** field of magnitude g, with a linear viscous friction with coefficient f. Its initial position is denoted $\mathbf{x}(0) = [0,0]^T$. This object is attached to a nonelastic rope of length l attached to the point \mathbf{x}_R **. Laying the computer of a nonelastic rope of length** *i* **attached to a nonelastic rope of length** *i* **attached to the point** $\mathbf{x}_R = [l/2,0]^T$ **.
This object is attached to a nonelastic rope of length** *l* **attached to the poi i** a ponctual mass m, is falling in the vertical plane of a terrestrial viscous friction with coefficient *f*. Its initial position is denoted in nonelastic rope of length *l* attached to the point $X_R = [l/2, 0]^T$.
 $-\frac{$ **train the vertical plane of a terrestrial**
on the vertical plane of a terrestrial
of f. Its initial position is denoted
tached to the point $X_R = [l/2,0]^T$. **Graph**
 Solution Control and Solution Section
 Solution
 Solution
 Solution
 Solution
 Solution
 Solution
 F = **M** · **X** = $\begin{bmatrix} 0 \\ -m \end{bmatrix}$ - **f** · **X**, where **M** = $\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}$
 $\rightarrow \ddot{x} = M^{-$ **Constraint**

mass *m*, is falling in the vertical plane of a terrestrial

ion with coefficient *f*. Its initial position is denoted

rope of length *l* attached to the point $X_R = [l/2,0]^T$.
 $\cdot \dot{x}$, where $M = \begin{bmatrix} m & 0 \\$

Lagrange Constrained dynamics\n
$$
\begin{aligned}\n\text{Example: an object, that is assimilable to a potential mass } m, \text{ is falling in the vertical plane of a terrestrial gravity field of magnitude } g, \text{ with a linear viscous friction with coefficient } f. \text{ Its initial position is denoted } \mathbf{X}(0) = [0,0]^T. \text{ This object is attached to a nonelastic rope of length } l \text{ attached to the point } \mathbf{X}_R = [l/2,0]^T.\n\end{aligned}
$$
\nUnconstrained dynamics: $\mathbf{F} = \mathbf{M} \cdot \ddot{\mathbf{x}} = \begin{bmatrix} 0 & g \ -m \cdot g \end{bmatrix} - f \cdot \dot{\mathbf{x}}, \text{ where } \mathbf{M} = \begin{bmatrix} m & 0 \ 0 & m \end{bmatrix}$

\n
$$
\rightarrow \ddot{\mathbf{x}} = \mathbf{M}^{-1} \cdot \mathbf{F} \rightarrow \begin{bmatrix} \ddot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_d \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{x}} \end{bmatrix}
$$
\nConstrained dynamics: $\mathbf{M} \times \mathbf{S} = \mathbf{M}^{-1} \cdot \mathbf{F} \rightarrow \begin{bmatrix} \ddot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_d \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{x}} \end{bmatrix}$

Example: an object, that is assimilable to a particular mass *m*, is falling in the vertical plane of a terrestrial
gravity field of magnitude *g*, with a linear viscosity function with coefficient *f*. Its initial position is denoted

$$
X(0) = [0,0]^T
$$
. This object is attached to a nonelastic rope of length *l* attached to the point $X_R = [l/2,0]^T$.
Inconstrained dynamics: $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} = \begin{bmatrix} 0 & 0 \\ -m \cdot g \end{bmatrix} - f \cdot \hat{\mathbf{x}}$, where $\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & n \end{bmatrix}$
Constrained dynamics: $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} = \begin{bmatrix} -m \cdot g \end{bmatrix} - f \cdot \hat{\mathbf{x}}$, where $\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & n \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{F} \\ \mathbf{X} \end{bmatrix}$
Constrained dynamics: $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} = \mathbf{A} \cdot \hat{\mathbf{x}} + \mathbf{A} \cdot \hat{\mathbf{x}} = 2 \cdot \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}^{-1}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;
 $\mathbf{F} = \mathbf{M} \cdot \hat{\mathbf{x}} - \mathbf{A}^{-1} \cdot \hat{\mathbf{x}}$;<

