Projects with Machine Learning and Control
This page is dedicated to the research activities concerning the Machine Learning and Control.
The listed projects are from a team from Lab-STICC and College of Science and Engineering at Flinders University
Karl Sammut
Paulo Santos,
Gilles Le Chenadec
Benoit Clement
Our main Industrial partnet is Naval Group with Eva Artusi, Estelle Chauveau and Gregory Bartoli.
A short presentation of current project is here.
Projects
Recent Publications
Thomas Chaffre, Jonathan Wheare, Andrew Lammas, Paulo Santos, Gilles Le Chenadec, Karl Sammut, Estelle Chauveau, and Benoit Clement (2022). Simtoreal transfer of adaptive control parameters for improved robustness to sea current variations, under review.
Thomas Chaffre, Paulo E. Santos, Gilles Le Chenadec, Estelle Chauveau, Karl Sammut, and Benoit Clement (2022). Learning Stochastic Adaptive Control using a BioInspired Experience Replay Experience Replay.In TechRxiv.
Hector Kohler, Benoit Clement, Thomas Chaffre, and Gilles Le Chenadec (2022). PID Tuning using CrossEntropy DeepLearning: a Lyapunov Stability Analysis. In Proceedings of the 14th IFAC CAMS.
Thomas Chaffre, Julien Moras, Adrien ChanHonTong, Julien Marzat, Karl Sammut, Gilles Le Chenadec, and Benoit Clement (2022). Learningbased vs Modelfree Adaptive Control of a MAV under Wind Gust. In Informatics in Control, Automation and Robotics pp 362–385, LNEE, SPRINGER.
Thomas Chaffre, Gilles Le Chenadec, Karl Sammut, Estelle Chauveau, and Benoit Clement (2021). Direct Adaptive PolePlacement Controller using Deep Reinforcement Learning: Application to AUV Control. In Proceedings of the 13th IFAC Conference on Control Applications in Marine Systems, Robotics and Vehicles
(CAMS).
Thomas Chaffre, Julien Moras, Adrien Chan Hon Tong, and Julien Marzat (2020). SimtoReal Transfer with Incremental Environment Complexity for Reinforcement Learning of DepthBased Robot Navigation., in Proceedings of the 16th ICINCO.
T. Chaffre, G. Le Chenadec, K. Sammut, E. Chauveau, and B. Clement. Direct adaptive pole-placement controller using deep reinforcement learning: Application to auv. In 13th IFAC Conference on Control Application on Marine Systems, Germany, 2021. (doi)
Y. Sola, T. Chaffre, K. Sammut, Gilles Le Chenadec, and B. Clement. Robust guidance and controlof autonomous underwater vehicles with deep reinforcement learning. In IEEE Oceans Conference, Singapore, 2020
Y. Sola, G. Le Chenadec, K. Sammut and B. Clement. Auto-tuning PID controller based on machine learning algorithms for robust control of autonomous underwater vehicles. In IEEE Oceans Conference, Marseille, France, 2019.
|