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Respect de la contrainte  de normalisation ?
Utilisation des Contraintes de Lagrange



Lagrange Constraint
Let the following dynamical system with model : 𝐅ଵ = 𝐌 ⋅ 𝐱̈ + 𝐆 𝐱, 𝐱̇ , where 𝐱 = 𝑥ଵ, … 𝑥୬

୘ denotes its state vector. 
Considering 𝐅 = 𝐅ଵ − 𝐆 𝐱, 𝐱̇ , yields :

𝐅 = 𝐌 ⋅ 𝐱̈

This system undergoes the following constraints: 

𝜙 𝐱 = 0

The constraint’s derivation provides :

𝜕𝜙 𝐱

𝜕𝑥ଵ
, … ,

𝜕𝜙 𝐱

𝜕𝑥୬

𝐀

⋅ 𝐱̇ = 𝐀 ⋅ 𝐱̇ = 0

𝐀̇ ⋅ 𝐱̇ + 𝐀 ⋅ 𝐱̈ = 0

Hence the dynamics of the constrained system is, where 𝐀୘ ⋅ 𝛌 designs the forces of respect of the contraint:

𝐅 + 𝐀୘ ⋅ λ = 𝐌 ⋅ 𝐱̈

The new constrained system is then written as:

ቊ𝐅 = 𝐌 ⋅ 𝐱̈ − 𝐀୘ ⋅ λ
𝐀̇ ⋅ 𝐱̇ + 𝐀 ⋅ 𝐱̈ = 0 

→
𝐱̈
λ

= 𝐌 −𝐀୘

𝐀 0

ିଵ

⋅
𝐅

−𝐀̇ ⋅ 𝐱̇
→

𝐱̇
𝐱̈
λ

=
𝐈 𝟎 𝟎
𝟎 𝐌 −𝐀୘

𝟎 𝐀 0

ିଵ

⋅
𝐱̇
𝐅

−𝐀̇ ⋅ 𝐱̇
=

𝐈 𝟎 𝟎
𝟎 𝐌 −𝐀୘

𝐀̇ 𝐀 𝟎

ିଵ

⋅
𝐱̇
𝐅
0



Lagrange Constraint
Exemple : an object, that is assimilable to a ponctual mass 𝑚, is falling in the vertical plane of a terrestrial
gravity field of magnitude 𝑔, with a linear viscous friction with coefficient 𝑓. Its initial position is denoted
𝐗(0) = 0,0 ୘. This object is attached to a nonelastic rope of length 𝑙 attached to the point 𝐗ୖ = 𝑙/2,0 ୘. 

Unconstrained dynamics : 𝐅 = 𝐌 ⋅ 𝐗̈ =
0

−𝑚 ⋅ 𝑔
− 𝑓 ⋅ 𝐗̇, where 𝐌 =

𝑚 0
0 𝑚

→  𝐗̈ = 𝐌ିଵ ⋅ 𝐅 → 𝐗̈
𝐗̇

=
𝐌 𝟎
𝟎 𝐈ୢ

ିଵ

⋅
𝐅
𝐗̇

𝜙 𝐗 = 𝐗 − 𝐗ୖ
୘ ⋅ 𝐗 − 𝐗ୖ − 𝑙ଶ = 0

𝜙̇ 𝐗 = 𝐀 ⋅ 𝐗 ̇ ; 𝐀 = 2 ⋅ 𝐗 − 𝐗ୖ
୘ ; 

𝜙̈ 𝐗 = 𝐀̇ ⋅ 𝐗̇ + 𝐀 ⋅ 𝐗̈ ; 𝐀̇ = 2 ⋅ 𝐗̇𝐓

𝐅 = 𝐌 ⋅ 𝐗̈ − 𝐀୘ ⋅ 𝛌 ; 