If
$$
\phi(\mathbf{X}) < 0
$$
, unconstrained dynamics : $\begin{bmatrix} \ddot{\mathbf{X}} \\ \dot{\mathbf{X}} \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_d \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{X}} \end{bmatrix}$
else, constrained dynamics : (at first instant : $\dot{\mathbf{X}}(2) = 0$) and $\begin{bmatrix} \ddot{\mathbf{X}} \\ \dot{\mathbf{X}} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{0} & -\mathbf{A}^T \\ \mathbf{0} & \mathbf{I}_d & \mathbf{0} \\ \mathbf{A} & \dot{\mathbf{A}} & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{X}} \\ 0 \end{bmatrix}$

Lagrange Constraint

Lagrange Constraint
Application to Quaternion integration (1/2):
The position and attitude of a mobile system are denoted : $\eta = \begin{bmatrix} x \\ 0 \end{bmatrix}$, while its body-frame (a
are : $\mathbf{v} = \begin{bmatrix} v_B = [u, v, w]^T \end{bmatrix}$. The kine **Lagrange Constraint**
Application to Quaternion integration (1/2):
The position and attitude of a mobile system are denoted : $\eta = \begin{bmatrix} X \\ 0 \end{bmatrix}$, while its body-frame (absolute) velocities
are : $v = \begin{bmatrix} v_B = [u, v, w]^T \ w_B$ X while its hody from $($ ohoolute \mathbf{Q} , which is body-name (absolute) ve $\begin{split} \text{M} & \text{S} & \text{M} \end{split}$
, while its body-frame (absolute) velocities
as :
 $\begin{split} \text{M} & \times \text{M}^* \end{split}$ are : $\mathbf{v} = \begin{bmatrix} \mathbf{V}_{\mathrm{B}} = [u, v, w]^{\mathrm{T}} \\ \mathbf{W} \end{bmatrix}$. The kinematic model can be expr $W_{\text{B}} = [p, q, r]^{T}$. The kinematic moder can be ex**and the sum of the control of the control of the control of a mobile system are denoted :** $\eta = \begin{bmatrix} x \\ 0 \end{bmatrix}$ **, while its body-frame (absolute) velocities

The kinematic model can be expressed as :
 \eta = \begin{bmatrix} x \\ 0 \end{bmatrix}** $\dot{\eta} = \begin{vmatrix} \dot{\alpha} \\ \dot{\alpha} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \frac{T}{T} \end{vmatrix}$ $\mathbf{\dot{X}} = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\mathbf{T}_{\mathrm{Q}}^{\mathrm{v}}\cdot\left(\mathbf{Q}\otimes\left[0,\mathbf{V}_{\boldsymbol{B}}^{T}\right]^{T}\otimes\mathbf{Q}^{*}\right)\right]$ 1 2.2 10 7.1 1 $\frac{1}{2} \cdot \mathbf{Q} \otimes \underbrace{[0, \boldsymbol{\omega}_B^T]^T}_{\mathbf{Q}}$ Ω_B , and the set of \Box where $\mathbf{T}_{\mathrm{Q}}^{\mathrm{v}}=\begin{vmatrix} 0 & 0 & 1 & 0 \end{vmatrix}$, which allows to transfo **Lagrange Constraint (11)**

Dependent on the system are denoted : $\eta = \begin{bmatrix} x \\ 0 \end{bmatrix}$, while its if
 $\eta = [u, v, w]^T$
 $\eta = [p, q, r]^T$. The kinematic model can be expressed as :
 $\dot{\eta} = \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} \tau_0^v \cdot (\mathbf{Q} \$ **Lagrange Constraint (12):**

and attitude of a mobile system are denoted : $\eta = \begin{bmatrix} x \\ 0 \end{bmatrix}$, while its $\theta = [u, v, w]^T$
 $= [v, q, r]^T$. The kinematic model can be expressed as :
 $\dot{\eta} = \begin{bmatrix} \dot{x} \\ \dot{Q} \end{bmatrix} = \begin{bmatrix} \tau_0^x$ **CONSTRANGE CONSTRANGE (12):**

and attitude of a mobile system are denoted : $\eta = \begin{bmatrix} x \\ 0 \end{bmatrix}$, while its l
 $= [u, v, w]^T$. The kinematic model can be expressed as :
 $\eta = \begin{bmatrix} x \\ \dot{\mathbf{Q}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_0^{\gamma} \cdot (\mathbf{Q} \$ **Solution (1/2):**