→ 𝐗̈
𝜆

= 𝐌 −𝐀୘

𝐀 0

ିଵ

⋅
𝐅

−𝐀̇ ⋅ 𝐱̇

→  
𝐗̈
𝐗̇
𝜆

=
𝐌 𝟎 −𝐀୘

𝟎 𝐈ୢ 𝟎

𝐀 𝐀̇ 0

ିଵ

⋅
𝐅
𝐗̇
0

If 𝜙 𝐗 < 0, unconstrained dynamics : 𝐗̈
𝐗̇

=
𝐌 𝟎
𝟎 𝐈ୢ

ିଵ

⋅
𝐅
𝐗̇

else, constrained dynamics : (at first instant : 𝐗̇ 2 = 0) and
𝐗̈
𝐗̇
𝜆

=
𝐌 𝟎 −𝐀୘

𝟎 𝐈ୢ 𝟎

𝐀 𝐀̇ 0

ିଵ

⋅
𝐅
𝐗̇
0

Constrained dynamics : 

Constraint : 



Lagrange Constraint
Application to Quaternion integration (1/2): 

The position and attitude of a mobile system are denoted : 𝛈 =
𝐗
𝐐

, while its body-frame (absolute) velocities

are : 𝛎 =
𝐕୆ = 𝑢, 𝑣, 𝑤 ୘

𝐖୆ = 𝑝, 𝑞, 𝑟 ୘ . The kinematic model can be expressed as :

𝛈̇ =
𝐗̇
𝐐̇

=

𝐓୕
୴ ⋅ 𝐐 ⊗ 0, 𝐕𝑩

் ்
⊗ 𝐐∗

1

2
⋅ 𝐐 ⊗ 0, 𝝎஻

் ்

𝛀ಳ

where 𝐓୕
୴ =

0 1 0 0
0 0 1 0
0 0 0 1

, which allows to transform a pure imaginary quaternion into its equivalent vector. 

The inverse transformations uses 𝐓୴
୕

= 𝐓୕
୴ ୘

. Hence the inverse kinematic model is written as :

𝛎 =
𝐕୆

𝐖୆
=

𝐓୴
୕

⋅ 𝐐∗ ⊗ 0, 𝐗̇୘ ்
⊗ 𝐐

𝐓୴
୕

⋅ 2 ⋅ 𝐐∗ ⊗ 𝐐̇

The inverse dynamic model of the system is expressed in the body frame as :
𝐚୆

𝛄୆
= 𝐌ି𝟏 ⋅ 𝐅୆ 𝐜𝐦 − 𝐟 𝛎, 𝛈 , 

where
𝐚୆

𝛄୆
denotes the (absolute) longitudinal and rotational accelerations expressed in the body frame 

(
𝐚୆

𝛄୆
≠ 𝛎̇). Hence, system dynamics can be written as : 𝛈̈ =

𝐗̈
𝐐̈

=
𝐓୕

୴ ⋅ 𝐐 ⊗ 0, 𝐚୆
୘ ்

⊗ 𝐐∗

𝐐 ⊗ 0, 𝛄୆
୘ ்

⊗ 𝐐∗



Lagrange Constraint
Application to Quaternion integration (2/2): 

The constraint to be considered concerns the quaternion normalisation, that can be written as :

𝜙 𝐐 = 𝐐୘ ⋅ 𝐐 − 1 = 0

First derivation yields : 𝐐୘ ⋅ 𝐐̇ = 𝐀 ⋅ 𝐐̇ = 0, where 𝐀 = 𝐐୘

Second derivation : 𝐀̇ ⋅ 𝐐̇ + 𝐀 ⋅ 𝐐̈ = 0

The consideration of the normalisation contraint yields to the consideration of the following constrained
dynamic system :

𝛈̈ =
𝐗̈
𝐐̈

=
𝐓୕

୴ ⋅ 𝐐 ⊗ 0, 𝐚୆
୘ ୘

⊗ 𝐐∗

𝐐 ⊗ 0, 𝛄୆
୘ ୘

⊗ 𝐐∗
+

𝟎
𝜆 ⋅ 𝐀୘

We can then define the following system, to be integrated, with constraint respect :