Integration (1/2):

of a mobile system are denoted : $\eta = \begin{bmatrix} X \\ 0 \end{bmatrix}$, while its body-frame (absolute) velocities

The kinematic model can be expressed as :
 $\eta = \begin{bmatrix} X \\ 0 \end{bmatrix} = \begin{bmatrix} T_0^y \cdot (Q \otimes$ The inverse transformations uses $\texttt T_{\textsc{v}}^{\texttt{Q}} = \left(\texttt T_{\texttt{Q}}^{\texttt{v}}\right)^{\text{T}}$. Hence the inverse kinematic mode **. Hence the inverse kinematic model is written as :**
 $\begin{bmatrix}\n\mathbf{T}_Q^V \cdot \left(\mathbf{Q} \otimes [0, \mathbf{V}_B^T]^T \otimes \mathbf{Q}^* \right)\n\end{bmatrix}$
 Example 18 and be expressed as :
 $\begin{bmatrix}\n\mathbf{T}_Q^V \cdot \left(\mathbf{Q} \otimes [0, \mathbf{V}_B^T]^T \otimes \mathbf{Q}^* \right)\n\end{$ $\alpha : \eta = [Q]$, while its body-frame (absolute) velocities

expressed as :
 $\otimes [0, v_B^T]^T \otimes Q^*]$
 $Q \otimes [0, \omega_B^T]^T$

oure imaginary quaternion into its equivalent vector.

ie inverse kinematic model is written as :
 $*\otimes [0, X$ are : $\mathbf{v} = [\mathbf{w}_B - [p, q, r]^T]$. The kinematic model can be expressed as :
 $\mathbf{\dot{n}} = [\mathbf{\dot{\tilde{Q}}}] = \begin{bmatrix} \mathbf{T}_{\mathbf{Q}}^{\times} \cdot (\mathbf{Q} \otimes [0, \mathbf{v}_B^T]^T \otimes \mathbf{Q}^*) \\ \frac{1}{2} \cdot \mathbf{Q} \otimes \frac{[\mathbf{O}, \mathbf{\omega}_B^T]^T}{\mathbf{\Omega}_B} \end{bmatrix}$

where $\$ $\vec{\eta} = \begin{bmatrix} \vec{x} \\ \vec{Q} \end{bmatrix} = \begin{bmatrix} \vec{\eta}_d \cdot (\vec{Q} \otimes [0, \omega_B^T]^T) \\ \frac{1}{2} \cdot \vec{Q} \otimes [\underline{0}, \omega_B^T]^T \end{bmatrix}$
 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, which allows to transform a pure imaginary quaternion into its equiv

$$
\mathbf{v} = \begin{bmatrix} \mathbf{V}_{\mathrm{B}} \\ \mathbf{W}_{\mathrm{B}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\mathrm{v}}^{\mathrm{Q}} \cdot \left(\mathbf{Q}^{*} \otimes \begin{bmatrix} 0, \dot{\mathbf{X}}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \otimes \mathbf{Q} \right) \\ \mathbf{T}_{\mathrm{v}}^{\mathrm{Q}} \cdot \left(2 \cdot \mathbf{Q}^{*} \otimes \dot{\mathbf{Q}} \right) \end{bmatrix}
$$

The inverse dynamic model of the system is expressed in the body frame as $: \begin{bmatrix} a_B \\ v_B \end{bmatrix} = M^{-1} \cdot (F_B(c_m) - f(v, \eta)),$ The inverse dynamic model of the system is expressed in the body frame as $\begin{bmatrix} \begin{bmatrix} \begin{matrix} \mathbf{B} \end{bmatrix} = \mathbf{M}^{-1} \cdot (\mathbf{F}_{\mathbf{B}}(\mathbf{c}_{\mathbf{m}}) - \mathbf{f}(\mathbf{v},\mathbf{\eta})) \end{bmatrix} \end{bmatrix}$,
where $\begin{bmatrix} \mathbf{a}_{\mathbf{B}} \\ \mathbf{v}_{\mathbf{c}} \end{bmatrix}$ $\gamma_{\rm B}$] deriotes the (absolute) iongituding $\begin{pmatrix} [a_B] \ \mathbf{v}_B \end{pmatrix} \neq \dot{\mathbf{v}}$). Hence, system dynamics ca $\left[\mathbf{a}_{\mathrm{B}}\right] \neq \mathbf{\dot{v}}$). Hence, system dynamics can be written as : $\mathbf{\ddot{\eta}} = \begin{bmatrix} \ddot{\mathbf{x}} \ \ddot{\mathbf{Q}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\mathrm{Q}}^{\mathrm{v}} \cdot \left(\mathbf{Q} \otimes \left[0, \mathbf{a}_{\mathrm{B}}^{\mathrm{T}}\right]^{T} \otimes \mathbf{Q}^{*}\right) \ \mathbf{Q} \otimes \mathbf{Q} \otimes \mathbf{Q}^{*}$ $\mathbf{H}_{\mathbf{Q}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, which allows to transform a pure imaginary quaternion into its equivalent vectures transformations uses $\mathbf{T}_{\mathbf{V}}^{\mathbf{Q}} = (\mathbf{T}_{\mathbf{Q}}^{\mathbf{V}})^{\mathbf{T}}$. Hence $\mathbf{Q} \otimes \left[\mathbb{0}, \boldsymbol{\gamma}_{\text{B}}^{\text{T}} \right]^{T} \otimes \mathbf{Q}^*$

Lagrange Constraint **Lagrange Constraint**
Application to Quaternion integration (2/2):
The constraint to be considered concerns the quaternion normalisation, that can be written **Lagrange Constraint**
Application to Quaternion integration (2/2):
The constraint to be considered concerns the quaternion normalisation, that can be written as :
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 = 0$ Constraint

ion normalisation, that can be written as :
 \cdot Q – 1 = 0

Q^T **Lagrange Constraint dependent Constraint**
Application to Quaternion integration (2/2):
The constraint to be considered concerns the quaternion normalisation, that
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 = 0$
First derivation yields **agram and Constraint**

Integration (2/2):

dered concerns the quaternion normalisation, that can be written as
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 = 0$
 $\cdot \dot{\mathbf{Q}} = \mathbf{A} \cdot \dot{\mathbf{Q}} = 0$, where $\mathbf{A} = \mathbf{Q}^T$
 $-\mathbf{A} \cdot \ddot{\math$ **Lagrange Constraint**
Application to Quaternion integration (2/2):
The constraint to be considered concerns the quaternion normalisation, that can be writte
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 = 0$
First derivation yields : \mathbf

$$
\phi(\mathbf{Q}) = \mathbf{Q}^{\mathrm{T}} \cdot \mathbf{Q} - 1 = 0
$$

First derivation yields : $\mathbf{Q}^T \cdot \dot{\mathbf{Q}} = \mathbf{A} \cdot \dot{\mathbf{Q}} = 0$, where $\mathbf{A} = \mathbf{Q}^T$ T₁

Application to Quaternion integration (2/2):

The constraint to be considered concerns the quaternion normalisation, that can be written as :
 $\phi(Q) = Q^T \cdot Q - 1 = 0$

First derivation yields : $Q^T \cdot Q = A \cdot Q = 0$, where $A = Q^T$ Application to Quaternion integration (2/2):

The constraint to be considered concerns the quaternion norm
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 =$

First derivation yields : $\mathbf{Q}^T \cdot \mathbf{Q} = \mathbf{A} \cdot \mathbf{Q} = 0$, where $\mathbf{A} = \math$ The constraint to be considered concerns the quaternion normalisation, that can be written as :
 $\phi(\mathbf{Q}) = \mathbf{Q}^T \cdot \mathbf{Q} - 1 = 0$