𝛈̈
𝛈̇
𝜆

=

𝐈ୢ
଻×଻

𝟎
଻×଻

𝟎
−𝐀୘

଻×ଵ

𝟎
଻×଻

𝐈ୢ
଻×଻

𝟎
ଵ×଻

𝟎
ଵ×ଷ

𝐀
ଵ×ସ 𝟎

ଵ×଻
𝐈ୢ

ଵ×ଵ

ିଵ

ଵହ×ଵହ

⋅

𝐓୕
୴ ⋅ 𝐐 ⊗ 0, 𝐚୆

୘ ୘
⊗ 𝐐∗

𝐐 ⊗ 0, 𝛄୆
୘ ୘

⊗ 𝐐∗

𝐗̇
𝐐̇

−𝐀̇ ⋅ 𝐐̇

𝛘̇
𝜆

= 𝒇𝑪𝒕 𝛘, 𝐮



Simulator : Integration
• Numerical solution of an ODE
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• Numerical solution of an ODE
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Simulator : Integration
• Numerical solution of an ODE
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Simulator : structure
• Target

Sensors measures
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Simulator : structure
• Hardware in the Loop : HIL

Actuators input

Sensors measures

𝑇஼்ோ௅

𝑇ௌாேௌைோௌ = 𝑇ௌଵ, 𝑇ௌଶ, … , 𝑇ௌ௡

𝑥̇ 𝑡 = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑥 𝑡 + 𝑑𝑡 = න 𝑥̇ 𝜏 ⋅ 𝑑𝜏
௧ାௗ௧

௧

𝑆𝐸𝑁𝑆𝑂𝑅ଵ 𝑡 + 𝑑𝑡 = 𝑔ଵ 𝑥 𝑡 + 𝑑𝑡

𝑆𝐸𝑁𝑆𝑂𝑅ଶ 𝑡 + 𝑑𝑡 = 𝑔ଶ 𝑥 𝑡 + 𝑑𝑡

𝑆𝐸𝑁𝑆𝑂𝑅௡ 𝑡 + 𝑑𝑡 = 𝑔௡ 𝑥 𝑡 + 𝑑𝑡

𝑇ௌଵ

𝑇ௌଶ

𝑇ௌ௡

𝑇ூே்ாீ

The Periods
𝑇஼்ோ௅: Control period

𝑇ூே்ாீ: Integration period (𝑇ூே்ாீ< 
்಴೅ೃಽ

ଵ଴଴
)

𝑇ௌଵ : Sampling period of 𝑆𝐸𝑁𝑆𝑂𝑅ଵ

𝑇ௌଶ : Sampling period of 𝑆𝐸𝑁𝑆𝑂𝑅ଶ

𝑇ௌ௡ : Sampling period of 𝑆𝐸𝑁𝑆𝑂𝑅௡



Simulator : structure
• software in the Loop : SIL
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Sensors measures
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𝑥̇ 𝑡 = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑥 𝑡 + 𝑑𝑡 = න 𝑥̇ 𝜏 ⋅ 𝑑𝜏
௧ାௗ௧

௧

𝑆𝐸𝑁𝑆𝑂𝑅ଵ 𝑡 + 𝑑𝑡 = 𝑔ଵ 𝑥 𝑡 + 𝑑𝑡

𝑆𝐸𝑁𝑆𝑂𝑅ଶ 𝑡 + 𝑑𝑡 = 𝑔ଶ 𝑥 𝑡 + 𝑑𝑡

𝑆𝐸𝑁𝑆𝑂𝑅௡ 𝑡 + 𝑑𝑡 = 𝑔௡ 𝑥 𝑡 + 𝑑𝑡

𝑇ௌଵ

𝑇ௌଶ

𝑇ௌ௡

𝑇ூே்ாீ

Control Computation
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Simulator : structure
• Basic simulation Control compuation

Physics computation
Display