First derivation yields : $\mathbf{Q}^T \cdot \mathbf{Q} = \mathbf{A} \cdot \mathbf{Q} = 0$, where $\mathbf{A} = \mathbf{Q}^T$

$$
\ddot{\mathbf{\eta}} = \begin{bmatrix} \ddot{\mathbf{X}} \\ \ddot{\mathbf{Q}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\mathrm{Q}}^{\mathrm{v}} \cdot \left(\mathbf{Q} \otimes \begin{bmatrix} 0, \mathbf{a}_{\mathrm{B}}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \otimes \mathbf{Q}^* \right) \\ \mathbf{Q} \otimes \begin{bmatrix} 0, \gamma_{\mathrm{B}}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \otimes \mathbf{Q}^* \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \lambda \cdot \mathbf{A}^{\mathrm{T}} \end{bmatrix}
$$

$$
\begin{bmatrix} \ddot{\eta} \\ \dot{\eta} \\ \dot{\lambda} \end{bmatrix} = \underbrace{\begin{bmatrix} I_d & \mathbf{0} \\ (\mathbf{0} \times \mathbf{0}) & \begin{bmatrix} \mathbf{0} \\ -\mathbf{A}^T \end{bmatrix} \\ \mathbf{0} \\ \begin{bmatrix} \mathbf{0} \\ (\mathbf{0} \times \mathbf{0}) & \mathbf{I}_d \\ (\mathbf{0} \times \mathbf{0}) & \begin{bmatrix} \mathbf{0} \\ (\mathbf{0} \times \mathbf{0}) \end{bmatrix} \\ \mathbf{0} \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \cdot \begin
$$

Simulator: Integration

Numerical solution of an ODE

 $x^{(n)}(t) = f(x^{(n-1)}(t), ..., \dot{x}(t), x(t), u^{(m)}(t), ..., \dot{u}(t), P) \rightarrow x(t)$ Initial conditions at $t_0: x^{(n-1)}(t_0), ..., x^{(i)}(t_0), ..., \dot{x}(t_0), x(t_0)$ et $u^{(m)}(t), ..., \dot{u}(t)$, P known \rightarrow Computat^o of $x^{(n)}(t_0) = f(x^{(n-1)}(t_0), ..., x(t_0), x(t_0), u^{(m)}(t_0), ..., u(t_0), P)$

 \rightarrow Computation at $(t_0 + dt)$: $x^{(n-1)}(t_0 + dt)$, ..., $x^{(i)}(t_0 + dt)$, ..., $\dot{x}(t_0 + dt)$, $x(t_0 + dt)$

Integration over an horizon dt : $x^{(n-1)}(t_0 + dt) = x^{(n-1)}(t_0) + \int_{0}^{t_0 + dt} x^{(n)}(\tau) d\tau$
 $x^{(i-1)}(t_0 + dt) = x^{(i-1)}(t_0) + \int_{t_0}^{t_0 + d} x^{(i)}(\tau) d\tau$
 $x(t_0 + dt) = x(t_0) + \int_{t_0}^{t_0 + d} \dot{x}(\tau) d\tau$

Simulator: Integration

Numerical solution of an ODE

 $x^{(n)}(t) = f(x^{(n-1)}(t), ..., x(t), x(t), u^{(m)}(t), ..., u(t), P) \rightarrow x(t)$

Initial conditions at $t_0: x^{(n-1)}(t_0), ..., x^{(i)}(t_0), ..., \dot{x}(t_0), x(t_0)$ et $u^{(m)}(t), ..., \dot{u}(t)$, P known

 \rightarrow Computat^o of $x^{(n)}(t_0) = f(x^{(n-1)}(t_0), ..., x(t_0), x(t_0), u^{(m)}(t_0), ..., u(t_0), P)$

 \rightarrow Computation at $(t_0 + dt)$: $x^{(n-1)}(t_0 + dt)$, ..., $x^{(i)}(t_0 + dt)$, ..., $\dot{x}(t_0 + dt)$, $x(t_0 + dt)$

Integration over an horizon dt : $\begin{bmatrix} x^{(n-1)}(t_0 + dt) \\ x^{(n-2)}(t_0 + dt) \\ \vdots \\ x^{(i-1)}(t_0 + dt) \\ \vdots \\ x(t_0 + dt) \end{bmatrix} = \begin{bmatrix} x^{(n-1)}(t_0) \\ x^{(n-2)}(t_0) \\ \vdots \\ x^{(i-1)}(t_0) \\ \vdots \\ x(t_0) \end{bmatrix} + \int_{t_0}^{t_0 + d} \begin{bmatrix} x^{(n)}(\tau) \\ x^{(n-1)}(\tau) \\ \vdots \\ x^{(i$ $\chi(t_0+dt)=\chi(t_0)+\int_{t_0}^{t_0+dt}\dot{\chi}(\tau)\cdot d\tau$

Simulator: Integration

Numerical solution of an ODE

 $x^{(n)}(t) = f(x^{(n-1)}(t), ..., \dot{x}(t), x(t), u^{(m)}(t), ..., \dot{u}(t), P) \rightarrow x(t)$

Initial conditions at t_0 : $x^{(n-1)}(t_0)$, ..., $x^{(i)}(t_0)$, ..., $\dot{x}(t_0)$, $x(t_0)$ et $u^{(m)}(t)$, ..., $\dot{u}(t)$, P known

- \rightarrow Computat^o of $x^{(n)}(t_0) = f(x^{(n-1)}(t_0), ..., \dot{x}(t_0), x(t_0), u^{(m)}(t_0), ..., \dot{u}(t_0), P)$
- \rightarrow Computation at $(t_0 + dt)$: $x^{(n-1)}(t_0 + dt)$, ..., $x^{(i)}(t_0 + dt)$, ..., $\dot{x}(t_0 + dt)$, $x(t_0 + dt)$

Simulator : Integration **Simulator : Integration**
• Numerical solution of an ODE
 $x^{(n)}(t) = f(x^{(n-1)}(t), ..., \dot{x}(t), x(t), u^{(m)}(t), ..., \dot{u}(t), P) \rightarrow x(t)$?

 $x^{(n)}(t) = f(x^{(n-1)}(t), ..., \dot{x}(t), x(t), u^{(m)}(t), ..., \dot{u}(t), P) \rightarrow x(t)$? $\chi_0: \chi^{(n-1)}(t_0), \ldots, \chi^{(i)}(t_0), \ldots, \dot{\chi}(t_0), \chi^{(i)}$ $e^{i)}(t_0),\ldots,\dot x(t_0),x(t_0)$ et $u^{(m)}(t),\ldots,\dot u(t)$, P known $^{(n)}(t_0) = f(x^{(n-1)}(t_0), \ldots, \dot{x}(t_0), x(t_0), u^{(m)}(t_0), \ldots, \dot{u}(t_0), P)$ $m(t_1)$ $i(t_2)$ P $(0, 0, \ldots, u(t_0), r)$ $s_0 + dt$) : $x^{(n-1)}(t_0 + dt)$, ..., $x^{(i)}(t_0 + dt)$, $^{(i)}(t, + dt)$ $_0 + u_1, ..., x_{\lfloor t_0 \rfloor} + u_1, x_{\lfloor t_0 \rfloor} + u_1)$ $(n)(t_0 + dt) = f(x^{(n-1)}(t_0 + dt), \dots, \dot{x}(t_{0+dt}), x(t_0 + dt) \dots)$ $t_0 + 2dt$) : $x^{(n-1)}(t_0 + 2dt)$, ..., $x^{(i)}(t_0 + 2dt)$ $^{(i)}(t_0 + 2dt)$ $_0 +$ 2al), ..., $x(t_0 + 2at)$, $x(t_0 + 2at)$ $\rightarrow \cdots$

 $s_0 + kdt$) : $x^{(n-1)}(t_0 + kdt)$, ..., $x^{(i)}(t_0 + kdt)$ $i(t_{\rm t} + k dt)$ $_0$ + κ ul), ..., $x(t_0 + \kappa u t)$, $x(t_0 + \kappa u t)$

$$
x(t) = \{x(t_0), x(t_0 + dt), ..., x(t_0 + kdt), ..., x(t_0 + ndt)\}
$$

Trajectory

Simulator : structure

Simulator: structure

Simulator: structure

Simulator : structure

**Physics compuation
Physics computation
Display Display**